Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Gearcheology
Article Number 9
Number of page(s) 22
DOI https://doi.org/10.1051/bsgf/2021002
Published online 23 March 2021
  • Adderley PW, Wilson CA, Simpson IA, Davidson DA. 2010. Chapter 25 – Anthropogenic Features. In: Stoops G, Marcelino V, Mees F, ed. Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, pp. 569–588. [CrossRef] [Google Scholar]
  • Adolphe J-P. 1981. Observations et expérimentations géomicrobiologiques et physicochimiques des concrétionnements carbonatés continentaux actuels et fossiles. Thèse de Doctorat, Université Pierre et Marie Curie (Paris 6), Paris. [Google Scholar]
  • Adolphe J-P. 1987. Formations carbonatées continentales. In: Miskovsky J-C, ed. Géologie de la préhistoire, géopré. Paris : Association pour l’Étude de l’Environnement Géologique de la Préhistoire, pp. 197–224. [Google Scholar]
  • Aldeias V, Goldberg P, Sandgathe D, et al. 2012. Evidence for Neandertal use of fire at Roc de Marsal (France). J. Archaeol. Sci. 39: 2414–2423. [CrossRef] [Google Scholar]
  • Allison VC. 1926. The antiquity of the deposits in Jacob’s cavern. Anthropol. Pap. Am. Mus. Nat. Hist. 19: 288–338. [Google Scholar]
  • Andrieux C. 1983. Étude des circulations d’air dans la grotte de Niaux. Conséquences. Karstologia 1: 19–24. [CrossRef] [Google Scholar]
  • Apicella B, Pré P, Alfè M, et al. 2015. Soot nanostructure evolution in premixed flames by High Resolution Electron Transmission Microscopy (HRTEM). Proc. Combust. Inst. 35: 1895–1902. [CrossRef] [Google Scholar]
  • Aubouin J, Brousse R, Lehman J-P. 1996. Précis de géologie. Tome 1 : Pétrologie. Paris : Dunod. [Google Scholar]
  • Ayalon A, Bar-Matthews M, Kaufman A. 1999. Petrography, strontium, barium and uranium concentrations, and strontium and uranium isotope ratios in speleothems as palaeoclimatic proxies: Soreq Cave, Israel. Holocene 9: 715–722. [CrossRef] [Google Scholar]
  • Baker A, Smart PL, Edwards RL, Richards DA. 1993. Annual growth banding in a cave stalagmite. Nature 364: 518–520. [CrossRef] [Google Scholar]
  • Baker A, Smith CL, Jex C, Fairchild IJ, Genty D, Fuller L. 2008. Annually laminated speleothems: a review. Int. J. Speleol. 37: 193–206. [CrossRef] [Google Scholar]
  • Baldini JUL, McDermott F, Fairchild IJ. 2002. Structure of the 8200-Year Cold Event Revealed by a Speleothem Trace Element Record. Science 296: 2203–2206. [CrossRef] [Google Scholar]
  • Bassel L, Motto-Ros V, Trichard F, et al. 2017. Laser-induced breakdown spectroscopy for elemental characterization of calcitic alterations on cave walls. Environ. Sci. Pollut. Res. 24: 2197–2204. [CrossRef] [Google Scholar]
  • Benington F, Melton C, Watson PJ. 1962. Carbon Dating Prehistoric Soot from Salts Cave, Kentucky. Am. Antiq. 28: 238–241. [CrossRef] [Google Scholar]
  • Binford LR. 1978. Dimensional Analysis of Behavior and Site Structure: Learning from an Eskimo Hunting Stand. Am. Antiq. 43: 330–361. [CrossRef] [Google Scholar]
  • Binford LR. 1982. The archaeology of place. J. Anthropol. Archaeol. 1: 5–31. [CrossRef] [Google Scholar]
  • Binford LR. 1998. Hearth and home: the spatial analysis of ethnographically documented rock shelter occupations as a template for distinguishing between human and hominid use of sheltered space. In: Conard NJ, Wendorf F, eds. Workshop 5–Middle Palaeolithic and Middle Stone Age Settlement System. Actes Du 13e Congrès de l’Union Internationale Des Sciences Préhistoriques et Protohistoriques, Volume 6/1, Forlí: A.B.A.C.O., pp. 229–240. [Google Scholar]
  • Borsato A, Frisia S, Fairchild IJ, Somogyi A, Susini J. 2007. Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence: Implications for incorporation of environmentally significant species. Geochim. Cosmochim. Acta 71: 1494–1512. [CrossRef] [Google Scholar]
