Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 190, 2019
Article Number 14
Number of page(s) 21
DOI https://doi.org/10.1051/bsgf/2019013
Published online 11 December 2019
  • Albarède F, Michard-Vitrac A. 1978. Age and significance of the North Pyrenean metamorphism. Earth and Planetary Science Letters 40: 327–332. DOI: 10.1016/0012-821X(78)90157-7. [CrossRef] [Google Scholar]
  • Andersen TB, Corfu F, Labrousse L, Osmundsen P-T. 2012. Evidence for hyperextension along the pre-Caledonian margin of Baltica. Journal of the Geological Society (London) 169: 601–612. DOI: 10.1144/0016-76492012-011. [CrossRef] [Google Scholar]
  • Asti R, Lagabrielle Y, Fourcade S, Corre B, Monié P. 2019. How do continents deform during mantle exhumation? Insights from the northern Iberia inverted paleo-passive margin, western Pyrenees (France). Tectonics 38: 1666–1693. DOI: 10.1029/2018TC005428. [CrossRef] [Google Scholar]
  • Bach W, Garrido CJ, Paulick H, Harvey J, Rosner M. 2004. Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15° N. Geochemistry Geophysics Geosystems 5: Q09f26. DOI: 10.1029/2004GC000744. [CrossRef] [Google Scholar]
  • Bernus-Maury C. 1984. Étude des paragéneses caractéristiques du métamorphisme mésozoïque dans la partie orientale des Pyrénées. Unpublished Thesis, Paris, 253 p. [Google Scholar]
  • Bosch G, Teixell A, Jolivet M, Labaume P, Stockli D, Domènech M, et al. 2016. Record of Eocene-Miocene thrusting in the western Axial Zone and Chaînons Béarnais (west-central Pyrenees) revealed by multi-method thermochronology. Comptes Rendus Geoscience 348: 246–256. DOI: 10.1016/j.crte.2016.01.001. [CrossRef] [Google Scholar]
  • Boschi C, Früh-Green GL, Delacour A, Karson JA, Kelley DS. 2006. Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30 N). Geochem. Geophys. Geosystems 7: 129–140. [CrossRef] [Google Scholar]
  • Canérot J. 2017. The pull apart-type Tardets-Mauléon Basin, a key to understand the formation of the Pyrenees. Bulletin Société géologique de France 188: 35. DOI: 10.1051/bsgf/2017198. [CrossRef] [Google Scholar]
  • Canérot J, Delavaux F. 1986. Tectonic and sedimentation on the north Iberian margin, Chaînons Béarnais south Pyrenean zone (Pyrenees bascobéarnaises) – New data about the signification of the lherzolites in the Saraillé area. C R Acad Sci Ser II 302(15): 951–956. [Google Scholar]
  • Canérot J, Peybernes B, Cizsak R. 1978. Présence d’une marge méridionale à l’emplacement des Chaînons Béarnais (Pyrénées basco-béarnaises). Bull Soc geol Fr 7(20): 673–676. [CrossRef] [Google Scholar]
  • Casteras M, Canérot J, Paris J-P, Tisin D, Azambre B, Alimen H. 1970. Carte géol. France (1/50 000), feuille Oloron-Sainte-Marie (1051). Orléans : BRGM. [Google Scholar]
  • Chew M, Van Staal CR. 2014. The ocean-continent transition zones along the Appalachian-Caledonian margin of Laurentia: Examples of large-scale hyperextension during the opening of the Iapetus Ocean. Geosci Can 41. DOI: 10.12789/geocanj.2014.41.040. [Google Scholar]
  • Choukroune P, ECORS team. 1989. The Ecors deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics 8: 23–39. [CrossRef] [Google Scholar]
  • Choukroune P, Mattauer M. 1978. Tectonique des plaques et Pyrénées : sur le fonctionnement de la faille transformante nord-Pyrénéenne ; comparaisons avec les modèles actuels. Bulletin de la société géologique de France 20: 689–700. [CrossRef] [Google Scholar]
