Issue |
BSGF - Earth Sci. Bull.
Volume 191, 2020
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
|
|
---|---|---|
Article Number | 18 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/bsgf/2020021 | |
Published online | 20 July 2020 |
- Ábalos B, Alkorta A, Iríbar V. 2008. Geological and isotopic constraints on the structure of the Bilbao anticlinorium (Basque–Cantabrian basin, North Spain). Journal of Structural Geology 30(11): 1354–1367. https://doi.org/10.1016/j.jsg.2008.07.008. [CrossRef] [Google Scholar]
- Acocella V. 2008. Transform faults or Overlapping Spreading Centers? Oceanic ridge interactions revealed by analogue models. Earth and Planetary Science Letters 265(3-4): 379–385. https://doi.org/10.1016/j.epsl.2007.10.025. [CrossRef] [Google Scholar]
- Acocella V, Morvillo P, Funiciello R. 2005. What controls relay ramps and transfer faults within rift zones? Insights from analogue models. Journal of Structural Geology 27(3): 397–408. https://doi.org/10.1016/j.jsg.2004.11.006. [CrossRef] [Google Scholar]
- Albarède F, Michard-Vitrac A. 1978. Age and significance of the North Pyrenean metamorphism. Earth and Planetary Science Letters 40(3): 327–332. https://doi.org/10.1016/0012-821X(78)90157-7. [CrossRef] [Google Scholar]
- Aller J, Zeyen HJ. 1996. A 2.5-D interpretation of the Basque country magnetic anomaly (northern Spain): geodynamical implications. Geologische Rundschau 85(2): 303–309. https://doi.org/10.1007/BF02422236. [CrossRef] [Google Scholar]
- Alonso J, Pulgar J, García-Ramos J, Barba P. 1996. W5 Tertiary basins and Alpine tectonics in the Cantabrian Mountains (NW Spain). Tertiary Basins of Spain: The Stratigraphic Record of Crustal Kinematics. [Google Scholar]
- Andersen TB, Corfu F, Labrousse L, Osmundsen P-T. 2012. Evidence for hyperextension along the pre-Caledonian margin of Baltica. Journal of the Geological Society 169(5): 601–612. https://doi.org/10.1144/0016-76492012-011. [CrossRef] [Google Scholar]
- Anonymous. 1972. Penrose field conference on ophiolites. Geotimes 17(12): 24–25. [Google Scholar]
- Antonio-Vigil A, Ruiz M, Gallastegui J, Díaz J, Gallart J. 2019. Estudio cortical del Pirineo mediante refracción y reflexión de gran ángulo utilizando terremotos como fuente sísmica natural. Boletín Geológico y Minero 130(3): 417–444. https://doi.org/10.21701/bolgeomin.130.3.003. [CrossRef] [Google Scholar]
- Azambre B, Rossy M. 1976. Le magmatisme alcalin d’age cretace, dans les Pyrenees occidentales et l’Arc basque ; ses relations avec le metamorphisme et la tectonique. Bulletin de la Societe Geologique de France S7-XVIII(6): 1725. https://doi.org/10.2113/gssgfbull.S7-XVIII.6.1725. [CrossRef] [Google Scholar]
- Baby P, Crouzet G, Specht M, Déramond J, Bilotte M, Debroas E. 1988. Rôle des paléostructures albo-cénomaniennes dans la géométrie des chevauchements frontaux nord-pyrénéens. Comptes Rendus de l’Académie des Sciences, Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de La Terre, 306(4): 307–313. [Google Scholar]
- Basile,C. 2015. Transform continental margins – Part 1: Concepts and models. Tectonophysics 661: 1–10. https://doi.org/10.1016/j.tecto.2015.08.034. [CrossRef] [Google Scholar]
- Beauchamp W. 2004. Superposed folding resulting from inversion of a synrift accommodation zone, Atlas Mountains, Morocco. In: McClay KR, ed. Thrust tectonics and hydrocarbon systems, Vol. 82, pp. 635–646. [Google Scholar]
- Beaumont C, Muñoz JA, Hamilton J, Fullsack P. 2000. Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. Journal of Geophysical Research: Solid Earth 105(B4): 8121–8145. https://doi.org/10.1029/1999JB900390. [Google Scholar]
- Belgarde C, Manatschal G, Kusznir N, Scarselli S, Ruder M. 2015. Rift processes in the Westralian Superbasin, North West Shelf, Australia: insights from 2D deep reflection seismic interpretation and potential fields modelling. The APPEA Journal 55(2): 400. https://doi.org/10.1071/AJ14035. [CrossRef] [Google Scholar]
- Beltrando M, Manatschal G, Mohn G, Dal Piaz GV, Vitale Brovarone A, Masini E. 2014. Recognizing remnants of magma-poor rifted margins in high-pressure orogenic belts: The Alpine case study. Earth-Science Reviews 131: 88–115. https://doi.org/10.1016/j.earscirev.2014.01.001. [CrossRef] [Google Scholar]
- Biteau J-J, Le Marrec A, Le Vot M, Masset J-M. 2006. The Aquitaine Basin. Petroleum Geoscience 12(3): 247–273. https://doi.org/10.1144/1354-079305-674. [CrossRef] [Google Scholar]
- Bodego A, Agirrezabala LM. 2017. The Andatza coarse-grained turbidite system (westernmost Pyrenees): Stratigraphy, sedimentology and structural control. Estudios Geológicos 73(1): 3. [Google Scholar]
- Bodego A, Iriarte E, Agirrezabala LM, García-Mondéjar J, López-Horgue MA. 2015. Synextensional mid-Cretaceous stratigraphic architecture of the eastern Basque-Cantabrian basin margin (Western Pyrenees). Cretaceous Research 55(Supplement C): 229–261. https://doi.org/10.1016/j.cretres.2015.01.006. [CrossRef] [Google Scholar]
- Boillot G, Capdevila R. 1977. The Pyrenees: Subduction and collision? Earth and Planetary Science Letters 35(1): 151–160. https://doi.org/10.1016/0012-821X(77)90038-3. [CrossRef] [Google Scholar]
- Boirie J, Souquet P. 1982. Les poudingues de Mendibelza : dépôts de cônes sous-marins du rift albien des Pyrénées. Bull. Cent. Rech. Explor. Prod. Elf Aquitaine 6(2): 405–435. [Google Scholar]
