Petroleum source rocks
Open Access
Issue
Bull. Soc. géol. Fr.
Volume 188, Number 5, 2017
Petroleum source rocks
Article Number 34
Number of page(s) 33
DOI https://doi.org/10.1051/bsgf/2017196
Published online 17 November 2017
  • Aguirre-Urreta B, Lazo DG, Griffin M, Vennari VV, Parras AM, Cataldo C, et al. 2011. Megainvertebrados del Cretácico y su importancia bioestratigráfica. In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM, eds. Geología y Recursos Naturales de la Provincia del Neuquén. Buenos Aires: Asociación Geológica Argentina, pp. 465–488. [Google Scholar]
  • Aigner T. 1982. Calcareous tempestites: storm-dominated stratification in Upper Muschelkalk limestones (Middle Trias, SW-Germany). In: Einsele G, Seilacher A, eds. Cyclic and event stratification. Berlin: Springer-Verlag, pp. 180–198. [CrossRef] [Google Scholar]
  • Algeo TJ, Lyons TW. 2006. Mo-total organic carbon covariation in modern anoxic marine environments: implication for analysis of paleoredox and hydrographic conditions. Paleoceanography 21: PA1016. DOI: 10.1029/2004PA001112. [CrossRef] [Google Scholar]
  • Algeo TJ, Rowe H. 2012. Paleoceanographic applications of trace-metal concentration data. Chemical Geology 324–325: 6–18. [CrossRef] [Google Scholar]
  • Algeo TJ, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology 268: 211–225. [CrossRef] [Google Scholar]
  • Algeo, TJ, Lyons WL, Blakey RC, Over DJ. 2007. Hydrographic conditions of the Devono-Carboniferous North American Seaway inferred from sedimentary Mo-TOC relationships. Palaeogeography, Palaeoclimatolology, Palaeoecolology 256: 204–230. [CrossRef] [Google Scholar]
  • Allen JRL. 1980. Sand waves: a model of origin and internal structures. Sedimentary Geology 26: 281–328. [CrossRef] [Google Scholar]
  • Allen JRL. 1982. Structures and sequences related to gravity-current surges. In: Sedimentary Structures. Their Character and Physical Basis. Amsterdam: Elsevier, Chapter 10, pp. 395–431. [Google Scholar]
  • Armella C, Cabaleri N, Leanza HA. 2007. Tidally dominated rimmed-shelf facies of the Picún Leufú Formation (Jurassic/Cretaceous boundary) in southwest Gondwana, Neuquén Basin, Argentina. Cretaceous Research 28: 961–979. [CrossRef] [Google Scholar]
  • Aurell M, Badenas B. 1994. Factors controlling the sedimentary evolution of the kimmeridgian ramp in the north iberian basin (NE Spain). Estudios Geologicos 50: 91–101. [CrossRef] [Google Scholar]
  • Beer RM, Gorsline DS. 1971. Distribution, composition and transport of suspended sediment in Redondo submarine canyon and vicinity (California). Marine Geology 10: 153–175. [CrossRef] [Google Scholar]
  • Behar F, Beaumont V, De B Penteado HL. 2001. Technologie Rock-Eval 6 : performances et développements. Oil & Gas Science and Technology – Rev. IFP 56 (2): 111–134. [CrossRef] [EDP Sciences] [Google Scholar]
  • Boersma JR, Terwindt JHJ. 1981. Neap-spring tide sequences of intertidal shoal deposits in a mesotidal estuary. Sedimentology 28: 151–170. [CrossRef] [Google Scholar]
  • Bomou B, Adatte T, Tantawy AA, Mort H, Fleitmann D, Huang Y, et al. 2013. The expression of the Cenomanian-Turonian oceanic anoxic event in Tibet. Palaeogeography Palaeoclimatology Palaeoecology 369: 466–481. [CrossRef] [Google Scholar]
  • Bouma AH. 1962. Sedimentology of some flysch deposits: a graphic approach to facies interpretation. Amsterdam: Elsevier, 168 p. [EDP Sciences] [Google Scholar]
  • Bout-Roumazeilles V, Cortijo E, Labeyrie L, Debrabant P. 1999. Clay mineral evidence of nepheloid layer contributions to the Heinrich layers in the northwest Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 146: 211–228. [CrossRef] [Google Scholar]
  • Brenchley PJ, Pickerill RK, Strombert SG. 1993. The role of wave reworking on the architecture of storm sandstone faces, Bell Island Group (Lower Ordovician), eastern Newfound-land. Sedimentology 40: 359–382. [CrossRef] [Google Scholar]
  • Brumsack HJ. 2006. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography Palaeoclimatology Palaeoecology 232: 344–361. [CrossRef] [Google Scholar]
