Issue
BSGF - Earth Sci. Bull.
Volume 190, 2019
Journées Hubert Arnaud
Article Number 3
Number of page(s) 19
DOI https://doi.org/10.1051/bsgf/2019001
Published online 21 February 2019
  • Aguado R, Castro JM, Company M, de Gea GA. 1999. Aptian bioevents-an integrated biostratigraphic analysis of the Almadich Formation, Inner Prebetic Domain, SE Spain. Cretaceous Research 20: 663–683. [CrossRef] [Google Scholar]
  • Alonso-Chaves FM, Andreo B, Arias C, Azañón JM, Balanyá JC, Barón A, et al. 2004. Cordillera Bética y Baleares. In: Vera JA, ed. Geología de España. Madrid: Sociedad Geológica de España e Instituto Geológico y Minero de España, pp. 345–464. [Google Scholar]
  • Astre G. 1933. Sur les petits Agria tubuleux de l’Urgo-Aptien. Bulletin de la Société géologique de France 5: 99–105. [Google Scholar]
  • Bover-Arnal T, Moreno-Bedmar JA, Salas R, Skelton PW, Bitzer K, Gili E. 2010. Sedimentary evolution of an Aptian syn-rift carbonate system (Maestrat Basin, E Spain): Effects of accommodation and environmental change. Geologica Acta 8: 249–280. [Google Scholar]
  • Bover-Arnal T, Salas R, Martin-Closas C, Schlagintweit F, Moreno-Bedmar JA. 2011. Expression of an oceanic anoxic event in a neritic setting: Lower Aptian coral rubble deposits from the western Maestrat Basin (Iberian Chain, Spain). Palaios 26: 18–32. [CrossRef] [Google Scholar]
  • Bover-Arnal T, Pascual-Cebrian E, Skelton PW, Gili E, Salas R, 2015. Patterns in the distribution of Aptian rudists and corals within a sequence-stratigraphic framework (Maestrat Basin, E Spain). Sedimentary Geology 321: 86–104. [CrossRef] [Google Scholar]
  • Burla S, Heimhofer U, Hochuli PA, Weissert H, Skelton PW. 2008. Changes in sedimentary patterns of coastal and deep sea successions from the North Atlantic (Portugal) linked to Early Cretaceous environmental change. Palaeogeography, Palaeoclimatology, Palaeoecology 257: 38–57. [CrossRef] [Google Scholar]
  • Burla S, Oberli F, Heimhofer U, Wiechert U, Weissert H. 2009. Improved time control on Cretaceous coastal deposits: New results from Sr isotope measurements using laser ablation. Terra Nova 21: 401–409. [CrossRef] [Google Scholar]
  • Busnardo R, Champetier Y, Fourcade E, Moullade M. 1968. Etude stratigraphique des faciès à Orbitolinidés et à Rudistes de la Sierra Mariola (province d’Alicante, Espagne). Geobios 1: 165–185. [CrossRef] [Google Scholar]
  • Castro JM. 1996. Aportaciones al conocimiento de la bioestratigrafía del tránsito Aptiense-Albiense en las Cordilleras Béticas, Prebético de Alicante. Geogaceta 20: 43–45. [Google Scholar]
  • Castro JM. 1998. Las plataformas del Valanginiense superior-Albiense superior en el Prebético de Alicante. Granada: Tesis Doctoral, Universidad de Granada, 464 p. [Google Scholar]
  • Castro JM, Ruiz-Ortiz PA. 1995. Early Cretaceous evolution of the Prebetic Zone in the northeast Alicante province: The Sierra de Seguilí section. Cretaceous Research 16: 573–598. [CrossRef] [Google Scholar]
  • Castro JM, Company M, de Gea GA, Aguado R. 2001. Biostratigraphy of the Aptian-Middle Cenomanian platform to basin domain in the Prebetic Zone of Alicante, SE Spain: Calibration between shallow water benthic and pelagic scales. Cretaceous Research 22: 145–156. [CrossRef] [Google Scholar]
  • Castro JM, de Gea GA, Ruiz-Ortiz PA, Nieto LM. 2008. Development of carbonate platforms on an extensional (rifted) margin. The Valanginian–Albian record of the Prebetic of Alicante (SE Spain). Cretaceous Research 29: 848–860. [CrossRef] [Google Scholar]