- Bois C, Gariel O, Lefort J-P, Rolet J, Brunet F. 1997. Geologic contribution of the Bay of Biscay deep seismic survey: a summary of the main scientific results, a discussion of the open questions. [Google Scholar]
- Bond RMG, McClay KR. 1995. Inversion of a Lower Cretaceous extensional basin, south central Pyrenees, Spain. Geological Society, London, Special Publications 88(1): 415–431. https://doi.org/10.1144/GSL.SP1995.088.01.22. [CrossRef] [Google Scholar]
- Bosch G, Teixell A, Jolivet M, Labaume P, Stockli D, Domènech M, et al. (2016). Timing of Eocene–Miocene thrust activity in the Western Axial Zone and Chaînons Béarnais (west-central Pyrenees) revealed by multi-method thermochronology. Comptes Rendus Geoscience 348(3-4): 246–256. https://doi.org/10.1016/j.crte.2016.01.001. [CrossRef] [Google Scholar]
- Brune S, Heine C, Pérez-Gussinyé M, Sobolev SV. 2014. Rift migration explains continental margin asymmetry and crustal hyper-extension. Nature Communications 5: 4014. https://doi.org/10.1038/ncomms5014. [CrossRef] [Google Scholar]
- Bubeck A, Walker RJ, Imber J, Holdsworth RE, MacLeod CJ, Holwell DA. 2017. Extension parallel to the rift zone during segmented fault growth: application to the evolution of the NE Atlantic. Solid Earth 8(6): 1161–1180. https://doi.org/10.5194/se-8-1161-2017. [CrossRef] [Google Scholar]
- Buiter SJH, Pfiffner OA. 2003. Numerical models of the inversion of half-graben basins: inversion of half-graben basins. Tectonics 22(5). https://doi.org/10.1029/2002TC001417. [Google Scholar]
- Butler RWH, Tavarnelli E, Grasso M. 2006. Structural inheritance in mountain belts: An Alpine-Apennine perspective. Journal of Structural Geology 28(11): 1893–1908. https://doi.org/10.1016/j.jsg.2006.09.006. [CrossRef] [Google Scholar]
- Cadenas P, Fernández-Viejo G, Pulgar JA, Tugend J, Manatschal G, Minshull TA. 2018. Constraints imposed by rift inheritance on the compressional reactivation of a hyperextended margin: Mapping rift domains in the North Iberian Margin and in the Cantabrian Mountains: Rift domains in the North Iberian margin. Tectonics 37(3): 758–785. https://doi.org/10.1002/2016TC004454. [CrossRef] [Google Scholar]
- Calassou S, Larroque C, Malavieille J. 1993. Transfer zones of deformation in thrust wedges: An experimental study. Tectonophysics 221(3): 325–344. https://doi.org/10.1016/0040-1951(93)90165-G. [CrossRef] [Google Scholar]
- Camara P. 1997. The Basque-Cantabrian basin’s Mesozoic tectono-sedimentary evolution. Mémoires de La Société Géologique de France 171: 187–191. [Google Scholar]
- Cámara P, Klimowitz J. 1985. Interpretación geodinámica de la vertiente centro-occidental surpirenaica (cuencas de Jaca-Tremp). Estudios Geológicos 41(5-6): 391. https://doi.org/10.3989/egeol.85415-6720. [CrossRef] [Google Scholar]
- Carola E, Tavani S, Ferrer O, Granado P, Quintà A, Butillé M, et al. 2013. Along-strike extrusion at the transition between thin- and thick-skinned domains in the Pyrenean Orogen (northern Spain). Geological Society, London, Special Publications 377(1): 119–140. https://doi.org/10.1144/SP377.3. [CrossRef] [Google Scholar]
- Carrera N, Muñoz JA, Sàbat F, Mon R, Roca E. 2006. The role of inversion tectonics in the structure of the Cordillera Oriental (NW Argentinean Andes). Journal of Structural Geology 28(11): 1921–1932. https://doi.org/10.1016/j.jsg.2006.07.006. [CrossRef] [Google Scholar]
- Casas A, Kearey P, Rivero L, Adam CR. 1997. Gravity anomaly map of the Pyrenean region and a comparison of the deep geological structure of the western and eastern Pyrenees. Earth and Planetary Science Letters 150(1): 65–78. https://doi.org/10.1016/S0012-821X(97)00087-3. [CrossRef] [Google Scholar]
- Castañares LM, Robles S, Gimeno D, Bravo JCV. 2001. The Submarine Volcanic System of the Errigoiti Formation (Albian-Santonian of the Basque-Cantabrian Basin, Northern Spain): Stratigraphic Framework, Facies, and Sequences. Journal of Sedimentary Research 71(2): 318–333. https://doi.org/10.1306/080700710318. [CrossRef] [Google Scholar]
- Casteras M. 1949. Observations sur la structure du revêtement crétacé et nummulitique de la zone primaire axiale au sud de Larrau et de Sainte-Engrâce (Basses-Pyrénées). Annales Hébert et Haug (Laboratoire Géologique de Paris) 7: 45–59. [Google Scholar]
- Chantraine J, Autran A, Cavelier C. 2003. Carte géologique de la France à 1/1 000 000 6e édition révisée. Orléans : BRGM. [Google Scholar]
- Chenin P, Manatschal G, Picazo S, Müntener O, Karner G, Johnson C, et al. 2017. Influence of the architecture of magma-poor hyperextended rifted margins on orogens produced by the closure of narrow versus wide oceans. Geosphere 13(2): 559–576. https://doi.org/10.1130/GES01363.1. [CrossRef] [Google Scholar]
- Chevrot S, Sylvander M, Diaz J, Martin R, Mouthereau F, Manatschal G, et al. 2018. The non-cylindrical crustal architecture of the Pyrenees. Scientific Reports 8(1): 9591. https://doi.org/10.1038/s41598-018-27889-x. [CrossRef] [Google Scholar]
- Choukroune P. 1989. The Ecors Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics 8(1): 23–39. https://doi.org/10.1029/TC008i001p00023. [CrossRef] [Google Scholar]
- Ciry R, Amiot M, Feuillee P. 1963. Les transgressions cretacees sur le massif d’Oroz-Betelu (Navarre espagnole). Bulletin de La Société Géologique de France 7(5): 701–707. [CrossRef] [Google Scholar]