  • Clerc C. 2012. Évolution structurale du domaine Nord-Pyrénéen au Crétacé. Amincissement crustal extrême et thermicité élevée : un analogue pour les marges passives. PhD Thesis (Unpublished), ENS Université Paris VI. [Google Scholar]
  • Clerc C, Lagabrielle Y. 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the Cretaceous Pyrenean hot paleomargins. Tectonics 33(7): 1340–1359. [CrossRef] [Google Scholar]
  • Clerc C, Lahfid A, Monié P, Lagabrielle Y, Chopin C, Poujol M, et al. 2015. High-temperature metamorphism during extreme thinning of the continental crust: A reappraisal of the north Pyrenean passive paleomargin. Solid Earth 6: 643–668. [CrossRef] [Google Scholar]
  • Clerc C, Lagabrielle Y, Labaume P, Ringenbach J-C, Vauchez A, Nalpas T, et al. 2016. Basement – Cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the northeastern Pyrenean analog. Tectonophysics 686: 82–97. [CrossRef] [Google Scholar]
  • Corre B. 2017. La bordure nord de la plaque ibérique à l’Albo-Cénomanien. Architecture d’une marge passive de type ductile (Chaînons Béarnais, Pyrénées Occidentales). Thesis (Unpublished), Rennes 1 University, France. [Google Scholar]
  • Corre B, Lagabrielle Y, Labaume P, Fourcade S, Clerc C, Ballevre M. 2016. Deformation associated with mantle exhumation in a distal, hot passive margin environment: New constraints from the Saraillé Massif (Chaînons Béarnais, North-Pyrenean Zone). Compt Rendus Geosci 348: 279–289. [Google Scholar]
  • Corre B, Boulvais P, Boiron MC, Lagabrielle Y, Marasi L, Clerc C. 2018. Fluid circulations in response to mantle exhumation at the passive margin setting in the north Pyrenean zone, France. Mineralogy and Petrology. DOI: 10.1007/s00710-018-0559-x. [Google Scholar]
  • Debroas E-J. 1978. Évolution de la fosse du flysch ardoisier de l’Albien supérieur au Sénonien inférieur (zone interne métamorphique des Pyrénées navarro-languedociennes). Bull Soc géol Fr 20: 639–648. [Google Scholar]
  • Debroas EJ, Canérot J, Bilotte M. 2010. Les Brèches d’Urdach, témoins de l’exhumation du manteau pyrénéen dans un escarpement de faille Vraconnien-Cénomanien inférieur (zone nord-pyrénéenne, Pyrénées-Atlantiques, France). Géol Fr 2: 53–63. [Google Scholar]
  • DeFelipe I, Pedreira D, Pulgar JA, Iriarte E, Mendia M. 2017. Mantle exhumation and metamorphism in the Basque-Cantabrian Basin (N Spain): Stable and clumped isotope analysis in carbonates and comparison with ophicalcites in the North-Pyrenean Zone (Urdach and Lherz). Geochem Geophys Geosyst 18(2): 631–652. [Google Scholar]
  • Ducoux M, Jolivet L, Cagnard F, Gumiaux C, Baudin T, Masini E, et al. The Nappe des Marbres unit of the Basque-Cantabrian basin: The tectono-thermal evolution of a fossil hyperextended rift basin. Tectonics, in press. [Google Scholar]
  • Duretz T, Asti R, Lagabrielle Y, Brun JP, Jourdon A, Clerc C, et al. 2019. Numerical modelling of Cretaceous Pyrenean Rifting: The interaction between mantle exhumation and syn-rift salt tectonics. Basin Research 2019: 1–16. DOI: 10.1111/bre.12389. [Google Scholar]
  • Evans BW. 2004. The serpentinite multisystem revisited: Chrysotile is metastable. Int Geol Rev 46: 479–506. [CrossRef] [Google Scholar]