  • Castro JM, Jiménez de Cisneros C, de Gea GA, Ruiz-Ortiz PA, Quijano ML, Caballero E, et al. 2014. La Formación Almadich en la Sierra de Mariola: Caracterización litológica, bioestratigráfica, geoquímica y mineralógica (Aptiense inferior, Cordillera Bética, Alicante). Revista de la Sociedad Geológica de España 27: 127–136. [Google Scholar]
  • Charollais J, Clavel B, Busnardo R. 1994. Biostratigraphy and evolution of the urgonian platform from the Jura to the northern Subalpine Chains (SE France). Geologie Mediterraneénne 21: 35–38. [Google Scholar]
  • Chartrousse A. 1998. Les Caprinidae (Rudistes) du Crétacé inférieur. Marseille: PhD thesis, Université de Provence (Aix-Marseille I), Centre de Sédimentologie et Paléontologie, 281 p., 37 pl. [Google Scholar]
  • Clavel B, Conrad MA, Busnardo R, Charollais J, Granier B. 2013. Mapping the rise and demise of Urgonian platforms (Late Hauterivian-Early Aptian) in southeastern France and the Swiss Jura. Cretaceous Research 39: 29–46. [CrossRef] [Google Scholar]
  • Company M, García-Hernández M, López-Garrido AC, Vera JA, Wilke H. 1982. Análisis y distribución de facies del Cretácico Inferior del Prebético en la provincia de Alicante. Cuadernos de Geología Ibérica 8: 563–578. [Google Scholar]
  • Coquand H. 1865. Monographie de l’étage Aptien de l’Espagne. Mémoires de la Société d’Emulation de la Provence, Marseille 5: 191–413. [Google Scholar]
  • de Gea GA, Castro JM, Aguado R, Company M, Ruiz-Ortiz PA. 2003. Lower Aptian carbon-isotope stratigraphy from a distal carbonate shelf setting. The Cau section, Prebetic Zone, SE of Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 200: 207–219. [CrossRef] [Google Scholar]
  • Douvillé H. 1889. Sur quelques rudistes du terrain crétacé inférieur des Pyrénées. Bulletin de la Société géologique de France 17: 627–635. [Google Scholar]
  • Fenerci-Masse M. 2006. Les communautés à rudistes du Crétacé inférieur de la marge ouest Européenne de la Tethys. Marseille: Thèse de doctorat, Université de Provence, FRE-2761, 436 p. [Google Scholar]
  • Fenerci-Masse M, Masse J-P., Kołodziej B, Ivanov M, Idakieva V. 2011. Mathesia darderi (Astre) (Bivalvia, Hippuritoidea, Monopleuridae): Morphological, biogeographical and ecological changes in the Mediterranean domain during the late Barremian-Albian. Cretaceous Research 32: 407–421. [CrossRef] [Google Scholar]
  • Fernández-Mendiola PA, Mendicoa J, Owen HG, García-Mondéjar J. 2017. The Early Aptian (Cretaceous) stratigraphy of Mount Pagasarri (N Spain): Oceanic anoxic event-1a. Geological Journal 2017:1–21. Available from https://doi.org/10.1002/gj.3008 (last consult: 2018/10/08). [Google Scholar]
  • Föllmi KB. 2012. Early Cretaceous life, climate and anoxia. Cretaceous Research 35: 230–257. [CrossRef] [Google Scholar]
  • Frau C, Pictet A, Spangenberg JE, Masse J-P., Tendil AJ-B., Lanteaume C. 2017. New insights on the age of the post-Urgonian marly cover of the Apt region (Vaucluse, SE France) and its implications on the demise of the North Provence carbonate platform. Sedimentary Geology 359: 44–61. [CrossRef] [Google Scholar]
  • Frau C, Tendil AJ-B., Lanteaume C, Masse J-P, Pictet A, Bulot LG, et al. 2018. Late Barremian–Early Aptian ammonite bioevents from the Urgonian-type series of Provence, southeast France: Regional stratigraphic correlations and implications for dating the peri-Vocontian carbonate platforms. Cretaceous Research, Available from https://doi.org/10.1016/j.cretres.2018.04.008 (last consult: 2018/10/08). [Google Scholar]
  • García-Hernández M, Castro JM, Nieto LM. 2001. Los carbonatos del Cretácico Inferior del Prebético de la Sierra de Segura. In Ruiz-Ortiz PA, Molina JM, Nieto LM, Castro JM, de Gea GA, eds. Itinerarios geológicos por el mesozoico de la provincia de Jaén. Jaén: Departamento de Geología, Universidad de Jaén, pp. 63–91. [Google Scholar]
