Open Access
Issue |
BSGF - Earth Sci. Bull.
Volume 189, Number 1, 2018
|
|
---|---|---|
Article Number | 6 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/bsgf/2018005 | |
Published online | 17 April 2018 |
- Aragon-Arreola M, Morandi M, Martin-Barajas A, Delgado-Argote L, Gonzalez-Fernandez A. 2005. Structure of the rift basins in the central Gulf of California: Kinematic implications for oblique rifting. Tectonophysics 409: 19–38. DOI: 10.1016/j.tecto.2005.08.002. [CrossRef] [Google Scholar]
- Berndt C, Hensen C, Mortera-Gutierrez C, Sarkar S, Geilert S, Schmidt M, et al. 2016. Rifting under steam – How rift magmatism triggers methane venting from sedimentary basins. The Geological Society of America 44(9): 767–770. DOI: 10.1130/G38049.1. [Google Scholar]
- Campbell AC, Gieskes JM. 1984. Water column anomalies associated with hydrothermal activity in the Guaymas Basin, Gulf of California. Earth and Planetary Science Letters 68(1): 57–72. DOI: 10.1016/0012-821X(84)90140-7. [CrossRef] [Google Scholar]
- Canet C, Prol-Ledesma RM, Dando PR, Vasquez-Figueroa V, Shumilin E, Birosta E, et al. 2010. Discovery of massive seafloor gas seepage along the Wagner Fault, northern Gulf of California. Sedimentary Geology 228: 292–303. DOI: 10.1016/j.sedgeo.2010.05.004. [CrossRef] [Google Scholar]
- Cherkashov G, Kuznetsov V, Kuksa K, Tabuns E, Maksimov F, Bel’tenev V. 2017. Sulfide geochronology along the Northern Equatorial Mid-Atlantic Ridge. Ore Geology Reviews 87: 147–154. DOI: 10.1016/j.oregeorev.2016.10.015. [CrossRef] [Google Scholar]
- Clague DA, Caress DW, Thomas H, Thompson D, Calarco M, Holden J, et al. 2008. Abundance and distribution of hydrothermal chimneys and mounds on the Endeavour Ridge determined by 1-m resolution AUV multibeam mapping surveys. Eos Trans AGU 89(53), Fall Meet. Suppl., Abstract V41B-2079. [Google Scholar]
- Clague DA, Dreyer BM, Paduan JB, Martin JF, Caress DW, Gill JB, et al. 2014. Eruptive and tectonic history of the Endeavour Segment, Juan de Fuca Ridge, based on AUV mapping data and lava flow ages. Geochemistry, Geophysics, Geosystems 5: 3364–3391. DOI: 10.1002/2014GC005415. [CrossRef] [Google Scholar]
- Curray JR, Moore DG, Aguayo JE, Aubry MP, Einsele G, Fornari D, et al. 1982. Guaymas Basin: sites 477, 478 and 481. In: Curray JR, Moore DG, eds. Initial Reports of the Deep Sea Drilling Project 64, Part II. Washington, D.C.: U.S. Govt Printing Office, pp. 211–415. [Google Scholar]
- De Beukelaer SM, MacDonald IR, Guinnasso Jr NL, Murray JA. 2003. Distinct side-scan sonar, RADARSAT SAR, and acoustic profiler signatures of gas and oil seeps on the Gulf of Mexico slope. Geo-Marine Letters 23: 177–186. DOI: 10.1007/s00367-003-0139-9. [Google Scholar]
- Didyk BM, Simoneit BRT. 1990. Petroleum characteristics of the oil in a Guaymas Basin hydrothermal chimney. Applied Geochemistry 5: 29–40. DOI: 10.1016/0883-2927(90)90033-2. [CrossRef] [Google Scholar]
- Dupré S, Scalabrin C, Grall C, Augustin JM, Henry P, Şengör AMC, et al. 2015. Tectonic and sedimentary controls on widespread gas emissions in the Sea of Marmara: Results from systematic, shipborne multibeam echo sounder water column imaging. Journal of Geophysical Research 120. DOI: 10.1002/2014JB011617. [Google Scholar]
- Einsele G, Gieskes JM, Curray J, Moore DM, Aguayo E, Aubry MP, et al. 1980. Intrusion of basaltic sills into highly porous sediments, and resulting hydrothermal activity. Nature 283: 441–445. DOI: 10.1038/283441a0. [CrossRef] [Google Scholar]