- Clerc C, Lahfid A, Monié P, Lagabrielle Y, Chopin C, Poujol M, et al. 2015. High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the North Pyrenean passive paleomargin. Solid Earth 6(2): 643. [CrossRef] [Google Scholar]
- Corre B, Lagabrielle Y, Labaume P, Fourcade S, Clerc C, Ballèvre M. 2016. Deformation associated with mantle exhumation in a distal, hot passive margin environment: New constraints from the Saraillé Massif (Chaînons Béarnais, North-Pyrenean Zone). Comptes Rendus Géosciences 348(3): 279–289. https://doi.org/10.1016/j.crte.2015.11.007. [CrossRef] [Google Scholar]
- Corti G. 2012. Evolution and characteristics of continental rifting: Analog modeling-inspired view and comparison with examples from the East African Rift System. Tectonophysics 522-523: 1–33. https://doi.org/10.1016/j.tecto.2011.06.010. [CrossRef] [Google Scholar]
- Cuevas J, Tubía JM. 1999. The discovery of scapolite marbles in the Biscay Synclinorium (Basque–Cantabrian basin, Western Pyrenees): geodynamic implications. Terra Nova 11(6): 259–265. https://doi.org/10.1046/j.1365-3121.1999.00255.x. [CrossRef] [Google Scholar]
- Daignieres M, Gallart J, Banda E, Hirn A. 1982. Implications of the seismic structure for the orogenic evolution of the Pyrenean Range. Earth and Planetary Science Letters 57(1): 88–100. https://doi.org/10.1016/0012-821X(82)90175-3. [CrossRef] [Google Scholar]
- Davis D, Suppe J, Dahlen FA. 1983. Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research 88(B2): 1153. https://doi.org/10.1029/JB088iB02p01153. [CrossRef] [Google Scholar]
- Debroas EJ. 1990. Le flysch noir albo-cenomanien temoin de la structuration albienne a senonienne de la Zone nord-pyreneenne en Bigorre (Hautes-Pyrenees, France). Bulletin de La Société Géologique de France VI(2): 273–285. https://doi.org/10.2113/gssgfbull.VI.2.273. [CrossRef] [Google Scholar]
- DeFelipe I. 2017. Crustal structure and alpine tectonic evolution of the eastern border of the Basque-Cantabrian Zone. PhD thesis, Universidad de Oviedo. [Google Scholar]
- DeFelipe I, Pedreira D, Pulgar JA, Iriarte E, Mendia M. 2017. Mantle exhumation and metamorphism in the Basque-Cantabrian Basin (NSpain): Stable and clumped isotope analysis in carbonates and comparison with ophicalcites in the North-Pyrenean Zone (Urdach and Lherz). Geochemistry, Geophysics, Geosystems 18(2): 631–652. https://doi.org/10.1002/2016GC006690. [CrossRef] [Google Scholar]
- DeFelipe I, Pedreira D, Pulgar JA, Beek PA, Bernet M, Pik R. 2019. Unraveling the Mesozoic and Cenozoic Tectonothermal Evolution of the Eastern Basque-Cantabrian Zone–Western Pyrenees by Low-Temperature Thermochronology. Tectonics 38(9): 3436–3461. https://doi.org/10.1029/2019TC005532. [CrossRef] [Google Scholar]
- Del Valle J, Adler RE, de Boer HF, Jordan H, Klarr K, Krausse HF, et al. 1972. Mapa geológico de España E. 1:50 000, Serie MAGNA (Hoja de Valcarlos, 91). [Google Scholar]
- Desegaulx P, Brunet MF. 1990. Tectonic subsidence of the Aquitaine Basin since Cretaceous times. Bulletin de La Societe Geologique de France VI(2): 295. https://doi.org/10.2113/gssgfbull.VI.2.295. [CrossRef] [Google Scholar]
- Díaz J, Pedreira D, Ruiz M, Pulgar JA, Gallart J. 2012. Mapping the indentation between the Iberian and Eurasian plates beneath the Western Pyrenees/Eastern Cantabrian Mountains from receiver function analysis. Tectonophysics 570-571: 114–122. https://doi.org/10.1016/j.tecto.2012.07.005. [CrossRef] [Google Scholar]
- Ducoux M, Jolivet L, Callot J-P, Aubourg C, Masini E, Lahfid A, et al. 2019. The Nappe des Marbres Unit of the Basque-Cantabrian Basin: The Tectono-thermal Evolution of a Fossil Hyperextended Rift Basin. Tectonics. https://doi.org/10.1029/2018TC005348. [Google Scholar]
- Epin M-E, Manatschal G, Amann M. 2017. Defining diagnostic criteria to describe the role of rift inheritance in collisional orogens: the case of the Err-Platta nappes (Switzerland). Swiss Journal of Geosciences 110(2): 419–438. https://doi.org/10.1007/s00015-017-0271-6. [CrossRef] [Google Scholar]
- Erdős Z, Huismans RS, van der Beek P, Thieulot C. 2014. Extensional inheritance and surface processes as controlling factors of mountain belt structure: Inherited structural control on orogens. Journal of Geophysical Research: Solid Earth 119(12): 9042–9061. https://doi.org/10.1002/2014JB011408. [CrossRef] [Google Scholar]
- Faulds JE, Varga RJ. 1998. The role of accommodation zones and transfer zones in the regional segmentation of extended terranes. In: Special Paper 323: Accommodation zones and transfer zones; the regional segmentation of the Basin and Range Province (Vol. 323, pp. 1–45). Geological Society of America. https://doi.org/10.1130/0-8137-2323-X.1. [Google Scholar]
- Fernandez-Mendiola PA, García-Mondejar J. 1990. Mid-cretaceous palaeogeographical evolution of the central Basque-Cantabrian basin (northern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 81(1-2): 115–126. https://doi.org/10.1016/0031-0182(90)90043-7. [CrossRef] [Google Scholar]
- Fernández-Viejo G, Gallart J, Pulgar JA, Gallastegui J, Dañobeitia JJ, Córdoba D. 1998. Crustal transition between continental and oceanic domains along the North Iberian Margin from wide angle seismic and gravity data. Geophysical Research Letters 25(23): 4249–4252. https://doi.org/10.1029/1998GL900149. [CrossRef] [Google Scholar]