  • Bourdin C, Douville E, Genty D. 2011. Alkaline-earth metal and rare-earth element incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave, Southeastern France. Chem. Geol. 290: 1–11. [CrossRef] [Google Scholar]
  • Brachet J-C, Hamon D, Le Saux M, et al. 2017. Study of secondary hydriding at high temperature in zirconium based nuclear fuel cladding tubes by coupling information from neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and laser induced breakdown spectroscopy microprobe. J. Nucl. Mater. 488: 267–286. [CrossRef] [Google Scholar]
  • Brittingham A, Hren MT, Hartman G, et al. 2019. Geochemical Evidence for the Control of Fire by Middle Palaeolithic Hominins. Sci Rep 9: 15368. [CrossRef] [Google Scholar]
  • Brochier JÉ. 1997. Couches archéologiques ou « sols d’habitat » ? Quelques observations micro-chronologiques dans un abri-sous-roche pyrénéen. In: Presented at the International Workshop on Archaeological Soil Micromorphology, Basel. [Google Scholar]
  • Brochier JÉ. 1999. Couche archéologique, sol archéologique et distributions spatiales : quelques réflexions (géo)archéologiques sur un vieux problème. Geoarqueologia i Quaternari litoral Memorial Maria Pilar Fumanal: 91–95. [Google Scholar]
  • Brochier JÉ. 2008. Estudi geoarqueològic dels dipòsits tardiglacials de la Balma de la Margineda (Capes de la 6 a la 11). In: Guilaine J, Martzluff M, eds. Les Excavacions a La Balma de La Margineda (1979–1991). Andorra: Minister d’Afers socials i Cultura, pp. 52–60. [Google Scholar]
  • Campy M, Macaire J-L. 1989. Géologie des formations superficielles – Géodynamique, faciès, utilisation. Paris : Masson éditions. [Google Scholar]
  • Camus H, Rabanit M. 2012. Etude géologique et géomorphologique préliminaire du site de la Grotte Mandrin, campagne 2012. In: Slimak L, Camus H, Metz L, Rabanit M, Yvorra P, eds. Installations de La Fin Du Paléolithique Moyen de La Rotte Mandrin, Malataverne, Drôme, pp. 66–77. [Google Scholar]
  • Casanova J. 1981. Étude d’un milieu stromatolitique continental. Les travertins Plio-Pléistocènes du Var (France). Thèse de 3e cycle, géologie du Quaternaire, Université d’Aix-Marseille 2, Marseille. [Google Scholar]
  • Casanova J. 1986. East African Rift stromatolites. J Geol Soc London 25: 201–210. [CrossRef] [Google Scholar]
  • Chrzavzez J. 2013. Approche expérimentale de la conservation des charbons de bois dans les gisements paléolithiques : processus post-dépositionnels, fragmentation et représentativité des assemblages anthracologiques. Thèse de Doctorat, Université de Nice-Sophia Antipolis. [Google Scholar]
  • Chrzavzez J, Théry-Parisot I, Fiorucci G, Terral J-F, Thibaut B. 2014. Impact of post-depositional processes on charcoal fragmentation and archaeobotanical implications: experimental approach combining charcoal analysis and biomechanics. J. Archaeol. Sci. 44: 30–42. [CrossRef] [Google Scholar]
  • Cornwall IW. 1958. Soils for the archaeologist. London: Phoenix House. [Google Scholar]
  • Courty M-A., Goldberg P, Macphail R. 1989. Soils and micromorphology in archaeology. Cambridge: Cambridge University Press. [Google Scholar]
  • Curie J. 2013. Les travertins anthropiques, entre histoire, archéologie et environnement. Étude géoarchéologique du site antique de Jebel Oust, Tunisie. Thèse de Doctorat, Université de Bourgogne. [Google Scholar]
  • Dandurand G, Maire R, Ortega R, et al. 2011. X-ray fluorescence microchemical analysis and autoradiography applied to cave deposits: speleothems, detrital rhythmites, ice and prehistoric paintings. Géomorphologie : relief, processus, environnement 17: 407–426. [CrossRef] [Google Scholar]
  • Delage A, Lagatu H. 1904. Sur la constitution de la terre arable. C. R. Acad. Sci. Paris 109: 1043–1044. [Google Scholar]