  • Burchette TP, Wright VP. 1992. Carbonate ramp depositional systems. In: Sellwood BW, ed. Ramps and Reefs. Sedimentary Geology 79: 3–57. [Google Scholar]
  • Carignan J, Hild P, Mevelle G, Morel J, Yeghicheya, D. 2001. Routine analyses of trace element in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostandards Newsletter 25: 187–198. [CrossRef] [Google Scholar]
  • Carozzi AV, Orchuela IA, Rodriguez Schelotto ML. 1993. Depositional models of the Lower Cretaceous Quintuco–Loma Montosa Formation, Neuquén Basin, Argentina. Journal of Petroleum Geology 16: 421–450. [CrossRef] [Google Scholar]
  • Chamley H. 1989. Clay sedimentology. Berlin Heidelberg (Germany): Springer-Verlag, 623 p. [EDP Sciences] [Google Scholar]
  • Charrier R. 1985. Estratigrafía, evolución tectónica y significado de las discordancias de los Andes chilenos entre 32°S y 36°S durante el Mesozoico y Cenozoico. In: Frutos J, Oyarzún R, Pincheira M, eds. Geología y Recursos Minerales de Chile. Concepción: Universidad de Concepción, pp. 101–133. [Google Scholar]
  • Cook HE, Taylor ME. 1977. Comparison of Continental slope and shelf environments in the Upper Cambrian and lowest Ordovician of Nevada. Society of Economic Paleontologists and Mineralogists, Special Publication 25: 51–81. [Google Scholar]
  • Crusius J, Calvert S, Pedersen T, Sage D. 1996. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic, and sulfidic conditions of deposition. Earth and Planetary Science Letters 145: 65–78. [CrossRef] [Google Scholar]
  • Cuneo NR. 2003. Early Cretaceous terrestrial ecosystems from Patagonia: The Baquero Group, a case study. Abstract of the Geological Society of America Annual Metting 2003, Seattle. Available from https://gsa.confex.com/gsa/2003AM/finalprogram/abstract_61614.htm. [Google Scholar]
  • Dalrymple RW. 1992. Tidal depositional systems. In: Walker RG, James NP, eds. Facies Models: Response to Sea Level Changes. Ontario: Geological Association of Canada, pp. 195–218. [Google Scholar]
  • Dalrymple RW. 2010. Tidal depositional systems. In: James NP, Dalrymple RW, eds. Facies Models 4. Ontario: Geological Association of Canada, pp. 201–232. [Google Scholar]
  • Dalrymple RW, Choi K. 2007. Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: a systematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews 81: 135–174. [CrossRef] [Google Scholar]
  • Dellwig O, Leipe T, März C, Glockzin M, Pollehne F, Schnetger B, et al. 2010. A new particulate Mn-Fe-P-shuttle at the redoxcline of anoxic basins. Geochimica et Cosmochimica Acta 74(24): 7100–7115. [CrossRef] [Google Scholar]
  • Desjardins RP, Buatois LA, Mangano MG. 2012. Tidal flats and subtidal sand bodies. Developments in Sedimentology. Elsevier B.V., vol. 64. [Google Scholar]
  • Digregorio JH. 1972. Neuquén. In: Leanza AF, ed. Geología Regional Argentina. Córdoba: Academia Nacional de Ciencias, pp. 139–505. [Google Scholar]
  • Doyle P, Poiré DG, Spalletti LA, Pirrie D, Brenchley P, Matheos SD. 2005. Relative oxygenation of the Tithonian-Valanginian Vaca Muerta- Chachao formations of the Mendoza Shelf, Neuquén Basin, Argentina. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E, eds. The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. London: Geological Society, Special Publication, vol. 252, pp. 185–206. [Google Scholar]
  • Dumas S, Arnott RWC. 2006. Origin of hummocky and swaley cross-stratification. The controlling influence of unidirectional current strength and aggradation rate. Geology 34: 1073–1076. DOI: 10.1130/G22930A.1. [CrossRef] [Google Scholar]
  • Embry AF, Johannessen EP. 1992. T–R, facies analysis and reservoir distribution in the uppermost Triassic- Lower Jurassic succession, western Sverdrup basin, Arctic Canada. In: Vorren TO, Bergsager E, Dahl-Stamnes OA, Holter E, Johansen B, Lie E, Lund TB, eds. Arctic Geology and Petroleum Potential. Norwegian Petroleum Society (NPF), Special Publication, vol. 2, pp. 121–146. [Google Scholar]