- Fernández-Viejo G, Gallart J, Pulgar JA, Córdoba D, Dañobeitia JJ. 2000. Seismic signature of Variscan and Alpine tectonics in NW Iberia: Crustal structure of the Cantabrian Mountains and Duero basin. Journal of Geophysical Research: Solid Earth 105(B2): 3001–3018. https://doi.org/10.1029/1999JB900321. [CrossRef] [Google Scholar]
- Fernández-Viejo G, Pulgar JA, Gallastegui J, Quintana L. 2012. The Fossil Accretionary Wedge of the Bay of Biscay: Critical Wedge Analysis on Depth-Migrated Seismic Sections and Geodynamical Implications. The Journal of Geology 120(3): 315–331. https://doi.org/10.1086/664789. [CrossRef] [Google Scholar]
- Ferrer O, Roca E, Benjumea B, Muñoz JA, Ellouz N, MARCONI Team. 2008. The deep seismic reflection MARCONI-3 profile: Role of extensional Mesozoic structure during the Pyrenean contractional deformation at the eastern part of the Bay of Biscay. Marine and Petroleum Geology 25(8): 714–730. https://doi.org/10.1016/j.marpetgeo.2008.06.002. [CrossRef] [Google Scholar]
- Feuillee P, Sigal J. 1965. La transgression du Cretace superieur (’flysch nord-pyreneen’) sur le massif des Cinco-Villas (Pyrenees basques). Bulletin de La Société Géologique de France S7-VII(1): 45. https://doi.org/10.2113/gssgfbull.S7-VII.1.45. [CrossRef] [Google Scholar]
- Fitzgerald PG, Muñoz JA, Coney PJ, Baldwin SL. 1999. Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of a collisional orogen. Earth and Planetary Science Letters 173(3): 157–170. https://doi.org/10.1016/S0012-821X(99)00225-3. [CrossRef] [Google Scholar]
- Gallastegui J, Pulgar JA, Gallart J. 2002. Initiation of an active margin at the North Iberian continent-ocean transition: North Iberian margin Tertiary evolution. Tectonics 21(4): 15–14. https://doi.org/10.1029/2001TC901046. [CrossRef] [Google Scholar]
- García-Mondéjar J. 1986. The Aptian–Albian Carbonate Episode of the Basque–Cantabrian Basin (Northern Spain): General Characteristics, Controls and Evolution. In: Tucker ME, Wilson JL, Crevello PD, Rick Sarg J, Read JF, eds. Carbonate Platforms. Oxford, UK: Blackwell Publishing Ltd, pp. 257–290. https://doi.org/10.1002/9781444303834.ch10. [CrossRef] [Google Scholar]
- García-Mondejar J. 1989. Strike-slip subsidence of the Basque-Cantabrian basin of northern Spain and its relationship to Aptian-Albian opening of Bay of Biscay. In: Extensional tectonics and stratigraphy of the North Atlantic margins (Vol. 46, pp. 395–409). American Association of Petroleum Geologists Memoir. [Google Scholar]
- García-Mondéjar J, Agirrezabala L, Aranburu A, Fernández-Mendiola P, Gómez-Pérez I, López-Horgue M, et al. 1996. Aptian–Albian tectonic pattern of the Basque–Cantabrian Basin (Northern Spain). Geological Journal 31(1): 13–45. [CrossRef] [Google Scholar]
- Genna A. 2007. Carte géologique harmonisée au 1/50 000 du département des Pyrénées-Atlantiques, (BRGM/RP-55408-FR). [Google Scholar]
- Gómez M, Vergés J, Riaza C. 2002. Inversion tectonics of the northern margin of the Basque Cantabrian Basin. Bulletin de La Societe Geologique de France 173(5): 449–459. https://doi.org/10.2113/173.5.449. [CrossRef] [Google Scholar]
- Gómez-Romeu J, Masini E, Tugend J, Ducoux M, Kusznir N. 2019. Role of rift structural inheritance in orogeny highlighted by the Western Pyrenees case-study. Tectonophysics. https://doi.org/10.1016/j.tecto.2019.05.022. [Google Scholar]
- Gräfe K-U. 1999. Sedimentary cycles, burial history and foraminiferal indicators for systems tracts and sequence boundaries in the Cretaceous of the Basco-Cantabrian Basin (northern Spain). Neues Jahrbuch Fur Geologie Und Palaontologie-Abhandlungen 212(1): 85–130. [CrossRef] [Google Scholar]
- Granado P, Thöny W, Carrera N, Gratzer O, Strauss P, Muñoz JA. 2016. Basement-involved reactivation in foreland fold-and-thrust belts: the Alpine-Carpathian Junction (Austria). Geological Magazine 153(5-6): 1110–1135. https://doi.org/10.1017/S0016756816000066. [CrossRef] [Google Scholar]
- Granado P, Ferrer O, Muñoz JA, Thöny W, Strauss P. 2017. Basin inversion in tectonic wedges: Insights from analogue modelling and the Alpine-Carpathian fold-and-thrust belt. Tectonophysics 703-704: 50–68. https://doi.org/10.1016/j.tecto.2017.02.022. [CrossRef] [Google Scholar]
- Grool AR, Ford M, Vergés J, Huismans RS, Christophoul F, Dielforder A. 2018. Insights Into the Crustal-Scale Dynamics of a Doubly Vergent Orogen From a Quantitative Analysis of Its Forelands: A Case Study of the Eastern Pyrenees. Tectonics 37(2): 450–476. https://doi.org/10.1002/2017TC004731. [CrossRef] [Google Scholar]
- Hart NR, Stockli DF, Lavier LL, Hayman NW. 2017. Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees. Tectonics 36(6): 1103–1128. https://doi.org/10.1002/2016TC004365. [CrossRef] [Google Scholar]
- Hilairet N, Reynard B, Wang Y, Daniel I, Merkel S, Nishiyama N, et al. 2007. High-Pressure Creep of Serpentine, Interseismic Deformation, and Initiation of Subduction. Science 318(5858): 1910–1913. https://doi.org/10.1126/science.1148494. [NASA ADS] [CrossRef] [Google Scholar]
- Instituto Geológico y Minero de España (IGME). 1990. Documentos sobre la Geología del subsuelo de España. [Google Scholar]