- Fleischer P, Orsi TH, Richardson MD, Anderson AL. 2001. Distribution of free gas in marine sediments: a global overview. Geo-Marine Letters 21: 103–122. DOI: 10.1007/s003670100072. [CrossRef] [Google Scholar]
- Foucher J-P, Dupré S, Scalabrin C, Feseker T, Harmegnies F, Nouze H. 2010. Changes in seabed morphology, mud temperature and free gas venting at the Hakon Mosby mud volcano, offshore northern Norway, over the time period 2003–2006. Geo-Marine Letters 30(3–4): 157–167. DOI: 10.1007/s00367-010-0193-z. [CrossRef] [Google Scholar]
- Galimov EM, Simoneit BRT. 1982. Geochemistry of interstitial gases in sedimentary deposits of the Gulf of California. In: Curray JR, Moore DG, eds. Initial Reports of the Deep Sea Drilling Project 64, Part II. Washington, D.C.: U.S. Govt Printing Office, pp. 781–787. DOI: 10.2973/dsdp.proc.64.124.1982. [Google Scholar]
- Gieskes JM, Kastner M, Einsele G, Kelts H, Niemitz J. 1982. Hydrothermal activity in the Guaymas Basin, Gulf of California: a synthesis. In: Curray JR, Moore DG, eds. Initial Reports of the Deep Sea Drilling Project 64, Part II. Washington, D.C.: U.S. Govt Printing Office, pp. 1159–1167. [Google Scholar]
- Greinert J, Artemov Y, Egorov V, De Batist M, McGinnis D. 2006. 1300-m high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoutic characteristics and temporal variability. Earth and Planetary Science Letters 244(1–2): 1–15. DOI: 10.1016/j.epsl.2006.02.01. [CrossRef] [Google Scholar]
- Hay AE. 1984. Remote acoustic imaging of the plume from a submarine spring in an Arctic fjord. Science 225(4667): 1154–1156. DOI: 10.1126/science.225.4667.1154. [CrossRef] [Google Scholar]
- Hearn CK, Homola KL, Johnson HP. 2013. Surficial permeability of the axial valley seafloor: Endeavour Segment, Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems 14(9). DOI: 10.1002/ggge.20209. [Google Scholar]
- Jamieson JW, Hannington MD, Clague DA, Kelley DS, Delaney JR, Holden JF, et al. 2013. Sulfide geochronology along the Endeavour Segment of the Juan de Fuca Ridge. Geochemistry Geophysics Geosystems 14: 2084–2099. DOI: 10.1002/ggge.20133. [CrossRef] [Google Scholar]
- Judd AG, Hovland M, Dimitrov LI, Garcia-Gil S, Jukes V. 2002. The geological methane budget at continental margins and its influence on climate change. Geofluids 2: 109–126. DOI: 10.1016/S0278-4343(02)00063-8. [CrossRef] [Google Scholar]
- Kawagucci S, Ueno Y, Takai K, Toki T, Ito M, Inoue K, et al. 2013. Geochemical origin of hydrothermal fluid methane in sediment associated fields and its relevance to the geographical distribution of whole hydrothermal circulation. Chemical Geology 339: 213–225. DOI: 10.1016/j.chemgeo.2012.05.003. [CrossRef] [Google Scholar]
- Kawka OE, Simoneit BRT. 1987. Survey of hydrothermally-generated petroleums from the Guaymas Basin spreading center. Organic Geochemistry 11(4): 311–328. DOI: 10.1016/0146-6380(87)90042-8. [CrossRef] [Google Scholar]
- Kawka OE, Simoneit BRT. 1994. Hydrothermal pyrolysis of organic-matter in Guaymas basin: 1. Comparison of hydrocarbon distributions in subsurface sediments and seabed petroleums. Organic Geochemisitry 22(6): 947–978. DOI: 10.1016/0146-6380(94)90031-0. [CrossRef] [Google Scholar]
- Kluesner J, Lonsdale P, Gonzalez-Fernandez A. 2014. Late Pleistocene cyclicity of sedimentation and spreading-center structure in the Central Gulf of California. Marine Geology 347: 58–68. DOI: 10.1016/j.margeo.2013.11.001. [CrossRef] [Google Scholar]