  • Epistalié J, Madec M, Tissot B, Leplat P. 1977. Source rock characterization method for petroleum exploration. Proceedings of the Offshore Technology Conference, Maggio 2–5, Houston, TX, pp. 439–444. [Google Scholar]
  • Epistalié J, Madec M, Leplat P, Paulet J. 1985. Method and device 633 for determining the organic carbon content of a sample. U.S. Patent 4: 519, 983. [Google Scholar]
  • Eppinger KJ, Rosenfeld U. 1996. Western margin and provenance of sediments of the Neuquén Basin (Argentina) in the Late Jurassic and Early Cretaceous. Tectonophysics 259: 229–244. [CrossRef] [Google Scholar]
  • Flügel E. 2004. Microfacies of carbonate rocks: analysis, interpretation and application. Berlin: Springer. [Google Scholar]
  • Franzese JR, Spalletti LA. 2001. Late Triassic – Early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre break-up rifting. Journal of South American Earth Sciences 14: 257–270. [CrossRef] [Google Scholar]
  • Freije H, Azúa G, González R, Ponce J, Zavala C. 2002. Actividad Tectónica Sinsedimentaria en el Jurásico del Sur de la Cuenca Neuquina. V Congreso de Exploración y Desarrollo de Hidrocarburos. Mar del Plata, 29 de octubre a 2 de Noviembre de 2002. Actas CD, 17 p. [Google Scholar]
  • Friedman GM, Chakraborty C. 2006. Interpretation of tidal bundles: two reasons for a paradigm shift. Carbonates and Evaporites 21: 170–175. [CrossRef] [Google Scholar]
  • Giusiano A, Alonso J, Chebli G, Ibañez G. 2011. Gas no convencional en la cuenca Neuquina. El shale gas en la provincia del Neuquén. Informe de la Subsecretaría de Hidrocarburos, Energía y Minería, Gobierno de la Provincia del Neuquén, 54 p. [Google Scholar]
  • Goldsmith V, Bowman D, Kiley K. 1982. Sequential stage development of crescentic bars: Hahoterim beach, southeastern mediterranean. Journal of Sediment Petrolology 52: 233–249. [Google Scholar]
  • Gradstein FM, Ogg JG, Schmitz MD, Ogg GM. 2012. The geologic time scale. Amsterdam: Elsevier, vol. 1. [Google Scholar]
  • Groeber P. 1946. Observaciones geológicas a lo largo del meridiano 70. Hoja Chos Malal. Revista de la Sociedad Geológica Argentina 1 (3): 177–208. [Google Scholar]
  • Gulisano CA, Gutiérrez Pleimling AR, Digregorio RE. 1984. Análisis estratigráfico del intervalo Tithoniano–Valanginiano (Formaciones Vaca Muerta, Quintuco y Mulichinco) en el suroeste de la provincia de Neuquén. 9° Congreso Geológico Argentino, Actas 1: 221–235. [Google Scholar]
  • Hallam A, Grose JA, Ruffell AH. 1991. Palaeoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeography, Palaeoclimatology, Palaeoecology 81: 173–187. [CrossRef] [Google Scholar]
  • Herzer RH, Lewis DW. 1979. Growth and burial of a submarine canyon off Motunau, north Canterbury, New Zealand. Sedimentary Geology 24: 69–83 [CrossRef] [Google Scholar]
  • Hesse R, Schacht U. 2011. Early diagenesis of deep sea sediments. In: Hueneke H, Mulder T, eds. Developments in Sedimentology. Amsterdam (The Netherlands): Elsevier, vol. 63, pp. 557–713. [CrossRef] [Google Scholar]
  • Howell JA, Schwarz E, Spalletti LA, Veiga GD. 2005. The Neuquén Basin: an overview. In: Veiga GD, Spalletti LA, Howell J, Schwarz E, eds. The Neuquén Basin: A case study in sequence stratigraphy and basin dynamics. London: Geological Society, Special Publications, 252, pp. 1–14. [Google Scholar]
  • Jiang G, Christie-Blick N, Kaufman AJ, Banerjee DM, RAI V. 2003. Carbonate platform growth and cyclicity at a terminal Proterozoic passive margin, Infra Krol Formation and Krol Group, Lesser Himalaya, India. Sedimentology 50: 921–952. [CrossRef] [Google Scholar]
  • Jilbert T, Slomp CP. 2013. Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea. Geochimica et Cosmochimica Acta 107: 155–169. [CrossRef] [Google Scholar]
  • Kietzmann DA, Palma RM. 2011. Las tempestitas peloidales de la Formación Vaca Muerta (Tithoniano-Valanginiano) en el sector surmendocino de la Cuenca Neuquina, Argentina. Latin American Journal of Sedimentology and Basin Analysis 18: 121–149. [EDP Sciences] [Google Scholar]