- Jammes S, Huismans RS. 2012. Structural styles of mountain building: Controls of lithospheric rheologic stratification and extensional inheritance: crustal strength and mountain building. Journal of Geophysical Research: Solid Earth 117(B10). https://doi.org/10.1029/2012JB009376. [Google Scholar]
- Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics 28(4): TC4012. https://doi.org/10.1029/2008TC002406. [CrossRef] [Google Scholar]
- Jammes S, Tiberi C, Manatschal G. 2010. 3D architecture of a complex transcurrent rift system: The example of the Bay of Biscay-Western Pyrenees. Tectonophysics 489(1-4): 210–226. https://doi.org/10.1016/j.tecto.2010.04.023. [CrossRef] [Google Scholar]
- Jammes S, Huismans RS, Muñoz JA. 2014). Lateral variation in structural style of mountain building: controls of rheological and rift inheritance. Terra Nova 26(3): 201–207. https://doi.org/10.1111/ter.12087. [CrossRef] [Google Scholar]
- Johnson JA, Hall CA. 1989a. Tectono-stratigraphic model for the Massif D’Igountze-Mendibelza, western Pyrenees. Journal of the Geological Society 146(6): 925. https://doi.org/10.1144/gsjgs.146.6.0925. [CrossRef] [Google Scholar]
- Johnson JA, Hall CA. 1989b. The structural and sedimentary evolution of the Cretaceous North Pyrenean Basin, southern France. Geological Society of America Bulletin 101(2): 231–247. [CrossRef] [Google Scholar]
- Jolivet M, Labaume P, Monié P, Brunel M, Arnaud N, Campani M. 2007. Thermochronology constraints for the propagation sequence of the south Pyrenean basement thrust system (France-Spain): Propagation of the south Pyrenean prism. Tectonics 26(5). https://doi.org/10.1029/2006TC002080. [Google Scholar]
- Jourdon A, Le Pourhiet L, Mouthereau F, Masini E. 2019. Role of rift maturity on the architecture and shortening distribution in mountain belts. Earth and Planetary Science Letters 512: 89–99. https://doi.org/10.1016/j.epsl.2019.01.057. [CrossRef] [Google Scholar]
- Konstantinovskaya EA, Harris LB, Poulin J, Ivanov GM. 2007. Transfer zones and fault reactivation in inverted rift basins: Insights from physical modelling. Tectonophysics 441(1-4): 1–26. https://doi.org/10.1016/j.tecto.2007.06.002. [CrossRef] [Google Scholar]
- Labaume P, Séguret M, Seyve C. 1985. Evolution of a turbiditic foreland basin and analogy with an accretionary prism: Example of the Eocene South-Pyrenean Basin. Tectonics 4(7): 661–685. https://doi.org/10.1029/TC004i007p00661. [CrossRef] [Google Scholar]
- Lacombe O, Bellahsen N. 2016. Thick-skinned tectonics and basement-involved fold-thrust belts: insights from selected Cenozoic orogens. Geological Magazine 153(5-6): 763–810. https://doi.org/10.1017/S0016756816000078. [CrossRef] [Google Scholar]
- Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 29(4): TC4012. https://doi.org/10.1029/2009TC002588. [CrossRef] [Google Scholar]
- Lamare P. 1936. Recherches géologiques dans les Pyrénées basques d’Espagne. Thèse, Université de Paris (1896–1968), Faculté des sciences, France. [Google Scholar]
- Le Calvez JH, Vendeville BC. 2002. Experimental designs to model along-strike fault interaction. Journal of the Virtual Explorer 07: 1–17. https://doi.org/10.3809/jvirtex.2002.00043. [CrossRef] [Google Scholar]
- Le Pochat G, Bolthenhagen C, Lenguin M, Lorsignol S, Thibault C. 1976. Feuille de Mauléon-Licharre. Carte Géologique de La France à 1/50 000. [Google Scholar]
- Lescoutre R. 2019. Formation et réactivation du système de rift pyrénéo-cantabrique : héritage, segmentation et évolution thermique. Retrieved from http://www.theses.fr/2019STRAH003/document. [Google Scholar]
- Lescoutre R, Tugend J, Brune S, Masini E, Manatschal G. 2019. Thermal evolution of asymmetric hyperextended magma-poor rift systems: results from numerical modelling and Pyrenean field observations. Geochemistry, Geophysics, Geosystems 2019: GC008600. https://doi.org/10.1029/2019GC008600. [Google Scholar]
- Likerman J, Burlando JF, Cristallini EO, Ghiglione MC. 2013. Along-strike structural variations in the Southern Patagonian Andes: Insights from physical modeling. Tectonophysics 590: 106–120. https://doi.org/10.1016/j.tecto.2013.01.018. [CrossRef] [Google Scholar]
- Lister G, Etheridge M, Symonds P. 1986. Detachment faulting and the evolution of passive continental margins. Geology 14(3): 246–250. [CrossRef] [Google Scholar]
- Lucas C. 1987. Estratigrafia y datos Morfo-estructurales sobre el Permico y Triasico de fosas norte Pirenaicas. Cuad. Geol. Iberica 11: 25–40. [Google Scholar]
- Lundin ER, Doré AG. 2011. Hyperextension, serpentinization, and weakening: A new paradigm for rifted margin compressional deformation. Geology 39(4): 347–350. https://doi.org/10.1130/G31499.1. [CrossRef] [Google Scholar]
- Macchiavelli C, Vergés J, Schettino A, Fernàndez M, Turco E, Casciello E, et al. (2017). A New Southern North Atlantic Isochron Map: Insights Into the Drift of the Iberian Plate Since the Late Cretaceous. Journal of Geophysical Research: Solid Earth 122(12): 9603–9626. https://doi.org/10.1002/2017JB014769. [Google Scholar]
- Manatschal G, Lavier L, Chenin P. 2015. The role of inheritance in structuring hyperextended rift systems: Some considerations based on observations and numerical modeling. Gondwana Research 27(1): 140–164. https://doi.org/10.1016/j.gr.2014.08.006. [CrossRef] [Google Scholar]
- Martinez A, Vergés J, Clavell E, Kennedy J. 1989. Stratigraphic framework of the thrust geometry and structural inversion in the southeastern Pyrenees: La Garrotxa area. Geodinamica Acta 3(3): 185–194. https://doi.org/10.1080/09853111.1989.11105185. [CrossRef] [Google Scholar]