  • García-Hernández M, Castro JM, Nieto LM. 2003. La transgresión Aptiense en la Sierra de Segura (Zona Prebética, provincia de Jaén). Geogaceta 33: 127–129. [Google Scholar]
  • García-Hernández M, López-Garrido AC, Rivas P, Sanz de Galdeano C, Vera JA. 1980. Mesozoic paleogeographic evolution of the external zones of the Betic Cordillera. Geologie en Mijnbouw 59: 155–168. [Google Scholar]
  • García-Mondéjar J, Fernández-Mendiola PA, Owen HG. 2015a. The OAE1a in Cuchía (Early Aptian, Spain): C and O geochemistry and global correlation. Acta Geológica Polonica 65: 525–543. [CrossRef] [Google Scholar]
  • García-Mondéjar J, Owen HG, Fernández-Mendiola PA. 2015b. Early Aptian sedimentary record and OAE1a in Cuchía (northern Spain): New data on facies and ammonite dating. N. Jb. Geol. Paläont. Abh. 276 (1): 1–26. [CrossRef] [Google Scholar]
  • García-Mondéjar J, Owen HG, Raisossadat N, Millán MI, Fernández-Mendiola PA. 2009. The Early Aptian of Aralar (northern Spain): Stratigraphy, sedimentology, ammonite biozonation, and OAE1a. Cretaceous Research 30: 434–464. [CrossRef] [Google Scholar]
  • Gili E, Skelton PW, Bover-Arnal T, Salas R, Obrador A, Fenerci-Masse M. 2016. Depositional biofacies model for post-OAE1a Aptian carbonate platforms of the western Maestrat Basin (Iberian Chain, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 453: 101–114. [CrossRef] [Google Scholar]
  • Gómez-Pérez I, Fernández-Mendiola PA, García-Mondéjar J. 1999. Depositional architecture of a rimmed carbonate platform (Albian, Gorbea, western Pyrenees). Sedimentology 46: 337–356. [CrossRef] [Google Scholar]
  • Granier B, Busnardo R. 2013. New stratigraphic data on the Aptian of the Persian Gulf. Cretaceous Research 39: 170–182. [CrossRef] [Google Scholar]
  • Hardenbol J, Thierry J, Farley MB, Jacquin T, de Graciansky PC, Vail PR. 1998. Mesozoic and Cenozoic sequence chronostratigraphic chart. In de Graciansky PC, Hardenbol J, Jacquin T, Vail PR, eds. Mesozoic and Cenozoic sequence stratigraphy of European basins. Tulsa: Society for Sedimentary Geology, Special Publication 60: Chart 1. [Google Scholar]
  • Hu X, Zhao K, Yilmaz IO, Li Y. 2012. Stratigraphic transition and palaeoenvironmental changes from the Aptian oceanic anoxic event 1a (OAE1a) to the oceanic red bed 1 (ORB1) in the Yenicesihlar section, central Turkey. Cretaceous Research 38: 40–51. [CrossRef] [Google Scholar]
  • Huck S, Heimhofer U, Rameil N, Bodin S, Immenhauser A. 2011. Strontium and carbon-isotope chronostratigraphy of Barremian–Aptian shoal-water carbonates: Northern Tethyan platform drowning predates OAE 1a. Earth and Planetary Science Letters 304: 547–558. [CrossRef] [Google Scholar]
  • Huck S, Stein M, Immenhauser A, Skelton PW, Christ N, Föllmi KB, et al. 2014. Response of proto-North Atlantic carbonate-platform ecosystems to OAE1a-related stressors. Sedimentary Geology 313: 15–31. [CrossRef] [Google Scholar]
  • Hughes GW. 2004. Palaeoenvironments of selected Lower Aptian rudists from Saudi Arabia. Cour. Forsch. −Inst.Senckenberg 247: 233–245. [Google Scholar]
  • Jenkyns HC. 2018. Transient cooling episodes during Cretaceous Oceanic Anoxic Events with special reference to OAE1a (Early Aptian). Phil. Trans. R. Soc. A 376: 20170073. Available from http://dx.doi.org/10.1098/rsta.2017.0073 (last consult: 2018/12/09). [CrossRef] [Google Scholar]
  • Kollmann HA. 2014. The extinct Nerineoidea and Acteonelloidea (Heterobranchia, Gastropoda): A palaeobiological approach. Geodiversitas 36: 349–383. [CrossRef] [Google Scholar]
  • Li Y-X., Bralower TJ, Montañez IP, Osleger DA, Arthur MA, Bice DM, et al. 2008. Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ∼120Ma). Earth and Planetary Science Letters 271: 88–100. [CrossRef] [Google Scholar]
