Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 191, 2020
Article Number 3
Number of page(s) 11
DOI https://doi.org/10.1051/bsgf/2020002
Published online 05 February 2020
  • Alatorre Ibargüengoitia MA. 2011. A model of volcanic explosions at Popocatépetl volcano (Mexico): Integrating fragmentation experiments and ballistic analysis. Dissertation zur Erlangung des Doktorgrades an der Fakultät für Geowissenschaften der Ludwig-Maximilians- Universität München, München. [Google Scholar]
  • American Institute of Physics Handbook, Ch. 4. NY: McGrow-Hill Book Company, 1972. [Google Scholar]
  • Annen C, Sparks RSJ. 2002. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth and Planetary Science Letters 203: 937–955. [CrossRef] [Google Scholar]
  • Arámbula-Mendoza R, Valdés González C, Martínez Bringas A. 2010. Temporal and spatial variation of the stress state of Popocatépetl Volcano, Mexico. J Volcanol Geotherm Res 196: 156–168. [CrossRef] [Google Scholar]
  • Arámbula-Mendoza R, Reyes-Dávila G, Vargas-Bracamontes DM, González-Amezcua M, Navarro-Ochoa C, Martínez-Fierros A, et al. 2018. Seismic monitoring of effusive-explosive activity and large lava dome collapses during 2013–2015 at Volcán de Colima, Mexico. Journal of Volcanology and Geothermal Research 351: 75–88. DOI: https://doi.org/10.1016/j.jvolgeores.2017.12.017. [CrossRef] [Google Scholar]
  • Arana-Salinas L, Siebe C, Macías JL. 2010. Dynamics of the ca. 4965 14C yr BP “Ochre Pumice” Plinian eruption of Popocatépetl volcano, México. J Volcanol Geotherm Res 192: 212–231. [CrossRef] [Google Scholar]
  • Aubert M. 1999. Practical evaluation of steady heat discharge from dormant active volcanoes: Case study of Vulcarolo fissure (Mount Etna, Italy). J Volcanol Geotherm Res 88: 413–429. [CrossRef] [Google Scholar]
  • Aubert M, Alparone S. 2000. Variation d’origine sismique du flux de chaleur convective dans La Fossa de Vulcano (Italie). Earth Planet Sci 330: 603–610. DOI: https://doi.org/10.1016/S1251-8050(00)00196-8. [Google Scholar]
  • Aubert M, Diliberto S, Finizola A, Chébli Ya. 2008. Double origin of hydrothermal convective flux variations in the Fossa of Vulcano (Italy). Bulletin of Volcanology, Springer Verlag, 70(6): 743–751. DOI: https://doi.org/10.1007/s00445-007-0165-y. Available from https://hal.archives-ouvertes.fr/hal-00365117. [CrossRef] [Google Scholar]
  • Brusca L, Inguaggiato S, Longo M, Madonia P, Maugeri R. 2004. The 2002–2003 eruption of Stromboli (Italy): Evaluation of the volcanic activity by means of continuous monitoring of soil temperature, CO2 flux, and meteorological parameters. Geochemistry, Geophysics, Geosystems 5(12): 1–14. DOI: https://doi.org/10.1029/2004GC000732. [CrossRef] [Google Scholar]
  • Burton M, Neri M, Condarelli D. 2004. High spatial resolution radon measurements reveal hidden active faults on Mt. Etna. Geophys Res Lett 31: L07618. DOI: https://doi.org/10.1029/2003GL019181. [CrossRef] [Google Scholar]
  • Cigolini C, Poggi P, Ripepe M, Laiolo M, Ciamberlini C, Delle Donne D, et al. 2009. Radon surveys and real-time monitoring at Stromboli volcano: Influence of soil temperature, atmospheric pressure and tidal forces on 222Rn degassing. Journal of Volcanology and Geothermal Research 184(3-4): 381–388. [CrossRef] [Google Scholar]
  • De Gregorio S, Madonia P, Gurrieri S, Giudice G, Inguaggiato S. 2007. Contemporary total dissolved gas pressure and soil temperature anomalies recorded at Stromboli volcano (Italy). Geophys Res Lett 34: 1–5. DOI: https://doi.org/10.1029/200DOI7GL029578. [CrossRef] [Google Scholar]
  • Diliberto IS. 2017. Long-term monitoring on a closed-conduit volcano: A 25 year long time-series of temperatures recorded at La Fossa cone (Vulcano Island, Italy), ranging from 250 °C to 520 °C. Journal of Volcanology and Geothermal Research 346: 151–160. DOI: https://doi.org/10.1016/j.jvolgeores.2017.03.005. [CrossRef] [Google Scholar]
  • Dobretsov NL, Kirdyashkin AG, Kirdyashkin AA. 2001. Deep geodynamics. Novosibirsk, Russia: SO RAN Publishing, Branch “Geo”, 401 p. ISBN 5-7692-0499-0 (In Russian). [Google Scholar]