  • Fabriès J, Lorand J-P, Bodinier J-L, Dupuy C. 1991. Evolution of the upper mantle beneath the Pyrenees: Evidence from orogenic spinel lherzolite massifs. J Petrol, sp. volume “Orogenic lherzolites and mantle processes”, pp. 55–76. [Google Scholar]
  • Fabriès J, Lorand J-P, Bodinier J-L. 1998. Petrogenetic evolution of orogenic lherzolite massifs in the central and western Pyrenees. Tectonophysics 292: 145–167. [CrossRef] [Google Scholar]
  • Fortané A, Duée G, Lagabrielle Y, Coutelle A. 1986. Lherzolites and the Western “Chaînons Béarnais” (French Pyrénées): Structural and paleogeographical pattern. Tectonophysics 129: 81–98. [CrossRef] [Google Scholar]
  • Gaudichet A. 1974. Étude pétrographique des lherzolites de la région d’Oloron-Ste Marie (Pyrénées Atlantiques). Thesis (Unpubl.), Univ. of Paris VI. [Google Scholar]
  • Golberg J-M, Leyreloup A-F. 1990. High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contributions to Mineralogy and Petrology 104(2): 194–207. DOI: 10.1007/BF00306443. [Google Scholar]
  • Guillot S, Schwartz S, Agard P, Renard B, Prigent C. 2015. Tectonic significance of serpentinites. Tectonophysics. DOI: 10.1016/j.tecto.2015.01.020. [Google Scholar]
  • Jakob J, Andersen TB, Kjøll HJ. 2019. A review and revision of the rift inherited architecture of the South and Central Scandinavian Caledonides – a magma-poor to magma – rich transition and the significance of reactivation of rift-inheritance during the Caledonian Orogeny. Earth Science Review. DOI: 10.1016/j.earscirev.2019.01.004. [Google Scholar]
  • James V, Canérot J. 1999. Diapirisme et structuration post-triasique des Pyrénées occidentales et de l’Aquitaine méridionale (France). Eclogae geol Helv 92: 63–72. [Google Scholar]
  • Jammes S, Manatschal G, Lavier LL, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics 28(4). DOI: 10.1029/2008TC002406. [Google Scholar]
  • Lafay R, Baumgartner PL, Schwartz S, Picazo S, Montes-Hernandez G, Torsten V. 2017. Petrologic and stable isotopic studies of a fossil hydrothermal system in ultramafic environment (Chenaillet ophicalcites, Western Alps, France): Processes of carbonate cementation. Lithos V(294-295): 319–338. DOI: 10.1016/j.lithos.2017.10.006. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Bodinier JL. 2008. Submarine reworking of exhumed subcontinental mantle rocks: Field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20(1): 11–21. DOI: 10.1111/j.1365-3121.2007.00781. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 29(4): 1–26. [Google Scholar]
  • Lagabrielle Y, Clerc C, Vauchez A, Lahfid A, Labaume P, Azambre B, et al. 2016. Very high geothermal gradient during mantle exhumation recorded in mylonitic marbles and carbonate breccias from a Mesozoic Pyrenean palaeomargin (Lherz area, North Pyrenean Zone, France). Compt Rendus Geosci 348: 257–267. [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, Corre B, Poujol M, Uzel J, et al. 2019. Mantle exhumation at magma-poor passive continental margins. Part I. 3D architecture and metasomatic evolution of a fossil exhumed mantle domain (Urdach lherzolite, northwestern Pyrenees, France). BSGF – Earth Sciences Bulletin 190: 8. DOI: 10.1051/bsgf/2019007. [Google Scholar]
  • Lavier L, Manatschal G. 2006. A mechanism to thin the continental lithosphere at magma-poor margins. Nature. DOI: 10.1038/nature04608. [Google Scholar]
  • Le Pichon X, Bonnin J, Sibuet JC. 1970. La faille nord-pyrénéenne : faille transformante liée à l’ouverture du Golfe de Gascogne. C R Acad Sc (Paris) 271(série D): 1941–1944. [Google Scholar]