  • Delannoy J-J, Gauchon C, Hobléa F, et al. 2009. Karst: from palaeogeographic archives to environmental indicators. Géomorphologie : relief, processus, environnement 2: 83–94. [CrossRef] [Google Scholar]
  • Desmarchelier JM. 1999. High-resolution Palaeoenvironmental Information from Southeast Australian Speleothems. Thèse de Doctorat, University of Tasmania, Hobart. [Google Scholar]
  • Desmarchelier JM, Hellstrom JC, McCulloch MT. 2006. Rapid trace element analysis of speleothems by ELA-ICP-MS. Chem. Geol. 231: 102–117. [CrossRef] [Google Scholar]
  • Dever L, Durand R, Fontes JCh, Vachier P. 1982. Géochimie et teneurs isotopiques des systèmes saisonniers de dissolution de la calcite dans un sol sur craie. Geochim. Cosmochim. Acta 46: 1947–1956. [CrossRef] [Google Scholar]
  • Dibble HL, Sandgathe D, Goldberg P, McPherron P, Aldeias V. 2018. Were Western European Neandertals Able to Make Fire? J. Paleo. Archaeol. 1: 54–79. [CrossRef] [Google Scholar]
  • Dörr H, Münnich KO. 1989. Downward Movement of Soil Organic Matter and Its Influence on Trace-Element Transport (210Pb, 137Cs) in the Soil. Radiocarbon 31: 655–663. [CrossRef] [Google Scholar]
  • Drysdale R, Couchoud I, Zanchetta G, et al. 2020. Magnesium in subaqueous speleothems as a potential palaeotemperature proxy. Nat. Commun. 11: 5027. [CrossRef] [Google Scholar]
  • Ek C. 1979. Variations saisonnières des teneurs en CO2 d’une grotte belge : le Trou Joney à Comblain-au-Pont. Ann. Soc. Geol. Belg. 102: 71–75. [Google Scholar]
  • Fairchild IJ, Baker A, Borsato A, et al. 2001. Annual to sub-annual resolution of multiple trace-element trends in speleothems. J. Geol. Soc. 158: 831–841. [CrossRef] [Google Scholar]
  • Fairchild IJ, Borsato A, Tooth AF, et al. 2000. Controls on trace element (Sr–Mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chem. Geol. 166: 255–269. [CrossRef] [Google Scholar]
  • Fairchild IJ, Smith CL, Baker A, et al. 2006. Modification and preservation of environmental signals in speleothems. Earth Sci Rev ISOPAL 75: 105–153. [CrossRef] [Google Scholar]
  • Fairchild IJ, Treble PC. 2009. Trace elements in speleothems as recorders of environmental change. Quat. Sci. Rev. 28: 449–468. [CrossRef] [Google Scholar]
  • Finch AA, Shaw PA, Holmgren K, Lee-Thorp J. 2003. Corroborated rainfall records from aragonitic stalagmites. Earth Planet. Sci. Lett. 215: 265–273. [CrossRef] [Google Scholar]
  • Finch AA, Shaw PA, Weedon GP, Holmgren K. 2001. Trace element variation in speleothem aragonite: potential for palaeoenvironmental reconstruction. Earth Planet. Sci. Lett. 186: 255–267. [CrossRef] [Google Scholar]
  • Frisia S, Borsato A. 2010. Chapter 6 – Karst. In: Alonso-Zarza AM, Tanner LH, eds. Carbonates in Continental Settings. Facies, Environments and Processes. Elsevier, pp. 269–318. [Google Scholar]
  • Frisia S, Borsato A, Fairchild IJ, McDermott F. 2000. Calcite Fabrics, Growth Mechanisms, and Environments of Formation in Speleothems from the Italian Alps and Southwestern Ireland. J. Sediment. Res. 70: 1183–1196. [CrossRef] [Google Scholar]
  • Frisia S, Borsato A, Fairchild IJ, Susini J. 2005. Variations in atmospheric sulphate recorded in stalagmites by synchrotron micro-XRF and XANES analyses. Earth Planet. Sci. Lett. 235: 729–740. [CrossRef] [Google Scholar]
  • Frouin M, Schwenninger J-L, Mercier N, Higham T. sous presse. Chronologie de la Grotte Mandrin. In: Slimak L, Giraud Y, Metz L, Yvorra P, Eds. Des Derniers Néandertaliens Aux Premiers Hommes Modernes En France Méditerranéenne. Les Données de La Grotte Mandrin à Malataverne, Artisanats & Territoires 3. Aix-en-Provence. [Google Scholar]
  • Galanidou N. 2000. Patterns in Caves: Foragers, Horticulturists, and the Use of Space. J. Anthropological Archaeol. 19: 243–275. [CrossRef] [Google Scholar]