- Martínez-Torres L. 1992. El Manto de los Mármoles (Pirineo Occidental): geología estructural y evolución geodinámica. Servicio Editorial de la Universidad del País Vasco. Argitarapen Zerbitzua, Euskal Herriko Unibertsitatea. [Google Scholar]
- Martínez-Torres LM. 1993. Corte balanceado de la Sierra Cantabria (cabalgamiento de la Cuenca Vasco-Cantábrica sobre la Cuenca del Ebro). [Google Scholar]
- Masini E, Manatschal G, Tugend J, Mohn G, Flament J-M. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq-Mauléon rift system (Western Pyrenees, SW France). International Journal of Earth Sciences 103(6): 1569–1596. https://doi.org/10.1007/s00531-014-1023-8. [CrossRef] [Google Scholar]
- Mathey B, Floquet M, Miguel Martînez-Torres L. 1999. The Leiza palaeo-fault: Role and importance in the Upper Cretaceous sedimentation and palaeogeography of the Basque Pyrenees (Spain). Comptes Rendus de l’Académie des Sciences – Series IIA – Earth and Planetary Science 328(6): 393–399. https://doi.org/10.1016/S1251-8050(99)80105-0. [Google Scholar]
- Mattauer M, Henry J. 1974. Pyrenees. Geological Society, London, Special Publications 4(1): 3–21. https://doi.org/10.1144/GSL.SP.2005.004.01.01. [CrossRef] [Google Scholar]
- Mencos J, Carrera N, Muñoz JA. 2015. Influence of rift basin geometry on the subsequent postrift sedimentation and basin inversion: The Organyà Basin and the Bóixols thrust sheet (south central Pyrenees): Inversion of the Organyà basin. Tectonics 34(7): 1452–1474. https://doi.org/10.1002/2014TC003692. [CrossRef] [Google Scholar]
- Mendia MS, Ibarguchi JIG. 1991. High-grade metamorphic rocks and peridotites along the Leiza Fault (Western Pyrenees, Spain). Geologische Rundschau 80(1): 93–107. https://doi.org/10.1007/BF01828769. [CrossRef] [Google Scholar]
- Mercier de Lépinay M, Loncke L, Basile C, Roest WR, Patriat M, Maillard A, et al. 2016. Transform continental margins – Part 2: A worldwide review. Tectonophysics 693: 96–115. https://doi.org/10.1016/j.tecto.2016.05.038. [CrossRef] [Google Scholar]
- Meschede M. 1987. The tectonic and sedimentary development of the Biscay synclinorium in Northern Spain. Geologische Rundschau 76(2): 567–577. https://doi.org/10.1007/BF01821092. [CrossRef] [Google Scholar]
- Mohn G, Manatschal G, Masini E, Müntener O. 2011. Rift-related inheritance in orogens: a case study from the Austroalpine nappes in Central Alps (SE-Switzerland and N-Italy). International Journal of Earth Sciences 100(5): 937–961. https://doi.org/10.1007/s00531-010-0630-2. [CrossRef] [Google Scholar]
- Mohn G, Manatschal G, Beltrando M, Haupert I. 2014. The role of rift-inherited hyper-extension in Alpine-type orogens. Terra Nova 26(5): 347–353. https://doi.org/10.1111/ter.12104. [CrossRef] [Google Scholar]
- Montigny R, Azambre B, Rossy M, Thuizat R. 1986. K-Ar Study of cretaceous magmatism and metamorphism in the pyrenees: Age and length of rotation of the Iiberian Peninsula. The Geological Evolution of the Pyrenees 129(1): 257–273. https://doi.org/10.1016/0040-1951(86)90255-6. [Google Scholar]
- Mouthereau F, Filleaudeau P-Y, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33(12): 2014TC003663. https://doi.org/10.1002/2014TC003663. [Google Scholar]
- Muñoz JA. 1992. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. Thrust Tectonics 235–246. [Google Scholar]
- Nagtegaal P. 1972. Depositional history and clay minerals of the Upper Cretaceous basin in the south-central Pyrenees, Spain. Leidse Geologische Mededelingen 47(2): 251–275. [Google Scholar]
- Nonn C, Leroy S, Khanbari K, Ahmed A. 2017. Tectono-sedimentary evolution of the eastern Gulf of Aden conjugate passive margins: Narrowness and asymmetry in oblique rifting context. Tectonophysics 721: 322–348. https://doi.org/10.1016/j.tecto.2017.09.024. [CrossRef] [Google Scholar]
- Osmundsen PT, Redfield TF. 2011. Crustal taper and topography at passive continental margins: Crustal taper and topography. Terra Nova 23(6): 349–361. https://doi.org/10.1111/j.1365-3121.2011.01014.x. [CrossRef] [Google Scholar]
- Pedreira D, Pulgar JA, Gallart J, Díaz J. 2003. Seismic evidence of Alpine crustal thickening and wedging from the western Pyrenees to the Cantabrian Mountains (north Iberia). Journal of Geophysical Research: Solid Earth 108(B4): 2204. https://doi.org/10.1029/2001JB001667. [Google Scholar]
- Pedreira D, Pulgar JA, Gallart J, Torné M. 2007. Three-dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees-Cantabrian Mountains. Journal of Geophysical Research: Solid Earth 112(B12): B12405. https://doi.org/10.1029/2007JB005021. [Google Scholar]
- Péron-Pinvidic G, Manatschal G, Dean SM, Minshull TA. 2008. Compressional structures on the West Iberia rifted margin: controls on their distribution. Geological Society, London, Special Publications 306(1): 169–183. https://doi.org/10.1144/SP306.8. [CrossRef] [Google Scholar]
- Péron-Pinvidic G, Manatschal G, Osmundsen PT. 2013. Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology 43(Supplement C): 21–47. https://doi.org/10.1016/j.marpetgeo.2013.02.002. [CrossRef] [Google Scholar]