  • Le Roux V, Bodinier J-L, Tommasi A, Alard O, Dautria J-M, Vauchez A, et al. 2007. The Lherz spinel lherzolite: Refertilized rather than pristine mantle. Earth and Planetary Science Letters 259: 599–612. [CrossRef] [Google Scholar]
  • Lemoine M, Boillot G, Tricart P. 1987. Utramafic and grabbroic ocena floor of the Ligurian Tethys (Alps, Corsica, Apennines): In search of a genetic model. Geology 15: 622–625. [CrossRef] [Google Scholar]
  • Manatschal G. 2004. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int J Earth Sci 93: 432–466. [Google Scholar]
  • Manatschal G, Nievergelt P. 1997. A continent-ocean transition recorded in the Err and Platta nappes (eastern Switzerland). Eclogae Geol Helv 90: 3–27. [Google Scholar]
  • Marroni M, Pandolfi L. 2007. The architecture of an incipient oceanic basin: A tentative reconstruction of the Jurassic Liguria-Piemonte basin along the Northern Apennines – Alpine Corsica transect. International Journal of Earth Sciences 96: 1059–1078. [CrossRef] [Google Scholar]
  • Masini E, Manatschal G, Tugend J, Mohn G, Flament JM. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: The example of the Arzacq-Mauléon rift system (Western Pyrenees, SW France). Int J Earth Sci 1–28. DOI: 10.1007/s00531-014-1023-8. [Google Scholar]
  • Mohn G, Manatschal G, Beltrando M, Masini E, Kusznir N. 2012. Necking of continental crust in magma-poor rifted margins: Evidence from the fossil Alpine Tethys margins. Tectonics 31: TC1012. DOI: 10.1029/2011TC002961. [CrossRef] [Google Scholar]
  • Monchoux P. 1970. Les lherzolites pyrénéennes : contribution à l’étude de leur minéralogie, de leur genèse et de leurs transformations. Thèse, Université de Toulouse. [Google Scholar]
  • Moore DE, Lockner DA. 2008. Talc friction in the temperature range 25–400 °C: Relevance for fault-zone weakening. Tectonophysics 449: 120–132. [CrossRef] [Google Scholar]
  • Mouthereau F, Filleaudeau PY, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33: 2283–2314. DOI: 10.1002/2014TC003663. [CrossRef] [Google Scholar]
  • Muñoz JA. 1992. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In : McClay KR, ed. Thrust tectonics. London (UK): Chapman and Hall, pp. 235–246. [Google Scholar]
  • Olivet JL. 1996. La cinématique de la plaque ibérique. Bull Cent Rech Explor Prod Elf Aquitaine 20(1): 131–195. [Google Scholar]
  • Orti F, Perez-Lopez A, Salvany JM. 2017. Triassic evaporites of Iberia: Sedimentological and palaeogeographical implications for the western Neotethys evolution during the Middle Triassic-Earliest Jurassic. Palaeogeography, Palaeoclimatology, Palaeoecology 471: 157–180. [CrossRef] [Google Scholar]
  • Peron-Pinvidic G, Manatschal G. 2009. The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: A new point of view. Int J Earth Sci (Geol Rundsch) 98: 1581–1597. DOI: 10.1007/s00531-008-0337-9. [Google Scholar]
  • Peron-Pinvidic G, Osmundsen PT. 2016. Architecture of the distal and outer domains of the mid-Norwegian Vøring rifted margin: Insights from the Rån Ridge system. Mar Petrol Geol 77: 280–299. [Google Scholar]
  • Picazo S, Cannat M, Delacour A, Escartín J, Rouméjon S, Silantyev S. 2012. Deformation associated with the denudation of mantle-derived rocks at the Mid-Atlantic Ridge 13°–15° N: The role of magmatic injections and hydrothermal alteration. Geochemistry, Geophysics, Geosystems 13(4): 30. DOI: 10.1029/2012GC004121. [Google Scholar]