  • Lorenzen J, Kuhnt W, Holbourn A, Flögel S, Moullade M, Tronchetti G. 2013. A new sediment core from the Bedoulian (Lower Aptian) stratotype at Roquefort-La Bédoule, SE France. Cretaceous Research 39: 6–16. [CrossRef] [Google Scholar]
  • Mainelli M. 1983. Nuove Rudiste del Cretacico inferior-medio di Monte La Costa (S. Polo Matese, Campobasso). Bollettino della Società Paleontologica Italiana 22: 189–208. [Google Scholar]
  • Malchus N. 1998. Aptian (Lower Cretaceous) rudist bivalves from NE Spain: Taxonomic problems and preliminary results. Geobios, Mémoire Spécial 22: 181–191. [CrossRef] [Google Scholar]
  • Malinverno A, Erba E, Herbert TD. 2010. Orbital tuning as an inverse problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE. Paleoceanography 25, PA 2203, 16 p. doi:10.1029/2009PA001769. [CrossRef] [Google Scholar]
  • Martín-Chivelet J, Berasategui X, Rosales I, Vilas L, Vera JA, Caus E, et al. 2002. Cretaceous. In Gibbons W, Moreno T, eds. The Geology of Spain. London: Geological Society, pp. 255–292. [CrossRef] [Google Scholar]
  • Martínez-Rodríguez R, Castro JM, de Gea GA, Nieto LM, Reolid M, Ruiz-Ortiz PA. 2018 (in press). Facies analysis and stratigraphy of a lower Aptian Carbonate Platform section (Prebetic, Alicante, Spain). Geogaceta 64. [Google Scholar]
  • Masse J-P. 1989. Relations entre modifications biologiques et phénomènes géologiques sur les plates-formes carbonatées du domaine périméditerranéen au passage Bédoulien-Gargasien. Geobios, Mémoire Spécial 11: 279–294. [CrossRef] [Google Scholar]
  • Masse J-P., Chartrousse A. 1997. Les Caprina (rudistes) de l’Aptien inférieur d’Europe occidentale: Systématique, biostratigraphie et paléobiogéographie. Geobios 30: 797–809. [CrossRef] [Google Scholar]
  • Masse J-P., Fenerci-Masse M. 2008. Time contrasting palaeobiogeographies among Hauterivian-Lower Aptian rudist bivalves from the Mediterranean Tethys, their climatic control and palaeoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 269: 54–65. [CrossRef] [Google Scholar]
  • Masse J-P., Fenerci-Masse M. 2009. Debrunia, a new Barremian genus of petalodontid Monopleuridae (Bivalvia, Hippuritoidea) from the Mediterranean region. Palaeontology 52: 1363–1372. [CrossRef] [Google Scholar]
  • Masse J-P., Fenerci-Masse M. 2010. Mathesia Mainelli (Hippuritoidea, Monopleuridae) from the Late-Aptian-Albian of the Mediterranean Region: A revision. Turkish Journal of Earth Sciences 19: 543–556. [Google Scholar]
  • Masse J-P, Fenerci-Masse M. 2011. Drowning discontinuities and stratigraphic correlation in platform carbonates. The late Barremian-early Aptian record of southeast France. Cretaceous Research 32: 659–684. [Google Scholar]
  • Masse J-P., Fenerci-Masse M. 2013a. Drowning events, development and demise of carbonate platforms and controlling factors: The Late Barremian-Early Aptian record of Southeast France. Sedimentary Geology 298: 28–52. [CrossRef] [Google Scholar]
  • Masse J-P, Fenerci-Masse M. 2013b. Stratigraphic updating and correlation of Late Barremian–Early Aptian Urgonian successions and their marly cover, in their type region (Orgon-Apt, SE France). Cretaceous Research 39: 17–28. [CrossRef] [Google Scholar]
  • Masse J-P., Fenerci-Masse M. 2017. Taxonomy and stratigraphy of late Barremian-Albian species of Horiopleura Douvillé (Hippuritida, Polyconitidae) of the Mediterranean and southwestern Asian regions. Cretaceous Research 76: 53–80. [CrossRef] [Google Scholar]
  • Masse J-P., Arias C, Vilas L. 1998. Lower Cretaceous rudist faunas of southeast Spain: An overview. Geobios, Mémoire Spécial 22: 193–210. [CrossRef] [Google Scholar]