  • Kietzmann DA, Vennari VV. 2013. Sedimentología y estratigrafía de la Formación Vaca Muerta (Tithoniano-Berriasiano) en el área del cerro Domuyo, norte de Neuquén, Argentina. Andean Geology 40: 41–65. [CrossRef] [Google Scholar]
  • Kietzmann DA, Palma RM, Riccardi AC, Martín-Chivelet J, López-Gómez J. 2014a. Sedimentology and sequence stratigraphy of a Tithonian–Valanginian carbonate ramp (Vaca Muerta Formation): a misunderstood exceptional source rock in the Southern Mendoza area of the Neuquén Basin, Argentina. Sedimentary Geology 302: 64–86. [CrossRef] [Google Scholar]
  • Kietzmann DA, Ambrosio A, Suriano J, Alonso S, Vennari VV, Aguirre-Urreta MB, et al. 2014b. Análisis sedimentológico y estratigráfico secuencial de las Formaciones Vaca Muerta y Quintuco en el área de Chos Malal, Cuenca Neuquina. IX Congreso de Exploración y Desarrollo de Hidrocarburos TT2: 269–288. [Google Scholar]
  • Kietzmann DA, Ambrosio A, Suriano J, Alonso S, Vennari VV, Aguirre-Urreta MB, et al. 2014c. Variaciones de facies de las secuencias basales de la Formación Vaca Muerta en su localidad tipo (Sierra de la Vaca Muerta), Cuenca Neuquina. IX Congreso de Exploración y Desarrollo de Hidrocarburos TT2: 269–288. [Google Scholar]
  • Kietzmann DA, Palma RM, Llanos MPI. 2015. Cyclostratigraphy of an orbitally-driven Tithonian–Valanginian carbonate ramp succession, Southern Mendoza, Argentina: implications for the Jurassic–Cretaceous boundary in the Neuquén Basin. Sedimentary Geology TT2: 269–288. [Google Scholar]
  • Komatsu T, Naruse H, Shigeta Y, Takashima R, Maekawa T, Dang HT, et al. 2014. Lower Triassic mixed carbonate and siliciclastic setting withSmithian–Spathian anoxic to dysoxic facies, An Chau basin, northeastern Vietnam. Sedimentary Geology 300: 28–48. [CrossRef] [Google Scholar]
  • Leanza HA. 1973. Estudio sobre los cambios faciales de los estratos limítrofes Jurasico-Cretácicos entre Loncopué y Picún Leufú, provincia del Neuquén, República Argentina. Revista de la Asociación Geológica Argentina 28: 97–132. [Google Scholar]
  • Leanza HA. 1980. The Lower and Middle Tithonian Ammonite fauna from Cerro Lotena, Province of Neuquén, Argentina. Zitteliana 5: 1–49 (München). [Google Scholar]
  • Leanza HA. 1981. The Jurassic/Cretaceous boundary beds in west central Argentina and their ammonite zones. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 161: 62–92. [Google Scholar]
  • Leanza HA. 1994. Estratigrafía del Mesozoico posterior a los Movimientos Intermálmicos en la comarca del Cerro Chachil, provincia del Neuquén, Argentina. Revista de la Asociación Geológica Argentina 48: 71–84. [Google Scholar]
  • Leanza HA, Hugo CA. 1978. Sucesión de amonites y edad de la Formación Vaca Muerta y sincrónicas entre los paralelos 35° y 40° l. s. Cuenca Neuquina-Mendocina. Revista de la Asociación Geológica Argentina 32: 248–264. [Google Scholar]
  • Leanza HA, Zeiss A. 1990. Upper Jurassic lithostratigraphic Limestone from Argentina (Neuquén Basin): stratigraphy and fossils. Facies 22: 169–186. [CrossRef] [Google Scholar]
  • Leanza HA, Zeiss A. 1992. On the ammonite fauna of Lithostratigraphic Limestones from the Zapala region (Neuquén province, Argentina), with the description of a new genus. Zentralblat für Geologie und Paläontologie 6: 1841–1850 (Stuttgart). [Google Scholar]
  • Leanza HA, Zeiss A. 1994. The Lithostratigraphic Limestones of Zapala (Central Argentina) and their ammonite fauna. Geobios 16: 245–250. [CrossRef] [Google Scholar]
  • Leanza HA, Marchese HG, Riggi JC. 1978. Estratigrafía del Grupo Mendoza, con especial referencia a la Formación Vaca Muerta, entre los paralelos 35° y 40° l. s. Cuenca Neuquina-Mendocina. Revista de la Asociación Geológica Argentina 32: 190–208. [Google Scholar]
  • Leanza HA, Hugo CA, Repol D, Salvarredy Aranguren M. 2003. Miembro Huncal (Berriasiano inferior): un episodio turbidítico en la Formación Vaca Muerta, Cuenca Neuquina, Argentina. Revista de la Asociación Geológica Argentina 25(2): 248–254. [Google Scholar]