  • Pinto VHG, Manatschal G, Karpoffv AM, Viana A. 2015. Tracing mantle-reacted fluids in magma-poor rifted margins: The example of Alpine Tethyan rifted margins. Geochem Geophys Geosyst 16. DOI: 10.1002/2015GC005830. [Google Scholar]
  • Ravier J. 1959. Le métamorphisme des terrains secondaires des Pyrénées. Mem Soc geol Fr 86: 1–250. [Google Scholar]
  • Reynolds SJ, Lister GS. 1987. Structural aspects of fluid-rock interactions in detachment zones. Geology 15(4): 362–366. [CrossRef] [Google Scholar]
  • Rouméjon S, Cannat M, Agrinier P, Godard M, Andreani M. 2015. Serpentinization and fluid pathways in tectonically exhumed peridotites from the southwest Indian Ridge (62°–65° E). J Petrol egv014. [Google Scholar]
  • Rouméjon S, Früh-Green GL, Orcutt BN, IODP Expedition 357 Science Party. 2018. Alteration heterogeneities in peridotites exhumed on the southern wall of the Atlantis massif (IODP Expedition 357). J Petrol 59: 1329–1358. DOI: 10.1093/petrology/egy065. [CrossRef] [Google Scholar]
  • Roure F, Choukroune P. 1998. Contribution of the Ecors seismic data to the Pyrenean geology: Crustal architecture and geodynamic evolution of the Pyrenees. Mémoires de la Société géologique de France 173: 37–52. [Google Scholar]
  • Roure F, Choukroune P, Berastegui X, Munoz JA, Vilien A, Matheron P, et al. 1989. Ecors deep seismic data and balanced cross sections: Geometric constraints on the evolution of the Pyrenees. Tectonics 8: 41–50. [CrossRef] [Google Scholar]
  • Rowan MG. 2014. Passive-margin salt basins: Hyperextension, evaporite deposition, and salt tectonics. Basin Research 26: 154–182. DOI: 10.1111/bre.12043. [CrossRef] [Google Scholar]
  • Saint Blanquat de M, Bajolet F, Grand’Homme A, Proietti A, Zanti M, Boutin A, et al. 2016. Cretaceous mantle exhumation in the central Pyrenees: New constraints from the peridotites in eastern Ariège (North Pyrenean zone, France). Compt Rendus Geosci 348: 268–278. [Google Scholar]
  • Salardon R, Carpentier C, Bellahsen N, Pironon J, France-Lanord C. 2017. Interactions between tectonics and fluid circulations in an inverted hyper-extended basin: Example of Mesozoic carbonate rocks of the western North Pyrenean Zone (Chaînons Béarnais, France). Marine and Petroleum Geology 80: 563–586. [CrossRef] [Google Scholar]
  • Saura E, Oró LA, Teixell A, VergésJ. 2016. Rising and falling diapirs, shifting depocenters, and flap overturning in the Cretaceous Sopeira and Sant Gervàs subbasins (Ribagorça Basin, southern Pyrenees). Tectonics 35: 638–662. DOI: 10.1002/2015TC004001. [CrossRef] [Google Scholar]
  • Sauter D, Cannat M, Rouméjon S, Andreani M, et al. 2013. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nature Geoscience 6: 314–320. DOI: 10.1038/NGEO1771. [CrossRef] [Google Scholar]
  • Schärer U, de Parseval P, Polvé M, de Saint Blanquat M. 1999. Formation of the Trimouns talc-chlorite deposit (Pyrenees) from persistent hydrothermal activity between 112 and 97 Ma. Terra Nova 11(1): 30–37. DOI: 10.1046/j.13653121.1999.00224.x. [CrossRef] [Google Scholar]
  • Sibuet J-C, Srivastava SP, Spakman W. 2004. Pyrenean orogeny and plate kinematics. Journal of Geophysical Research 109. DOI: 10.1029/2003JB002514. [Google Scholar]