- Lalou C, Reyss JL, Brichet E, Arnold M, Thompson G, Fouquet Y, et al. 1993. New Age Data for Mid-Atlantic Ridge Hydrothermal Sites – Tag and Snakepit Chronology Revisited. Journal of Geophysical Research-Solid Earth 98: 9705–9713. DOI: 10.1029/92JB01898. [CrossRef] [Google Scholar]
- Lavelle JW, Di Iorio D, Rona PA. 2013. A turbulent convection model with an observational context for a deep-sea hydrothermal plume in a time-variable cross flow. Journal of Geophysical Research: Oceans 118: 6145–6160. DOI: 10.1002/2013JC009165. [CrossRef] [Google Scholar]
- Leblond I, Scalabrin C, Berger L. 2014. Acoustic monitoring of gas emissions from the seafloor. Part I: quantifying the volumetric flow of bubbles. Marine Geophysical Research 35(3): 191–210. DOI: 10.1007/s11001-014-9223-y. [CrossRef] [Google Scholar]
- Lizarralde D, Soule SA, Seewald JS, Proskurowski G. 2010. Carbon release by off-axis magmatism in a young sedimented spreading centre. Nature Geoscience 4: 50–54. DOI: 10.1038/ngeo1006. [CrossRef] [Google Scholar]
- Lonsdale P, Becker K. 1985. Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas Basin. Earth and Planetary Science Letters 73(2–4): 211–225. DOI: 10.1016/0012-821X(85)90070-6. [CrossRef] [Google Scholar]
- Lonsdale P, Lawver LA. 1980. Immature plate boundary zones studied with a submersible in the Gulf of California. Geological Society of America Bulletin 91(9): 555–569. DOI: 10.1130/0016-7606. [CrossRef] [Google Scholar]
- Lonsdale PF, Bischoff JL, Burns VM, Kastner M, Sweeney, RE. 1980. A high-temperature hydrothermal deposit on the seabed at a Gulf of California spreading center. Earth and Planetary Science Letters 49(1): 8–20. DOI: 10.1016/0012-821X(80)90144-2. [Google Scholar]
- MacDonald IR, Leifer I, Sassen TR, Stine P, Mitchell R, Guinass N. 2002. Transfer of hydrocarbons from natural seeps to the water column and atmosphere. Geofluids 2(2): 95–107. DOI: 10.1046/j.1468-8123.2002.00023.x. [CrossRef] [Google Scholar]
- Marchand M, Termonia M, Caprais J-C, Wybauw M. 1994. Purge and trap GC-MS analysis of volatile organic compounds from the Guaymas Basin hydrothermal site (Gulf of California). Analusis 22: 326–331. DOI: A1994PD73100012. [Google Scholar]
- Merewether R, Olsson MS, Lonsdale P. 1985. Acoustically detected hydrocarbon plumes rising from 2-km depths in Guaymas Basin, Gulf of California. Journal of Geophysical Research 90(B4): 3075–3085. DOI: 10.1029/JB090iB04p03075. [CrossRef] [Google Scholar]
- Nakamura K, Kawagucci S, Kitada K, Kumagai H, Takai K, Okino K. 2015. Water column imaging with multibeam echo-sounding in the mid-Okinawa Trough: Implications for distribution of deep-sea hydrothermal vent sites and the cause of acoustic water column anomaly. Geochemical Journal 49(6): 579–596. DOI: 10.2343/geochemj.2.0387. [CrossRef] [Google Scholar]
- Nikolovska A, Sahling H, Bohrmann G. 2008. Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea. Geochemistry Geophysics Geosystems 9(10). DOI: 10.1029/2008GC002118. [Google Scholar]
- Ondreas H, Cannat M, Fouquet Y, Normand A. 2012. Geological context and vents morphology of the ultramafic-hosted Ashadze hydrothermal areas (Mid-Atlantic Ridge 13 degrees N). Geochemistry Geophysics Geosystems 13. DOI: 10.1029/2012GC004433. [Google Scholar]
- Palmer DR, Rona PA, Mottl MJ. 1986. Acoustic imaging of high-temperature hydrothermal plumes at seafloor spreading centers. Journal of the Acoustical Society of America 80: 888–898. DOI: 10.1121/1.393912. [CrossRef] [Google Scholar]