  • Leanza HA, Sattler F, Martinez R, Carbone O. 2011. La Formación Vaca Muerta y Equivalentes (Jurásico Tardío–Cretácico Temprano) en la Cuenca. Neuquina. In: Leanza HA, Arregui C, Carbone O, Daniela JC, Vallés JM, eds. Geología y Recursos Naturales de la Provincia del Neuquén, Neuquén. Buenos Aires: Asociación Geológica Argentina, pp. 113–129. [Google Scholar]
  • Legarreta L. 2002. Eventos de desecación en la Cuenca Neuquina: Depósitos continentales y distribución de hidrocarburos. Mar del Plata. V Congreso de Exploración y Desarrollo de Hidrocarburos, Mar del Plata, Argentina. Actas. [Google Scholar]
  • Legarreta L, Gulisano C. 1989. Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico superior-Terciario inferior). In: Chebli G, Spalletti LA, eds. Cuencas Sedimentarias Argentinas, Serie Correlación Geológica. San Miguel de Tucumán: Universidad Nacional de Tucumán, vol. 6, pp. 221–243. [Google Scholar]
  • Legarreta L, Uliana MA. 1991. Jurassic-Cretaceous marine oscillations and geometry of backarc basin fill, Central argentine Andes. In: Macdonald DI, ed. Sedimentation, tectonics and eustasy. Sea level changes at active plate margins. Oxford: International Association of Sedimentologists, Special Publication, vol. 12, pp. 429–450. [CrossRef] [Google Scholar]
  • Legarreta L, Uliana MA. 1996. The Jurassic succession in west-central Argentina: stratal patterns, sequences and palaeogeographic evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 120: 303–330. [CrossRef] [Google Scholar]
  • Legarreta L, Gulisano C, Uliana MA. 1993. Las secuencias sedimentarias Jurásico-Cretácicas. Relatorío Geología y Recursos Naturales de Mendoza, XII° Congreso Geológico Argentino y II° Congreso de Exploración de Hidrocarburos, pp. 87–114. [Google Scholar]
  • Lewis KB, Pantin HM. 2002. Channel-axis, overbank and drift sediment waves in the southern Hikurangi Trough, New Zealand. Marine Geology 192: 123–151. [CrossRef] [Google Scholar]
  • Li XL, Shi HM, Xia H-Y., Zhou Y-P., Qiu YW. 2014 Seasonal hypoxia and its potential forming mechanisms in the Mirs Bay, the Northern South China Sea. Continental Shelf Research 80: 1–7. [CrossRef] [Google Scholar]
  • Little SH, Vance D, Lyons TW, McManus J. 2015. Controls on trace metal authigenic enrichment in reducing sediments: insights from modern oxygen-deficient settings. American Journal of Science 315: 77–119. [CrossRef] [Google Scholar]
  • Lowe DR. 1982. Sedimentary gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Research 52: 279–297. [Google Scholar]
  • Macdonald D, Gómez Pérez I, Franzese J, Spalletti L, Lawver L, Gahagan L, et al. 2003. Mesozoic break-up of SW Gondwana: implications for regional hydrocarbon potential of the southern South Atlantic. Marine and Petroleum Geology 20: 287–308. [CrossRef] [Google Scholar]
  • Manceda R, Figueroa D. 1995. Inversion of the Mesozoic Neuquén Rift in the Malargüe Fold and Thrust Belt, Mendoza, Argentina. In: Tankard AJ, Suárez Soruco R, Welsink HJ, eds. Petroleum Basins of South America. American Association of Petroleum Geologist, Memoir, vol. 62, pp. 369–382. [Google Scholar]
  • Marchese HG. 1971. Litoestratigrafía y variaciones faciales de las sedimentitas mesozoicas de la Cuenca Neuquina, Prov. de Neuquén, Rep. Argentina. Asociación Geológica Argentina Revue 26: 343–410. [Google Scholar]
  • Maretto H, Pangaro F. 2005. Edad de formación de algunas de las grandes estructuras del engolfamiento de la Cuenca Neuquina: actividad tectónica durante la depositación de la Fm. Quintuco. 6° Congreso de exploración y Desarrollo de Hidrocarburos (Mar del Plata), CD-ROM, 11 p. [Google Scholar]
  • Massaferro JL, Zeller M, Giunta DL, Sagasti G, Eberli GP. 2014. Evolución del sistema mixto tithoniano-valanginiano (Formaciones Vaca Muerta, Quintuco y equivalentes) a partir de estudios de afloramientos y subsuelo, centro- sur de la Cuenca Neuquina. IX Congreso de Exploración y Desarrollo de Hidrocarburos. [Google Scholar]