  • Masse J-P, Fenerci-Masse M, Arias C, Vilas L. 2015. Description of a new species of Offneria (Hippuritida, Caprinidae) from the lower Aptian of southeast Spain. Stratigraphic, evolutionary, palaeobiogeographic and palaeoenvironmental implications. Cretaceous Research 53: 153–166. [CrossRef] [Google Scholar]
  • Menegatti AP, Weissert H, Brown RS, Tyson RV, Farrimond P, Strasser A, et al. 1998. High-resolution ä13C stratigraphy through the Early Aptian “Livello Selli” of the Alpine Tethys. Paleoceanography 13: 530–545. [CrossRef] [Google Scholar]
  • Millán MI, Weissert HJ, López-Horgue M. 2014. Expression of the late Aptian cold snaps and the OAE1b in a highly subsiding carbonate platform (Aralar, northern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 411: 167–179. [CrossRef] [Google Scholar]
  • Millán MI, Weissert HJ, Fernández-Mendiola PA, García-Mondéjar J. 2009. Impact of Early Aptian carbon cycle perturbations on evolution of a marine shelf system in the Basque-Cantabrian Basin (Aralar, N Spain), Earth and Planetary Science Letters 287: 392–401. [CrossRef] [Google Scholar]
  • Moreno-Bedmar JA, Barragán R, Delanoy G, Company M, Salas R. 2014. Review of the early Aptian (Early Cretaceous) ammonoid species Deshayesites deshayesi (d’Orbigny, 1841). Cretaceous Research 51: 341–360. [CrossRef] [Google Scholar]
  • Moreno-Bedmar JA, Company M, Bover-Arnal T, Salas R, Delanoy G, Martínez R, et al. 2009. Biostratigraphic characterization by means of ammonoids of the lower Aptian Oceanic Anoxic Event (OAE 1a) in the eastern Iberian Chain (Maestrat Basin, eastern Spain). Cretaceous Research 30: 864–872. [CrossRef] [Google Scholar]
  • Moreno-Bedmar JA, Company M, Sandoval J, Tavera JM, Bover-Arnal T, Salas R, et al. 2012. Lower Aptian ammonite and carbon isotope stratigraphy in the eastern Prebetic Domain (Betic Cordillera, southeastern Spain). Geologica Acta 10: 333–350. [Google Scholar]
  • Naafs BDA, Castro JM, de Gea GA, Quijano ML, Schmidt DN, Pancost RD. 2016. Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a. Nature Geoscience 9: 135–139. [CrossRef] [Google Scholar]
  • Najarro M, Rosales I, Martín-Chivelet J. 2011. Major palaeoenvironmental perturbation in an Early Aptian carbonate platform: Prelude of the Oceanic Anoxic Event 1a? Sedimentary Geology 235: 50–71. [CrossRef] [Google Scholar]
  • Olivet JM. 1996. La cinématique de la plaque ibérique. Bulletin des centres de recherches exploration-production Elf-Aquitaine 20: 131–195. [Google Scholar]
  • Paquier V. 1905. Les rudistes urgoniens. II. Série inverse. Mémoires de la Société géologique de France. Paléontologie 29(13): 47–102. [Google Scholar]
  • Pictet FJ, Campiche G. 1869. Description des fossiles du terrain Crétacé de Sainte-Croix. Matériaux pour la paléontologie suisse 9(5): 1–352. [Google Scholar]
  • Posenato R, Morsilli M, Guerzoni S, Bassi D. 2018. Palaeoecology of Chondrodonta (Bivalvia) from the lower Aptian (Cretaceous) Apulia Carbonate Platform (Gargano Promontory, southern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 508: 188–201. [CrossRef] [Google Scholar]
  • Reboulet S, Rawson PF, Moreno-Bedmar JA, Aguirre-Urreta MB, Barragán R, Bogomolov Y, et al. 2011. Report on the 4th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the “Kilian Group” (Dijon, France, 30th August 2010), Cretaceous Research 32: 786–793. [CrossRef] [Google Scholar]
  • Reboulet S, Szives O, Aguirre-Urreta B, Barragán R, Company M, Idakieva V, et al. 2014. Report on the 5th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the Kilian Group (Ankara, Turkey, 31st August 2013). Cretaceous Research 50: 126–137. [CrossRef] [Google Scholar]