- Peter JM, Simoneit BRT, Kawka OE, Scott SD. 1990. Liquid hydrocarbon-bearing inclusions in modern hydrothermal chimneys and mounds from the southern trough of Guaymas Basin, Gulf of California. Applied Geochemistry 5(1–2): 51–63. DOI: 10.1016/0883-2927(90)90035-4. [CrossRef] [Google Scholar]
- Peter JM, Peltonen P, Scott SD, Simoneit BRT, Kawka OE. 1991. 14C ages of hydrothermal petroleum and carbonate in Guaymas basin, Gulf of California: Implications for oil generation, expulsion, and migration. Geology 19(3): 253–256. DOI: 10.1130/0091-7613. [CrossRef] [Google Scholar]
- Pierre C, Fouquet Y. 2007. Authigenic carbonates from methane seeps of the Congo deep-sea fan. Geo-Marine Letters 27: 249–257. DOI: 10.1007/s00367-007-0081-3. [CrossRef] [Google Scholar]
- Rehder G, Leifer I, Brewer PG, Friederich G, Peltzer ET. 2009. Controls on methane bubble dissolution inside and outside the hydrate stability field from open ocean field experiments and numerical modeling. Marine Chemistry 114: 19–30. DOI: 10.1016/j.marchem.2009.03.004. [CrossRef] [Google Scholar]
- Römer M, Sahling H, Pape T, Bohrmann G, Spieß V. 2012. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). Journal of Geophysical Research 117: C10015. DOI: 10.1029/2011JC007424. [Google Scholar]
- Rona PA, Light R. 2011. Sonar images hydrothermal vents in seafloor observatory. EOS, Transactions, American Geophysical Union 92(20): 169–170. [CrossRef] [Google Scholar]
- Rona PA, Palmer DR, Jones C, Chayes DA, Czarnecki M, Carey EW, et al. 1991. Acoustic imaging of hydrothermal plumes, East Pacific Rise, 21°N, 109°W. Geophysical Research Letters 18(12): 2233–2236. DOI: 10.1029/91GL02897. [CrossRef] [Google Scholar]
- Sakai H, Gamo T, Kim ES, Shitashima K, Yanagisawa F, Tsutsumi M. 1990. Unique chemistry of the hydrothermal solution in the Mid-Okinawa Trough backarc basin. Geophysical Research Letters 17(12): 2133–2136. DOI: 10.1029/GL017i012p02133. [CrossRef] [Google Scholar]
- Sauter EJ, Muyakshin SI, Charlou JL, Schlüter M, Boetius A, Jerosch K, et al. 2006. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth and Planetary Science Letters 243(3–4): 354–365. DOI: 10.1016/j.epsl.2006.01.041. [CrossRef] [Google Scholar]
- Simoneit BRT. 1982. Shipboard organic geochemistry and safety monitoring. In: Curray JR, Moore DG, eds. Initial Reports of the Deep Sea Drilling Project 64, Part II. Washington, D.C.: U.S. Govt Printing Office, pp. 723–728. [Google Scholar]
- Simoneit BRT. 1985. Hydrothermal petroleum: Genesis, migration and deposition in Guaymas Basin, Gulf of California. Canadian Journal of Earth Sciences 22: 1919–1929. DOI: 10.1139/e85-208. [CrossRef] [Google Scholar]
- Simoneit BRT, Lonsdale P. 1982. Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin. Nature 295: 198–202. DOI: 10.1038/295198a0. [CrossRef] [Google Scholar]
- Simoneit BRT, Kawka OE, Brault M. 1988. Origin of gases and condensates in the Guaymas Basin hydrothermal system (Gulf of California). Chemical Geology 71: 169–182. DOI: 10.1016/0009-2541(88)90113-1. [CrossRef] [Google Scholar]
- Simoneit BRT, Lonsdale PF, Edmond JM, Shanks WC. 1990. Deep-water hydrocarbon seeps in Guaymas Basin, Gulf of California. Applied Geochemistry 5(1–2): 41–49. DOI: 10.1016/0883-2927(90)90034-3. [CrossRef] [Google Scholar]
- Simoneit BRT, Goodfellow WD, Franklin JM. 1992. Hydrothermal petroleum at the seafloor and organic matter alteration in sediments of Middle Valley, Northern Juan de Fuca Ridge. Applied Geochemistry 7(3): 257–264. DOI: 10.1016/0883-2927(92)90041-Z. [CrossRef] [Google Scholar]