  • Mitchum RM, Uliana MA. 1985. Seismic stratigraphy of carbonate depositional sequences. Upper Jurassic/Lower Cretaceous. Neuquén Basin, Argentina. In: Berg BR, Woolverton DG, eds. Seismic Stratigraphy, II. An Integrated Approach to Hydrocarbon Analysis. American Association of Petroleum Geologists, Memoir, vol. 39, pp. 255–274. [Google Scholar]
  • Mosquera A, Ramos VA. 2006. Intraplate deformation in the Neuquén Embayment. In: Kay SM, Ramos VA, eds. Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° lat). Geological Society of America, Special Paper, vol. 407, pp. 97–124. [Google Scholar]
  • Mutti E. 1992. Turbidite Sandstones. Instituto di Geologia, Universitaà di Parma, Milan, 275 p. [Google Scholar]
  • Naipauer M, García Morabito E, Marques JC, Tunik M, Rojas Vera EA, Vujovich G, et al. 2012. Intraplate Late Jurassic deformation and exhumation in western central Argentina: constraints from surface data and U–Pb detrital zircon ages. Tectonophysics 524–525: 59–75. [CrossRef] [Google Scholar]
  • Nesbitt HW. 2003. Petrogegenesis of siliciclastic sediments and sedimentary rocks. In Lentz DR, ed. Geochemistry of sediments and sedimentary rocks: evolutionary considerations to mineral deposit-forming environments. Geol Assoc Canada GeoText 4: 39–51. [Google Scholar]
  • Nesbitt HW, Young GM. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299: 715–717. [CrossRef] [Google Scholar]
  • Nesbitt HW, Young GM. 1989. Formation and diagenesis of weathering profiles. Journal of Geology 97: 129–147. [CrossRef] [Google Scholar]
  • Nio SD, Yang C. 1991. Diagnostic attributes of clastic tidal deposits: a review. In: Smith DG, Reinson GE, Zaitlin BA, Rahmani RA, eds. Clastic Tidal Sedimentology. Calgary: Canadian Society of Petroleum Geologists, Memoire, vol. 16, pp. 3–27. [Google Scholar]
  • Normark WR, Piper DJW, Sliter R. 2006. Sea-level and tectonic control of middle to late Pleistocene turbidite systems in Santa Monica Basin, offshore California. Sedimentology 53: 867–897. [CrossRef] [Google Scholar]
  • Pángaro F, Veiga R, Vergani G. 2002. Evolución tecto-sedimentaria del área de Cerro Bandera, Cuenca Neuquina, Argentina. 5° Congreso Argentino de Exploración de Hidrocarburos, Mar del Plata, Abstracts on CD. [Google Scholar]
  • Parent H, Garrido AC, Schweigert G, Scherzinger A. 2011. The Tithonian ammonite fauna and stratigraphy of Picún Leufú, southern Neuquén Basin, Argentina. Revue de Paléobiologie 30: 45–104. [Google Scholar]
  • Posamentier HW, Martinsen OJ. 2011. The character and genesis of submarine mass-transport deposits: insights from outcrop and 3D seismic data. In: Shipp RG, Weimer P, Posamentier HR, eds. Mass-transport deposits in deepwater settings. Tulsa: SEPM, Special Publication, vol. 96, pp. 7–38. [Google Scholar]
  • Pratt BR, James NP, Cowan CA. 1992. Peritidal Carbonates. In: Walker RG, James NP, eds. Facies Models: Response to Sea Level Changes. St. Johns: Geological Association of Canada, pp. 303–322. [Google Scholar]
  • Puig P, Ogston AS, Mullenbach BL, Nittrouer CA, Sternberg RW. 2003. Shelf-to-canyon sediment-transport processes on the Eel continental margin (northern California). Marine Geology 193: 129–149. [CrossRef] [Google Scholar]
  • Ramos VA. 1999. Evolución tectónica de la Argentina. In: Caminos R, ed. Geología Argentina Servicio Geológico Minero Argentino. Buenos Aires: Anales, vol. 29, pp. 715–784. [Google Scholar]
  • Reading HG, Collinson JD. 1996. Clastic coasts. In: Reading HG, ed. Sedimentary Environments: Processes, Facies and Stratigraphy. Cornwall: Blackwells, pp. 154–231. [Google Scholar]
  • Reineck HE, Singh IB. 1980. Depositional Sedimentary Environments. Berlín- Heidelberg, New York: Springer-Verlag, 549 p. [EDP Sciences] [Google Scholar]
  • Reineck HE, Wunderlich F. 1968. Classification and origin of flaser and lenticular bedding. Sedimentology 11: 99–104. [CrossRef] [Google Scholar]
  • Riccardi AC. 2008. The marine Jurassic of Argentina: a biostratigraphic framework. Episodes 31: 326–335. [Google Scholar]