  • Espinasa-Pereña R, Martín-Del Pozzo AL. 2006. Morphostratigraphic evolution of Popocatépetl volcano, México. In : Siebe C, Macías JL, Aguirre-Díaz G, eds. Neogene-Quaternary continental margin volcanism: A perspective from México. Boulder, Colorado: Geol. Soc. Am., Special Paper 402, pp. 115–138. [Google Scholar]
  • Fowler SJ, Spera FJ. 2008. Phase equilibria trigger for explosive volcanic eruptions. Geophys Res Lett 35: L08309. DOI: https://doi.org/10.1029/2008GL033665. [CrossRef] [Google Scholar]
  • González-Pomposo GJ. 2004. Análisis de la sismicidad asociada a la actividad del volcán Popocatépetl y determinación de su estructura por medio de tomografía sísmica. PhD Thesis, Instituto de Geofísica, National University of Mexico, Mexico. [Google Scholar]
  • Hernandez P, Perez N, Salazar J, Reimer M, Notsu K, Wakita H. 2004. Radon and helium in soil gases at Canadas caldera, Tenerife, Canary Islands, Spain. Journal of Volcanology and Geothermal Research 131: 59–76. [CrossRef] [Google Scholar]
  • Hickson C, Spurgeon T, Tilling R, Adam P. 2013. Factors influencing volcanic hazards and the morphology of volcanic landforms. In : Shroder JF, ed. Treatise on geomorphology. San Diego: Academic Press 13, pp. 219–242. [CrossRef] [Google Scholar]
  • Hildreth W. 1981. Gradients in silicic magma chambers: Implications for lithospheric magmatism. J Geophys Res 86(Bll): 10153–10193. [CrossRef] [Google Scholar]
  • Iguchi M, Yakiwara H, Tameguri T, Hendrasto M, Hirabayashi J. 2008. Mechanism of explosive eruption revealed by geophysical observations at the Sakurajima, Suwanosejima and Semeru volcanoes. Journal of Volcanology and Geothermal Research 178(1): 1–9. DOI: https://doi.org/10.1016/j.jvolgeores.2007.10.010. [CrossRef] [Google Scholar]
  • Johnson JB, Lees JM, Gerst A, Sahagian D, Varley N. 2008. Long-period earthquakes and co-eruptive dome inflation seen with particle image velocimetry. Nature 456: 377–381. [CrossRef] [Google Scholar]
  • Karlstrom L, Richards M. 2011. On the evolution of large ultramafic magma chambers and timescales for flood basalt eruptions. Journal of Geophysical Research 116: B08216. DOI: https://doi.org/10.1029/2010JB008159. [CrossRef] [Google Scholar]
  • Kearey P, Brooks M, Hill I. 2005. An introduction to geophysical exploration, 3rd ed. Blackwell Publishing. [Google Scholar]
  • Kotsarenko A, Grimalsky V, Yutsis V, Bravo Osuna AG, Koshevaya S, Peréz Enríquez HR, et al. 2012. Experimental studies of anomalous Radon activity in the Tlamacas Mountain, volcano Popocatepetl area, Mexico: New tools to study Litosphere-Atmosphere coupling for forecasting volcanic and seismic events. Annals of Geophysics 55(1): 109–118. DOI: https://doi.org/10.4401/ag-5318. [Google Scholar]
  • Levresse G, Cruzabeyro-Lopez J, Trillta J, Perez-Enriquez R, Kotzarenko A, Carrillo-Chavez A. 2019. Condiciones meteorológicas del Campus Juriquilla, UNAM, Querétaro. Centro de Geociencias, Meteostacion, UNAM. Available from http://132.248.185.112/CurrentMonitorHTML/Medicion_actual.htm (last consult.: 09/09/2019). [Google Scholar]
  • Londoño JMB. 2009. Radon and CO2 emissions in different geological environments as a tool for monitoring volcanic and seismic activity. B Geol 31(2): 83–95. [Google Scholar]
  • Macías JL. 2005. Geología e historia eruptiva de algunos de los grandes volcanes activos de México. Boletín de la Sociedad Geológica Mexicana, Tomo LVII 3: 379–424. [CrossRef] [Google Scholar]
  • Macías JL. 2007. Geology and eruption history of some active volcanoes of Mexico. Geological Society of America Special Paper 422: 183–232. DOI: https://doi.org/10.1130/2007.2422(06). [Google Scholar]
  • Martín MC, Ahijado A, De la Nuez J, Quesada ML, Steinitz G, Vulkan U, et al. 2003. Radon survey at La Palma Island (Canary Islands): First results. Vulcânica I: 113–116. [Google Scholar]
  • Martín-Del Pozzo AL. 2012. Precursors to eruptions of Popocatépetl Volcano, Mexico. Geofísica Internacional 51(1): 87–107. [Google Scholar]