  • Gascoyne M. 1983. Trace-element partition coefficients in the calcite-water system and their paleoclimatic significance in cave studies. J Hydrol. 61: 213–222. [CrossRef] [Google Scholar]
  • Gascoyne M. 1992. Palaeoclimate determination from cave calcite deposits. Quat Scie Rev 11: 609–632. [CrossRef] [Google Scholar]
  • Genty D. 1992. Les Spéléothèmes du tunnel de Godarville (Belgique) − un exemple exceptionnel de concretionnement moderne − intéret pour l’étude de la cinétique de la précipitation de la calcite et de sa relation avec les variations d’environnement. Speleochronos 4: 3–29. [Google Scholar]
  • Genty D. 1993. Mise en évidence d’alternances saisonnières dans la structure interne des stalagmites. Intérêt pour la reconstitution des paléoenvironnements continentaux. C. R. Acad. Sci. II 1229–1236. [Google Scholar]
  • Genty D, Baker A, Barnes W. 1997a. Comparaison entre les lamines luminescentes et les lamines visibles annuelles de stalagmites. C. R. Acad. Sci. Paris. Sciences de la terre et des planètes 325: 193–200. [CrossRef] [Google Scholar]
  • Genty D, Baker A, Massault M, et al. 2001a. Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems. Geochim Cosmochim Acta 65: 3443–3457. [CrossRef] [Google Scholar]
  • Genty D, Baker A, Vokal B. 2001b. Intra- and inter-annual growth rate of modern stalagmites. Chem. Geol. 176: 191–212. [CrossRef] [Google Scholar]
  • Genty D, Dauphin Y, Deflandre G, Quinif Y. 1997b. Exemples de particules d’origine anthropique piégées dans les lamines de croissance de stalagmites – Intérêt pour la reconstitution des environnements humains anciens [Examples of anthropogenic particles trapped into stalagmite growth laminae – Interest for the study of prehistoric human activity.]. Quaternaire 8: 149–157. [CrossRef] [Google Scholar]
  • Genty D, Deflandre G. 1998. Drip flow variations under a stalactite of the Père Noël cave (Belgium). Evidence of seasonal variations and air pressure constraints. J. Hydrol. 211: 208–232. [CrossRef] [Google Scholar]
  • Genty D, Labuhn I, Hoffmann G, et al. 2014. Rainfall and cave water isotopic relationships in two South-France sites. Geochim Cosmochim Acta 131: 323–343. [CrossRef] [Google Scholar]
  • Genty D, Massault M. 1997. Bomb 14C Recorded in Laminated Speleothems: Calculation of Dead Carbon Proportion. Radiocarbon 39: 33–48. [CrossRef] [Google Scholar]
  • Genty D, Quinif Y. 1996. Annually laminated sequences in the internal structure of some belgian stalagmites − importance for paleoclimatology. J. Sediment. Res. 66: 275–288. [Google Scholar]
  • Gheco L, Tascon M, Gastaldi M, et al. 2019. Hidden paintings, forgotten histories: a micro–stratigraphic approach to study coated rock art. Archaeol. Anthropol. Sci. 11: 5037–5052. [CrossRef] [Google Scholar]
  • Gradziński M, Górny A, Pazdur A, Pazdur MF. 2003. Origin of black coloured laminae in speleothems from the Kraków-Wieluń Upland, Poland. Boreas 32: 532–542. [CrossRef] [Google Scholar]
  • Gradziński M, Szulc J, Smyk B. 1997. Microbial agents of moonmilk calcification. In: Jeannin P-Y, ed. Physical Speleology and Karst Geomorphology: Proceedings of the 12th International Congress of Speleology, La Chaux-de-Fonds, pp. 275–278. [Google Scholar]
  • Heidenreich R, Hess W, Ban L. 1968. Structure of spherule and layers inferred from electron microscopy and X-ray diffraction. J. Appl. Crystallogr. 1: 1–19. [CrossRef] [Google Scholar]
  • Hellstrom JC. 1998. Late Quaternary Palaeoenvironmental Records from the Geochemistry of Speleothems, North-West Nelson, New Zealand. Thèse de Doctorat, Research School of Earth Sciences, Australian National University, Canberra. [Google Scholar]
  • Hellstrom JC, McCulloch MT. 2000. Multi-proxy constraints on the climatic significance of trace element records from a New Zealand speleothem. Earth Planet. Sci. Lett. 179: 287–297. [CrossRef] [Google Scholar]