  • Sagasti G. 2005. Hemipelagic record of orbitally-induced dilution cycles in: Lower Cretaceous sediments of the Neuquén Basin. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E, eds. The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. London: Geological Society, Special Publication, vol. 252, pp. 231–250. [Google Scholar]
  • Scholz F, McManus J, Sommer S. 2013. The manganese and iron shuttle in a modern euxinic basin and implications for molybdenum cycling at euxinic ocean margins. Chemical Geology 335: 56–68. [CrossRef] [Google Scholar]
  • Shanley KW, Mccabe PJ, Hettinger RD. 1992. Tidal influence in Cretaceous fluvial strata from Utah, USA: a key to sequence stratigraphic interpretation. Sedimentology 39: 905–930. [CrossRef] [Google Scholar]
  • Shepard FP, Emery KO, La Fond EC. 1941. Rip currents: a process of geological importance. Journal Geology 49: 337–369. [CrossRef] [Google Scholar]
  • Shinn EA. 1968. Burrowing in Recent Lime Sediments of Florida and the Bahamas. Journal of Paleontology 42 (4): 879–894. [Google Scholar]
  • Shinn EA. 1983. Tidal Flat Environment. Carbonate Depositional Environments: AAPG Memoir 33: 172–210. [Google Scholar]
  • Spalletti LA, Franzese JR, MacDonald DIM, Gomez Perez I. 1999. Paleogeographic evolution of southern South America during the Cretaceous. Boletim do 5° Simposio sobre o Cretaceo do Brasil y 1° Simposio sobre el Cretácico de America del Sur, Sao Paulo, pp. 87–95. [Google Scholar]
  • Spalletti LA, Franzese J, Matheos SD, Schwarz E. 2000. Sequence stratigraphy in tidally-dominated carbonate-siliciclastic ramp, the Tithonian of the southern Neuquén Basin, Argentina. Journal of the Geological Society 157: 433–446. [CrossRef] [Google Scholar]
  • Spalletti LA, Colombo Piñol F. 2005. From alluvial fan to playa: an Upper Jurassic ephemeral fluvial system, Neuquén Basin, Argentina. Gondwana Research 8 (3): 363–383. [CrossRef] [Google Scholar]
  • Spalletti LA, Queralt I, Matheos SD, Colombo F, Maggi J. 2008. Sedimentary petrology and geochemistry of siliciclastic rocks from the upper Jurassic Tordillo Formation (Neuquén Basin, western Argentina): implications for provenance and tectonic setting. Journal of South American Earth Sciences 25 (4): 440–463. [CrossRef] [Google Scholar]
  • Sweet K, Knoll AH. 1989. Marine pisolites from Upper Proterozoic carbonates of East Greenland and Spitsbergen. Sedimentology 36: 75–93. [CrossRef] [Google Scholar]
  • Taylor SR, McLennan SM. 1985. The Continental Crust: its Composition and Evolution. Oxford: Blackwell, 312 p. [EDP Sciences] [Google Scholar]
  • Tribovillard N, Algeo T, Lyons TW, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology 232: 12–32. [CrossRef] [Google Scholar]
  • Tribovillard N, Bout-Roumazeilles V, Algeo TJ, Lyons TW, Sionneau T, Montero-Serrano JC, et al. 2008. Paleodepositional conditions in the Orca Basin as inferred from organic matter and trace metal contents. Marine Geology 254: 62–72. [CrossRef] [Google Scholar]
  • Tribovillard N, Algeo TJ, Baudin F, Ribouleau A. 2012. Analysis of marine environmental conditions based on molybdenum-uranium covariation – Applications to Mesozoic paleoceanography. Chemical Geology 324–325: 46–58. [CrossRef] [Google Scholar]
  • Tribovillard N, Armynot Du Châtelet E, Gay A, Barbecot F, Sansjofre P, Potdevin J-L. 2013. Geochemistry of cold seepage-impacted sediments: per-ascensum or per-descensum trace metal enrichment? Chemical Geology 340: 1–12. [CrossRef] [Google Scholar]
  • Tribovillard N, Hatem E, Averbuch O, Barbecot F, Bout-Roumazeilles V, Trentesaux A. 2015. Iron availability as a dominant control on the primary composition and diagenetic overprint of organic-matter-rich rocks. Chemical Geology 401: 67–82. [CrossRef] [Google Scholar]
  • Vail PR, Hardenbol J, Todd RG. 1982. Jurassic unconformities and global sea-level changes from seismic and biostratigraphie. Bulletin of the Houston Geological society (abst.) 25: 3–4. [Google Scholar]
  • Van Der Weijden CH. 2002. Pitfalls of normalization of marine geochemical data using a common divisor. Marine Geology 184: 167–187. [CrossRef] [Google Scholar]