  • Michaut C, Jaupart C, Bell DR. 2006. Transient geotherms in Archean continental lithorphere. New constrains on thickness and heat production of the subcontinental lithospheric mantle. J Geophys Res 112. DOI: https://doi.org/10.1029/2006JB004464. [Google Scholar]
  • Mooser F, Montiel A, Zúñiga A. 1996. Nuevo mapa geológico de las cuencas de México, Toluca y Puebla. México, D.F: Subdirección de Construcción, Comisión Federal de Electricidad México, D.F. [Google Scholar]
  • Mottaghy D, Vosteen HD, Schellschmidt R. 2008. Temperature dependence of the relationship of thermal diffusivity versus thermal conductivity for crystalline rocks. Int J Earth Sci 97: 435–442. [CrossRef] [Google Scholar]
  • Newhall C, Self S. 1982. The volcanic explosivity index (VEI): An estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research 87(C2): 1231–123. [CrossRef] [Google Scholar]
  • Padilla y Sánchez RJ. 2017. Tectonic map of Mexico GIS Project, American Association of Petroleum Geologists GIS Open Files series. DOI: https://doi.org/10.13140/RG.2.2.35486.33608. [Google Scholar]
  • Pasquale V, Verdoya M, Chiozzi P. 2014. Geothermics. In : Heat Flow in the Lithosphere. Springer Briefs in Earth Sciences. DOI: https://doi.org/10.1007/978-3-319-02511-7_1. [Google Scholar]
  • Report on Popocatepetl (Mexico). 2007. Minor explosions and lava dome growth. In : Wunderman R, ed. Global Volcanism Program, 2007. Report on Popocatepetl (Mexico). Bulletin of the Global Volcanism Network, 32(4). Smithsonian Institution. DOI: https://doi.org/10.5479/si.GVP.BGVN200704-341090. [Google Scholar]
  • Report on Popocatepetl (Mexico). 2009. Tremor, numerous earthquakes, and small ash plumes. In : Wunderman R, ed. Global Volcanism Program, 2009. Report on Popocatepetl (Mexico). Bulletin of the Global Volcanism Network 34(3). Smithsonian Institution. DOI: https://doi.org/10.5479/si.GVP.BGVN200903-341090. [Google Scholar]
  • Report on Popocatepetl (Mexico). 2012. Seismicity and small ash plumes. In : Wunderman R, ed. Global Volcanism Program, 2012. Report on Popocatepetl (Mexico). Bulletin of the Global Volcanism Network 37(9). Smithsonian Institution. DOI: https://doi.org/10.5479/si.GVP.BGVN201209-341090. [Google Scholar]
  • Report on Popocatepetl (Mexico). 2015. Popocatepetl (Mexico) during November 2012–December 2014, ongoing exhalations and explosions. In : Wunderman R, ed. Global Volcanism Program, 2015. Report on Popocatepetl (Mexico). Bulletin of the Global Volcanism Network 40(2). Smithsonian Institution. DOI: https://doi.org/10.5479/si.GVP.BGVN201502-341090. [Google Scholar]
  • Revil A, Finizola A, Ricci T, Delcher E, Peltier A, Barde-Cabusson S, et al. 2011. Hydrogeology of Stromboli volcano, Aeolian Islands (Italy) from the interpretation of resistivity tomograms, self-potential, soil temperature and soil CO2 concentration measurements. Geophysical Journal International 186(3): 1078–1094. [CrossRef] [Google Scholar]
  • Salzera JT, Milillo P, Varley N, Perissin D, Pantaleo M, Walter TR. 2017. Evaluating links between deformation, topography and surface temperature at volcanic domes: Results from a multi-sensor study at Volcán de Colima, Mexico. Earth and Planetary Science Letters 479: 354–365. DOI: https://doi.org/10.1016/j.epsl.2017.09.027. [CrossRef] [Google Scholar]
  • Samarskii AA, Vabishchevich PN. 2007. Numerical methods for solving inverse problems of mathematical physics. Berlin: Walter de Gruyter. [Google Scholar]
  • Schaaf P, Stimac J, Siebe C, Macías J. 2003. Magmatic processes at Popocatepetl volcano, Mexico: Petrology, geochemistry and Sr-Nd-Pb isotopes. In : American Geophysical Union, Fall Meeting 2003, abstract #V31C-0941. [Google Scholar]
  • Schaaf P, Stimac J, Siebe C, Macias JL. 2005. Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatepetl and surrounding monogenetic volcanoes, Central Mexico. J Petrol 46: 1243–1282. [CrossRef] [Google Scholar]