- Péron-Pinvidic G, Manatschal G, Masini E, Sutra E, Flament JM, Haupert I, et al. 2017. Unravelling the along-strike variability of the Angola-Gabon rifted margin: a mapping approach. Geological Society, London, Special Publications 438(1): 49–76. [CrossRef] [Google Scholar]
- Portero J, Ramírez del Pozo J, Aguilar M. 1979. Mapa geológico 1:50 000, Hoja 170 (Haro). Madrid: IGME. [Google Scholar]
- Puigdefàbregas C, Muñoz JA, Vergés J. 1992. Thrusting and foreland basin evolution in the Southern Pyrenees. In: McClay KR, ed. Thrust Tectonics. Dordrecht: Springer Netherlands, pp. 247–254 https://doi.org/10.1007/978-94-011-3066-0_22. [CrossRef] [Google Scholar]
- Pulgar JA, Gallart J, Fernández-Viejo G, Pérez-Estaún A, Álvarez-Marrón J. 1996. Seismic image of the Cantabrian Mountains in the western extension of the Pyrenees from integrated ESCIN reflection and refraction data. Tectonophysics 264(1-4): 1–19. https://doi.org/10.1016/S0040-1951(96)00114-X. [CrossRef] [Google Scholar]
- Quintana L, Pulgar JA, Alonso JL. 2015. Displacement transfer from borders to interior of a plate: A crustal transect of Iberia. Tectonophysics 663: 378–398. https://doi.org/10.1016/j.tecto.2015.08.046. [CrossRef] [Google Scholar]
- Rat P. 1988. The Basque-Cantabrian basin between the Iberian and European plates: Some facts but still many problems. Revista de La Sociedad Geológica de España 1(3-4): 327–348. [Google Scholar]
- Rat P, Amiot M, Feuillée P, Floquet M, Mathey B, Pascal A, et al. 1983. Vue sur le Cretace basco-cantábrique et nord-ibérique. Une marge et son arrière-pays, ses environments sédimentaires. Mémoires Géologiques de l’Université de Dijon 9: 191. [Google Scholar]
- Ravier J. 1959. Le métamorphisme des terrains secondaires des Pyrénées. Mém. Soc. Géol. Fr. 86. [Google Scholar]
- Razin P. 1989. Evolution tecto-sédimentaire alpine des Pyrénées Basques à l’Ouest de la transformante de Pamplona (Province du Labourd). [Google Scholar]
- Robert P. 1971. Etude pétrographique des matières organiques insolubles par la mesure de leur pouvoir réflecteur: contribution à l’exploration pétrolière et à la connaissance des bassins sédimentaires. Rev. Inst. Franç. Pétrole 26: 105–135. [Google Scholar]
- Roca E, Muñoz JA, Ferrer O, Ellouz N. 2011. The role of the Bay of Biscay Mesozoic extensional structure in the configuration of the Pyrenean orogen: constraints from the MARCONI deep seismic reflection survey. Tectonics 30(2). http://onlinelibrary.wiley.com/doi/10.1029/2010TC002735. [Google Scholar]
- Roure F, Choukroune P, Berastegui X, Munoz JA, Villien A, Matheron P, et al. 1989. Ecors deep seismic data and balanced cross sections: Geometric constraints on the evolution of the Pyrenees. Tectonics 8(1): 41–50. https://doi.org/10.1029/TC008i001p00041. [CrossRef] [Google Scholar]
- Roure F, Howell D, Guellec S, Casero P. 1990. Shallow structures induced by deep-seated thrusting. Petroleum and Tectonics in Mobile Belts 15–30. [Google Scholar]
- Ruiz M, Díaz J, Pedreira D, Gallart J, Pulgar JA. 2017. Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles. Tectonophysics 717: 65–82. https://doi.org/10.1016/j.tecto.2017.07.008. [CrossRef] [Google Scholar]
- Saspiturry N, Cochelin B, Razin P, Leleu S, Lemirre B, Bouscary C, et al. 2019. Tectono-sedimentary evolution of a rift system controlled by Permian post-orogenic extension and metamorphic core complex formation (Bidarray Basin and Ursuya dome, Western Pyrenees). Tectonophysics 768: 228180. https://doi.org/10.1016/j.tecto.2019.228180. [CrossRef] [Google Scholar]
- Saura E, Teixell A. 2006. Inversion of small basins: effects on structural variations at the leading edge of the Axial Zone antiformal stack (Southern Pyrenees, Spain). Journal of Structural Geology 28(11): 1909–1920. https://doi.org/10.1016/j.jsg.2006.06.005. [CrossRef] [Google Scholar]
- Schott JJ, Peres A. 1988. Paleomagnetism of Permo-Triassic red beds in the western Pyrenees: evidence for strong clockwise rotations of the Paleozoic units. Tectonophysics 156(1-2): 75–88. https://doi.org/10.1016/0040-1951(88)90284-3. [CrossRef] [Google Scholar]
- Serrano O, Delmas J, Hanot F, Vially R, Herbin JP, Houel P, et al. 2006. Le Bassin d’Aquitaine: valorisation des données sismiques, cartographie structurale et potentiel pétrolier. BRGM. https://doi.org/10.13140/2.1.1304.2241. [Google Scholar]
- Sinclair H, Gibson M, Naylor M, Morris R. 2005. Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes. American Journal of Science 305(5): 369–406. https://doi.org/10.2475/ajs.305.5.369. [CrossRef] [Google Scholar]
- Skogseid J. 2010. The Orphan Basin – A key to understanding the kinematic linkage between North and NE Atlantic Mesozoic rifting. In: Presented at the II Central North Atlantic Conjugate Margins Conference, pp. 13–23 [Google Scholar]
- Souquet P, Debroas E-J, Boirie J-M, Pons P, Fixari G, Roux J-C, et al. 1985. Le groupe du Flysch noir (albo-cénomanien) dans les Pyrénées. Bull Cent. Rech Exlpo-Prod Elf-Aquitaine Pau 9: 183–252. [Google Scholar]
- Souquet P, Peybernes B, Bilotte M, Debroas E-J. 1977. La chaîne alpine des Pyrénées. Géologie Alpine 53(fasc. 2): 193–216. [Google Scholar]
- Stern RJ. 2004. Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters 226(3-4): 275–292. https://doi.org/10.1016/j.epsl.2004.08.007. [CrossRef] [Google Scholar]
- Sutra E, Manatschal G, Mohn G, Unternehr P. 2013. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochemistry, Geophysics, Geosystems 14(8): 2575–2597. https://doi.org/10.1002/ggge.20135. [CrossRef] [Google Scholar]