  • Veiga GD, Spalletti LA. 2007. The Upper Jurassic (Kimmeridgian) fluvial-aeolian systems of the southern Neuquén Basin, Argentina. Gondwana Research 11: 286–302. [CrossRef] [Google Scholar]
  • Veiga R, Verzi H, Maretto H. 2001. Modelado bidimensional en el ámbito central de la cuenca Neuquina (Argentina). Boletín de Informaciones Petroleras XVIII 67: 50–63. [Google Scholar]
  • Vergani GD, Tankard AJ, Belotti HJ, Welsink HJ. 1995. Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In: Tankard AJ, Suárez Soruco R, Welsink HJ, eds. Petroleum Basins of South America. American Association of Petroleum Geologists, Memoir 62, pp. 383–402. [Google Scholar]
  • Volkheimer W, Rauhut OWM, Quattrocchio ME, Martinez MA. 2008. Jurassic paleoclimates in Argentina, a review. Revista de la Asociación Geológica Argentina 63: 549–556. [Google Scholar]
  • Walker RG, Plint AG. 1992. Wave- and storm-dominated shallow marine systems. In: Walker RG, James NP, eds. Facies Models: Response to Sea Level Change. Waterloo, Ontario: Geological Association of Canada, pp. 219–238. [Google Scholar]
  • Wallace-Dudley K, Leckie D. 1993. The Lower Kaskapau Formation (Cenomanian): a multiple-frequency, retrogradational shelf system, Alberta, Canada. American Association of petroleum Geologists Bulletin 77: 414–435. [Google Scholar]
  • Weaver, C. (1931). Paleontology of the Jurassic and Cretaceous of west central Argentina. University of Washington, Seattle, Memoir 1, 469 p. [Google Scholar]
  • Willis BJ, Bhattacharya JP, Gabel SL, White CD. 1999. Architecture of a tide-influenced river delta in the Frontier Formation of central Wyoming, USA. Sedimentology 46: 667–688. [CrossRef] [EDP Sciences] [Google Scholar]
  • Wilson JB. 1982. Shelly faunas associated with temperate offshore tidal deposits. In: Stride AH, ed. Offshore Tidal Sands. London: Chapman and Hall, pp. 126–171. [Google Scholar]
  • Wilson JB. 1986. Faunas of tidal current and wave-dominated continental shelves and their use in the recognition of storm deposits. In: Knight RJ, McLean JR, eds. Shelf Sands and Sandstones. Calgary: Canadian Society of Petroleum Geologists, Memoir 11, pp. 313–326. [Google Scholar]
  • Yang CS, Nio SW. 1985. The estimation of palaeohydrodynamic processes from subtidal deposits using time series analysis methods. Sedimentology 32: 41–57. [CrossRef] [Google Scholar]
  • Young GM, Nesbitt WH. 1999. Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada: a chemostratigraphic approach. Geological Society of America Bulletin 111 (2): 264–274. [CrossRef] [Google Scholar]
  • Yrigoyen MR. 1991. Hydrocarbon resources from Argentina. World Petroleum Congress, Buenos Aires. Petrotecnia 13 (Special issue): 38–54. [Google Scholar]
  • Zakaria AA, Howard DJ, Christopher A-LJ, Tongkul F. 2013. Sedimentary facies analysis and depositional model of the Palaeogene, West Crocker submarine fan system, NW Borneo. Journal of Asian Earth Sciences 76: 283–300. [CrossRef] [Google Scholar]
  • Zavala C, Freije H. 2001. Jurassic clastic wedges sourced from the Huíncul Arch. A case study in the Picún Leufú area. Neuquén Basin, Argentina. AAPG Hedberg Conference. “New Technologies and New Play Concepts in Latin America”. Mendoza, Argentina, pp. 31–32. [Google Scholar]
  • Zavala, C., Maretto, H., Di Meglio, M. (2005). Hierarchy of bounding surfaces in Aeolian sandstones of the Tordillo Formation (Jurassic). Neuquén Basin, Argentina. Geologica Acta 3: 133–145. [Google Scholar]
  • Zeller M. 2013. Facies, Geometries and sequence stratigraphy of the mixed carbonate-siliciclastic Quintuco-Vaca Muerta system in the Neuquén Basin, Argentina: an integrated approach. Open Access Dissertations, Paper 1099. [Google Scholar]
  • Zeller M, Eberli GP, Weger RF, Giunta DL, Massaferro JL. 2014. Seismic expressions of the Quintuco – Vaca Muerta system based on outcrop facies and geometry. IX Congreso de Exploración y Desarrollo de Hidrocarburos. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.