  • Ruiz-Ortiz PA, Castro JM. 1998. Carbonate depositional sequences in shallow to pelagic platform deposits. Aptian. Prebetic of Alicante (SE Spain). Bulletin de la Société géologique de France 169: 21–33. [Google Scholar]
  • Ruiz-Ortiz PA, Castro JM, de Gea GA, Jarvis I, Molina JM, Nieto LM, et al. 2016. New drilling of the early Aptian OAE1a: The Cau core (Prebetic Zone, south-eastern Spain). Scientific Drilling 21: 41–46. [CrossRef] [Google Scholar]
  • Skelton PW. 2000. Rudists and carbonate platforms–growing together, dying together. In Cherchi A, Corradini C, eds. Crisi biologiche, radiazioni adattative e dinamica delle piattaforme carbonatiche. Accad. Naz. Sci. Lett. Arti di Modena, Collana di Studi 21: 231–235. [Google Scholar]
  • Skelton PW, Masse J-P. 1998. Revision of the Lower Cretaceous rudist genera Pachytraga Paquier and Retha Cox (Bivalvia: Hippuritacea), and the origins of the Caprinidae. Geobios, Mémoire Spécial 22: 331–370. [CrossRef] [Google Scholar]
  • Skelton PW, Gili E. 2012. Rudists and carbonate platforms in the Aptian: A case study on biotic interactions with ocean chemistry and climate. Sedimentology 59: 81–117. [CrossRef] [Google Scholar]
  • Skelton PW, Granier B, Moullade M. 2012. Introduction to thematic issue, “Spatial patterns of change in Aptian carbonate platforms and related events”. Cretaceous Research 39: 1–5. [CrossRef] [Google Scholar]
  • Skelton PW, Gili E, Rosen BR, Valldeperas FX. 1997. Corals and rudists in the late Cretaceous: A critique of the hypothesis of competitive displacement. Boletín de la Real Sociedad Española de Historia Natural-(Sección Geológica) 92: 225–239. [Google Scholar]
  • Skelton PW, Gili E, Bover-Arnal T, Salas R, Moreno-Bedmar JA. 2010. A new species of Polyconites from the Lower Aptian of Iberia and the early evolution of polyconitid rudists. Turkish Journal of Earth Sciences 19: 557–572. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NK. 2015. Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the Iberian-European plate boundary. Geology 43: 15–18. Doi:10.1130/G36072.1 [CrossRef] [Google Scholar]
  • Vera JA. 2001. Evolution of the Southern Iberian Continental Margin. In Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S, eds. Peri-Tethyan Rift/ Wrench Basins and Passive Margins. Paris: Mémoires du Muséum National d’Histoire Naturale 186: 109–143. [Google Scholar]
  • Vera JA, ed. 2004. Geología de España. Madrid: Sociedad Geológica de España e Instituto Geológico y Minero de España, 890p. [Google Scholar]
  • Vergès J, García-Senz J. 2001. Mesozoic evolution and Cainozoic inversion of the Pyrenean Rift. In Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau J, eds. Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Paris: Mémoires du Muséum National d’Historie Naturelle 186: 187–212. [Google Scholar]
  • Vilas L, Masse J-P, Arias C. 1993. Aptian mixed terrigenous and carbonate platforms from Iberic and Prebetic regions, In Simo JA, Scott RW, Masse J-P, eds. Cretaceous carbonate platforms. Tulsa: American Association of Petroleum Geologists, Memoir 56: 243–253. [Google Scholar]
  • Vilas L, Dabrio CJ, Peláez JR, García-Hernández M. 2001. Dominios sedimentarios generados durante el período extensional Cretácico Inferior entre Cazorla y Hellín (Béticas Externas). Su implicación en la estructura actual. Revista de la Sociedad Geológica de España 14: 113–122. [Google Scholar]
  • Ziegler PA. 1988. Evolution of the Artic-North Atlantic and the Western Tethys, publ. Int. lithos. Program, 0144. Tulsa: American Association of Petroleum Geologists, Memoir Memoir 43, 193p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.