- Tapponnier P, Armijo R, Manighetti I, Courtillot V. 1990. Bookshelf faulting and horizontal block rotations between overlapping rifts in southern Afar. Geophysical Research Letters 17(1): 1–4. https://doi.org/10.1029/GL017i001p00001. [CrossRef] [Google Scholar]
- Tavani S, Granado P, Arbués P, Corradetti A, Muñoz JA. 2017. Syn-thrusting, near-surface flexural-slipping and stress deflection along folded sedimentary layers of the Sant Corneli-Bóixols anticline (Pyrenees, Spain). Solid Earth 8(2): 405–419. https://doi.org/10.5194/se-8-405-2017. [CrossRef] [Google Scholar]
- Tavani S, Bertok C, Granado P, Piana F, Salas R, Vigna B, et al. 2018. The Iberia-Eurasia plate boundary east of the Pyrenees. Earth-Science Reviews 187: 314–337. https://doi.org/10.1016/j.earscirev.2018.10.008. [Google Scholar]
- Teixell, A. 1990. Alpine thrusts at the western termination of the Pyrenean axial zone. Bulletin de La Societe Geologique de France VI(2): 241. https://doi.org/10.2113/gssgfbull.VI.2.241. [CrossRef] [Google Scholar]
- Teixell, A. 1996. The Ansó transect of the southern Pyrenees: basement and cover thrust geometries. Journal of the Geological Society 153(2): 301–310. https://doi.org/10.1144/gsjgs.153.2.0301. [CrossRef] [Google Scholar]
- Teixell A. 1998. Crustal structure and orogenic material budget in the west central Pyrenees. Tectonics 17(3): 395–406. https://doi.org/10.1029/98TC00561. [CrossRef] [Google Scholar]
- Teixell A, Labaume P, Lagabrielle Y. 2016. The crustal evolution of the west-central Pyrenees revisited: Inferences from a new kinematic scenario. Comptes Rendus Geoscience 348(3-4): 257–267. https://doi.org/10.1016/j.crte.2015.10.010. [CrossRef] [Google Scholar]
- Teixell A, Labaume P, Ayarza P, Espurt N, de Saint Blanquat M, Lagabrielle Y. 2018. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics 724-725: 146–170. https://doi.org/10.1016/j.tecto.2018.01.009. [CrossRef] [Google Scholar]
- Thomas WA. 2006. Tectonic inheritance at a continental margin. GSA Today 16(2): 4–11. [CrossRef] [Google Scholar]
- Tugend J, Manatschal G, Kusznir NJ, Masini E, Mohn G, Thinon I. 2014. Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics 33(7): 2014TC003529. https://doi.org/10.1002/2014TC003529. [CrossRef] [Google Scholar]
- Tugend J, Manatschal G, Kusznir NJ, Masini E. 2015. Characterizing and identifying structural domains at rifted continental margins: application to the Bay of Biscay margins and its Western Pyrenean fossil remnants. Geological Society, London, Special Publications 413(1): 171. https://doi.org/10.1144/SP413.3. [CrossRef] [Google Scholar]
- Ustaszewski K, Schumacher M, Schmid S, Nieuwland D. 2005. Fault reactivation in brittle-viscous wrench systems-dynamically scaled analogue models and application to the Rhine-Bresse transfer zone. Quaternary Science Reviews 24(3-4): 363–380. https://doi.org/10.1016/j.quascirev.2004.03.015. [CrossRef] [Google Scholar]
- Vacherat A, Mouthereau F, Pik R, Bernet M, Gautheron C, Masini E, et al. 2014. Thermal imprint of rift-related processes in orogens as recorded in the Pyrenees. Earth and Planetary Science Letters 408(Supplement C): 296–306. https://doi.org/10.1016/j.epsl.2014.10.014. [CrossRef] [Google Scholar]
- Vacherat A, Mouthereau F, Pik R, Bellahsen N, Gautheron C, Bernet M, et al. 2016. Rift-to-collision transition recorded by tectonothermal evolution of the northern Pyrenees. Tectonics 35(4): 907–933. https://doi.org/10.1002/2015TC004016. [CrossRef] [Google Scholar]
- Vacherat A, Mouthereau F, Pik R, Huyghe D, Paquette J-L, Christophoul F, et al. 2017. Rift-to-collision sediment routing in the Pyrenees: A synthesis from sedimentological, geochronological and kinematic constraints. Earth Science Reviews 172: 43–74. https://doi.org/10.1016/j.earscirev.2017.07.004. [CrossRef] [Google Scholar]
- Vergés J, García-Senz J. 2001. Mesozoic evolution and Cainozoic inversion of the Pyrenean rift. Mémoires du Muséum National d’histoire Naturelle 186: 187–212. [Google Scholar]
- Wang Y, Chevrot S, Monteiller V, Komatitsch D, Mouthereau F, Manatschal G, et al. 2016. The deep roots of the western Pyrenees revealed by full waveform inversion of teleseismic P waves. Geology 44(6): 475–478. https://doi.org/10.1130/G37812.1. [CrossRef] [Google Scholar]
- Willett S, Beaumont C, Fullsack P. 1993. Mechanical model for the tectonics of doubly vergent compressional orogens. Geology 21(4): 371. https://doi.org/10.1130/0091-7613(1993)021<0371:MMFTTO>2.3.CO;2. [CrossRef] [Google Scholar]
- Wilson DS. 1990. Kinematics of overlapping rift propagation with cyclic rift failure. Earth and Planetary Science Letters 96(3-4): 384–392. https://doi.org/10.1016/0012-821X(90)90014-O. [CrossRef] [Google Scholar]
- Zwaan F, Schreurs G, Naliboff J, Buiter SJH. 2016. Insights into the effects of oblique extension on continental rift interaction from 3D analogue and numerical models. Tectonophysics 693: 239–260. https://doi.org/10.1016/j.tecto.2016.02.036. [CrossRef] [Google Scholar]
- Zwaan, F., Schreurs, G. (2017). How oblique extension and structural inheritance influence rift segment interaction: Insights from 4D analog models. Interpretation 5(1): SD119– SD138. https://doi.org/10.1190/INT-2016-0063.1. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.