  • Huang Y, Fairchild IJ. 2001. Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions. Geochim. Cosmochim. Acta 65: 47–62. [CrossRef] [Google Scholar]
  • Huang Y, Fairchild IJ, Borsato A, et al. 2001. Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy). Chem. Geol. 175: 429–448. [CrossRef] [Google Scholar]
  • Jeannet M. sous presse. La microfaune de la Grotte Mandrin. Son implication dans l’environnement et la biostratigraphie. In: Slimak L, Giraud Y, Metz L, Yvorra P, eds. Des derniers néandertaliens aux premiers hommes modernes en France méditerranéenne. Les données de la Grotte Mandrin à Malataverne, Artisanats & Territoires 3. Aix-en-Provence. [Google Scholar]
  • Johnson K, Hu C, Belshaw N, Henderson G. 2006. Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction. Earth Planet. Sci. Lett. 244: 394–407. [CrossRef] [Google Scholar]
  • Karkanas P, Goldberg P. 2010. Chapter 23–Phosphatic Features. In: Stoops G, Marcelino V, Mees F, eds. Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, pp. 521–541. [CrossRef] [Google Scholar]
  • Karkanas P, Shahack-Gross R, Ayalon A, et al. 2007. Evidence for habitual use of fire at the end of the Lower Paleolithic: Site-formation processes at Qesem Cave, Israel. J. Hum. Evol. 53: 197–212. [CrossRef] [Google Scholar]
  • Koç K, Koşun E, Cheng H, Demirtaş F, Lawrence Edwards R, Fleitmann D. 2020. Black carbon traces of human activities in stalagmites from Turkey. J. Archaeol. Sci. 123: 105255. [CrossRef] [Google Scholar]
  • Kuczumow A, Genty D, Chevallier P, Nowak J, Florek M, Buczyńska A. 2005. X-ray and electron microprobe investigation of the speleothems from Godarville tunnel. X-Ray Spectrom. 34: 502–508. [CrossRef] [Google Scholar]
  • Kuczumow A, Genty D, Chevallier P, Nowak J, Ro CU. 2003. Annual resolution analysis of a SW-France stalagmite by X-ray synchrotron microprobe analysis. Spectrochim. Acta, Part B. 58: 851–865. [CrossRef] [Google Scholar]
  • Liñán C, Ojeda L, Benavente J, del Rosal Y, Vadillo I, Carrasco F. 2020. Coupling air temperature records and gravimetric data to interpret ventilation patterns in a Mediterranean karstic system (Nerja-Pintada caves, southern Spain). Sci. Total Environ. 730: 139147. [CrossRef] [Google Scholar]
  • Lorens RB. 1981. Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim. Cosmochim. Acta. 45: 553–561. [CrossRef] [Google Scholar]
  • Macphail RI, Goldberg P. 2010. Chapter 26–Archaeological Materials. In: Stoops G, Marcelino V, Mees F, eds. Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, pp. 589–622. [CrossRef] [Google Scholar]
  • March RJ, Lucquin A, Joly D, Ferreri JC, Muhieddine M. 2014. Processes of Formation and Alteration of Archaeological Fire Structures: Complexity Viewed in the Light of Experimental Approaches. J. Archaeol. Method Theor. 21: 1–45. [CrossRef] [Google Scholar]
  • Martínez-Pillado V, Aranburu A, Arsuaga J, et al. 2014. Upper Pleistocene and Holocene palaeoenvironmental records in Cueva Mayor karst (Atapuerca, Spain) from different proxies: speleothem crystal fabrics, palynology, and archaeology. Int. J. Speleol. 43: 1–14. [CrossRef] [Google Scholar]
  • Martínez-Pillado V, Aranburu A, Yusta I, Stoll H, Arsuaga JL. 2010. Clima y ocupaciones en la Galería de Estatuas (Atapuerca, Burgos) en los últimos 14.000 años: Relatos de una estalagmita. MUNIBE (Antropologia-Arkeologia) 61: 89–102. [Google Scholar]
  • Menut D, Fichet P, Lacour J-L, Rivoallan A, Mauchien P, 2003. Micro-laser-induced breakdown spectroscopy technique: a powerful method for performing quantitative surface mapping on conductive and nonconductive samples. Appl. Opt. 42: 6063–6071. [CrossRef] [Google Scholar]
  • Motto-Ros V, Gardette V, Sancey L, et al. 2020. LIBS-Based Imaging: Recent Advances and Future Directions. Spectrosc. 35: 34–40. [Google Scholar]