  • Siebe C, Abrams M, Macías J. 1995a. Derrumbes Gigantes, Depositos de avalancha de escombros y edad del actual cono del volcán Popocatépetl en Volcan Popocatépetl. Estudios Realizados Durante la crisis de 1994–1995. México: Centro Nacional de Prevención de desastres de la Secretaria de Gobernación-UNAM. [Google Scholar]
  • Siebe C, Macías JL, Abrams M, Rodríguez-Elizarrarás RS, Castro R, Delgado H. 1995b. Quaternary explosive volcanism and pyroclastic deposits in East-Central México: Implications for future hazards. Geol Soc Am 1: 1–48. [Google Scholar]
  • Siebe C, Abrams M, Macías JL, Obenholzner J. 1996. Repeated volcanic disasters in prehispanic time at Popocatépetl, Central Mexico: Past key to the future? Geology 24: 399–402. [CrossRef] [Google Scholar]
  • Siebe C, Macías J. 2006. Volcanic hazards in the Mexico City metropolitan area from eruptions at Popocatépetl, Nevado de Toluca, and Jocotitlán stratovolcanoes and monogenetic scoria cones in the Sierra Chichinautzin Volcanic Field. Geological Society of America Special Papers 402: 253–329. [Google Scholar]
  • Sosa-Ceballos G, Gardner James E, Siebe C, Macías José L. 2012. A caldera-forming eruption ∼ 14 10014C yr BP at Popocatépetl volcano, México: Insights from eruption dynamics and magma mixing. Journal of Volcanology and Geothermal Research 213-214: 27–40. DOI: https://doi.org/10.1016/j.jvolgeores.2011.11.001. [CrossRef] [Google Scholar]
  • Sosa-Ceballos G, Gardner JE, Lassiter JC. 2014. Intermittent mixing processes occurring before Plinian eruptions of Popocatepetl volcano, Mexico: Insights from textural–compositional variations in plagioclase and Sr–Nd–Pb isotopes. Contrib Mineral Petrol 167: 966. DOI: https://doi.org/10.1007/s00410-014-0966-x. [CrossRef] [Google Scholar]
  • Sosa-Ceballos G, Macías JL, García-Tenorio F, Layer P, Schaaf P, Solís-Pichardo G, et al. 2015. El Ventorrillo, a paleostructure of Popocatépetl volcano: Insights from geochronology and geochemistry. Bull Volcanol 77: 91. DOI: https://doi.org/10.1007/s00445-015-0975-2. [CrossRef] [Google Scholar]
  • Spera FJ, Yuen DA, Kirschvink SJ. 1982. Thermal boundary layer convection in silicic magma chambers: Effects of temperature-dependent rheology and implications for thermogravitational chemical fractionation. Journal of Geophysical Research 87(B10): 8755–8767. [CrossRef] [Google Scholar]
  • Stacey FD, Davis PM. 2008. Physics of the Earth. Cambridge, UK: Cambridge University Press, Edinburgh Building. [CrossRef] [Google Scholar]
  • Turcotte DL, Schubert G. 2001. Geodynamics, 2nd ed., Ch. 4. Cambridge Univ. Press, pp. 132–194. [Google Scholar]
  • Varley N, Johnson J. 2005. Thermal monitoring at Volcán de Colima, Mexico: Characterizing the activity and studying the transition between explosive and effusive regimes. Project: Modelling conduit processes – Intrepretation of monitoring data. Available from https://www.researchgate.net/publication/259303474_Thermal_Monitoring_at_Volcan_de_Colima_Mexico_Characterizing_the_Activity_and_Studying_the_Transition_Between_Explosive_and_Effusive_Regimes. [Google Scholar]
  • Varley NR, Johnson J, Ruiz M, Reyes-Dávila GA, Martin K. 2006. Applying statistical analysis to understanding the dynamics of volcanic explosions. In : Mader HM, Coles SG, Connor CB, Connor LJ, eds. Statistics in Volcanology. Special publication of IAVCEI, pp. 57–76. [CrossRef] [Google Scholar]
  • Varley N, Arámbula-Mendoza R, Reyes-Dávila G, Sanderson R, Stevenson J. 2010. Generation of Vulcanian activity and long-period seismicity at Volcán de Colima, Mexico. Journal of Volcanology and Geothermal Research 198: 45–56. DOI: https://doi.org/10.1016/j.jvolgeores.2010.08.009. [CrossRef] [Google Scholar]
  • Vosteen HD, Schellschmidt R. 2003. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys Chem Earth 28: 499–509. [CrossRef] [Google Scholar]
  • Whittington AG, Hofmeister AM, Nabelek PI. 2009. Temperature-dependent thermal diffusivity of Earth’s crust: Implications for crustal anatexis. Nature 458: 319–321. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.