- Solomon EA, Kastner M, MacDonald IR, Leifer I. 2009. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico. Nature Geosciences 2: 561–565. DOI: 10.1038/ngeo574. [CrossRef] [Google Scholar]
- Speer KG, Rona PA. 1989. A model of Atlantic and Pacific hydrothermal plume. Journal of Geophysical Researches 94(C5): 6213–6220. DOI: 10.1029/JC094iC05p06213. [CrossRef] [Google Scholar]
- Svensen H, Planke S, Jamtveit B, Pedersen T. 2003. Seep carbonate formation controlled by hydrothermal vent complexes: a case study from the Vøring Basin, the Norwegian Sea. Geo-Marine Letters 23: 351–358. DOI: 10.1007/s00367-003-0141-2. [CrossRef] [Google Scholar]
- Teske A, Hinrichs K, Edgcomb V, De Vera Gomez A, Kysela D, Sylva S.P, et al. 2002. Microbial diversity of hydrothermal sediments in the Guaymas Basin: Evidence for anaerobic methanotrophic communities. Applied and Environmental Microbiology 68(4): 1994–2007. DOI: 10.1128/AEM.68.4.1994–2007.2002. [CrossRef] [Google Scholar]
- Teske A, De Beer D, McKay LJ, Tivey MK, Biddle JF, Hoer D, et al. 2016. The Guaymas Basin hiking guide to hydrothermal mounds, chimneys, and microbial mats: Complex seafloor expressions of subsurface hydrothermal circulation. Frontiers in Microbiology 7: 75. DOI: 10.3389/fmicb.2016.00075. [CrossRef] [Google Scholar]
- Thal J, Tivey M, Yoerger D, Jöns N, Bach W. 2014. Geologic setting of PACManus hydrothermal area – High resolution mapping and in situ observations. Marine Geology 355: 98–114. DOI: 10.1016/j.margeo.2014.05.011. [CrossRef] [Google Scholar]
- Van Andel TH. 1964. Recent marine sediments in the Gulf of California. In: Marine Geology of the Gulf of California. American Association of Petroleum Geologists Memoirs 23: 216–310. [Google Scholar]
- Von Damm KL, Edmond JM, Measures CI, Grant B. 1985. Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochimica et Cosmochimica Acta 49(11): 2221–2237. DOI: 10.1016/0016-7037(85)90223-6. [CrossRef] [Google Scholar]
- Welhan JA, Lupton JE. 1987. Light hydrocarbon gases in Guaymas Basin hydrothermal fluids – Thermogenic versus abiogenic origin. American Association of Petroleum Geologists 71: 215–223. DOI: A1987G091800006. [Google Scholar]
- Wynn RB, Huvenne VAI, Le Bas TP, Murton BJ, Connelly DP, Bett BJ, et al. 2014. Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Marine Geology 352: 451–458. DOI: 10.1016/j.margeo.2014.03.012. [CrossRef] [Google Scholar]
- Xu G, Di Iorio D. 2012. Deep sea hydrothermal plumes and their interaction with oscillatory flows. Geochem Geophys Geosyst 13. DOI: 10.1029/2012GC004188. [Google Scholar]
- Xu G, Jackson DR, Bemis KG. 2017. The relative effect of particles and turbulence on acoustic scattering from deep sea hydrothermal vent plumes revisited. Journal of the Acoustical Society of America 141: 1446–1458. DOI: 10.1121/1.4974828. [CrossRef] [Google Scholar]
- Yoshikawa S, Okino K, Asada M. 2012. Geomorphological variations at hydrothermal sites in the southern Mariana Trough: Relationship between hydrothermal activity and topographic characteristics. Marine Geology 303: 172–182. DOI: 10.1016/j.margeo.2012.02.013. [CrossRef] [Google Scholar]
- Zierenberg RA, Fouquet Y, Miller DJ, Bahr JM, Baker PA, Bjerkgård T, et al. 1998. The deep structure of a sea-floor hydrothermal deposit. Nature 392: 485–488. DOI: 10.1038/33126. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.