  • Skelton ADL, Valley JW. 2000. The relative timing of serpentinisation and mantle exhumation at the ocean-continent transition, Iberia: Constraints from oxygen isotopes. Earth Planet Sci Lett 178: 327–338. [CrossRef] [Google Scholar]
  • Soto JI, Flinch JF, Tari G. 2017. Permo-Triassic salt provinces of Europe, North Africa and the Atlantic margins: A synthesis. In : Soto IJ, Flinch J, Tari G, et al., eds. Permo-Triassic salt provinces of Europe, North Africa and the Atlantic margins. Tectonics and hydrocarbon potential. Amsterdam, Netherlands: Elsevier, pp. 3–41. [Google Scholar]
  • Sutra E, Manatschal G, Mohn G, Unternehr P. 2013. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochem Geophys Geosyst 14: 2575–2597. DOI: 10.1002/ggge.20135. [Google Scholar]
  • Teixell A. 1998. Crustal structure and orogenic material budget in the west central Pyrenees. Tectonics 17(3): 395–406. [CrossRef] [Google Scholar]
  • Teixell A, Labaume P, Lagabrielle Y. 2016. The crustal evolution of the west-central Pyrenees revisited: Inferences from a new kinematic scenario. Comptes Rendus Geoscience 348: 257–267. DOI: 10.1016/j.crte.2015.10.010. [CrossRef] [Google Scholar]
  • Teixell A, Labaume P, Ayarza P, Espurt N, de Saint Blanquat M, Lagabrielle Y. 2018. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics 724: 146–170. DOI: 10.1016/j.tecto.2018.01.009. [CrossRef] [Google Scholar]
  • Thiébault J, Durand-Wackenheim C, Debeaux M, Souquet P. 1992. Métamorphisme des évaporites triasiques du versant nord des Pyrénées centrales et occidentales. Bull Soc Hist Nat (Toulouse) 128: 77–84. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E, Mohn G, Thinon I. 2014. Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics 33: 1239–1276. DOI: 10.1002/2014TC003529. [CrossRef] [Google Scholar]
  • Vacherat A, Mouthereau F, Pik R, Bernet M, Gautheron C, Masini E, et al. 2014. Thermal imprint of rift-related processes in orogens as recorded in the Pyrenees. Earth and Planetary Science Letters 408: 296–306. DOI: 10.1016/j.epsl.2014.10.014. [CrossRef] [Google Scholar]
  • Vauchez A, Clerc C, Bestani L, Lagabrielle Y, Chauvet A, Lahfid A, et al. 2013. Preorogenic exhumation of the North Pyrenean Agly massif (Eastern Pyrenees-France). Tectonics 32: 95–106. DOI: 10.1002/tect.20015. [CrossRef] [Google Scholar]
  • Vielzeuf D, Kornprobst J. 1984. Crustal splitting and the emplacement of Pyrenean lherzolites and granulites. Earth and Planetary Science Letters 67: 87–96. DOI: 10.1016/0012-821X(84)90041-4. [Google Scholar]
  • Vissers RLM, Drury MR, Newman J, Fliervoet TF. 1997. Mylonitic deformation in upper mantle peridotites of the North Pyrenean Zone (France): Implications for strength and strain localization in the lithosphere. Tectonophysics 279: 303–325. [CrossRef] [Google Scholar]
  • Wenner DB, Taylor HP. 1971. Temperatures of serpentinization of ultramafic rocks based on O18/O16 fractionation between coexisting serpentine and magnetite. Contrib. Mineral Petrol 32: 165–185. [CrossRef] [Google Scholar]
  • Wrobel-Daveau J-C, Ringenbach J-C, Tavakoli S, Ruiz GMH, Masse P, Frizon de Lamotte D. 2010. Evidence for mantle exhumation along the Arabian margin in the Zagros (Kermanshah area, Iran). Arabian Journal of Geosciences 3(4): 499–513. DOI: 10.1007/s12517-010-0209-z. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.