  • Nagra G, Treble PC, Andersen MS, Bajo P, Hellstrom J, Baker A. 2017. Dating stalagmites in mediterranean climates using annual trace element cycles. Nature Scientific Reports 7: 1–12. [Google Scholar]
  • Nagra G, Treble PC, Andersen MS, Fairchild IJ, Coleborn K, Baker A. 2016. A post-wildfire response in cave dripwater chemistry. Hydrol. Earth Syst. Sci. 20: 2745–2758. [CrossRef] [Google Scholar]
  • Pawlyta M, Hercman H. 2016. Transmission Electrion Microscopy (TEM) as a Tool for Identification of Combustion Products: Application to Black Layers in Speleothems. Annales Societatis Geologorum Poloniae 86: 237–248. [Google Scholar]
  • Perrette Y, Poulenard J, Saber AI, et al. 2008. Polycyclic Aromatic Hydrocarbons in stalagmites: Occurrence and use for analyzing past environments. Chem. Geol. 251: 67–76. [CrossRef] [Google Scholar]
  • Renault P. 1987. Phénomènes karstiques. In: Géologie de la préhistoire. Paris : géopré, pp. 169–196. [Google Scholar]
  • Renault P, Brunet J. 1981. Les variations de la pCO2 dans les grottes des Pyrénées centrales — Grottes de Moulis et de Niaux (Ariège). Spelunca Mémoires 11: 5–18. [Google Scholar]
  • Roberts MS, Smart PL, Baker A. 1998. Annual trace element variations in a Holocene speleothem. Earth Planet. Sci. Lett. 154: 237–246. [CrossRef] [Google Scholar]
  • Roebroeks W, Villa P. 2011. On the earliest evidence for habitual use of fire in Europe. PNAS 108: 5209–5214. [CrossRef] [Google Scholar]
  • Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U. 2005. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43: 1731–1742. [CrossRef] [Google Scholar]
  • Scroxton N, Burns S, Dawson P, Rhodes JM, et al. 2018. Rapid measurement of strontium in speleothems using core-scanning micro X-ray fluorescence. Chemical Geology 487: 12–22. [CrossRef] [Google Scholar]
  • Shahack-Gross R, Ayalon A. 2013. Stable carbon and oxygen isotopic compositions of wood ash: an experimental study with archaeological implications. J. Archaeol. Sci. 40: 570–578. [CrossRef] [Google Scholar]
  • Shahack-Gross R, Ayalon A, Goldberg P, Goren Y, Ofek B, Rabinovich R, et al. 2008. Formation processes of cemented features in karstic cave sites revealed using stable oxygen and carbon isotopic analyses: A case study at middle paleolithic Amud Cave, Israel. Geoarchaeology 23: 43–62. [CrossRef] [Google Scholar]
  • Shen C-C, Lin K, Duan W, et al. 2013. Testing the annual nature of speleothem banding. Nature Sci. Rep. 3: 1–5. [Google Scholar]
  • Slimak L. 2004. Les dernières expressions du Moustérien entre Loire et Rhône. Thèse de Doctorat, Université de Provence, Aix-en-Provence. [Google Scholar]
  • Slimak L, Belkacem D, Belles F, et al. 2017. Installations de la fin du Paléolithique moyen de la Grotte Mandrin, Malataverne, (Drôme). Fouille programmée triennale 2015–2017. Rapport de synthèse. Service Régional de l’Archéologie Auvergne Rhône-Alpes. [Google Scholar]
  • Slimak L, Giraud Y, Metz L, Yvorra P, eds. sous presse. Des derniers néandertaliens aux premiers hommes modernes en France méditerranéenne. Les données de la Grotte Mandrin à Malataverne, Artisanats & Territoires 3. Aix-en-Provence. [Google Scholar]
  • Sorensen AC. 2017. On the relationship between climate and Neandertal fire use during the Last Glacial in south-west France. Quat. Int. 436: 114–128. [CrossRef] [Google Scholar]
  • Stoll HM, Müller W, Prieto M. 2012. I‐STAL, a model for interpretation of Mg/Ca, Sr/Ca and Ba/Ca variations in speleothems and its forward and inverse application on seasonal to millennial scales. Geochem. Geophys. Geosyst. 13: 1–27. [CrossRef] [Google Scholar]
  • Stoops G. 2010. Chapter 1–Micromorphology as a Tool in Soil and Regolith Studies. In: Stoops G, Marcelino V, Mees F, eds. Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, pp. 1–13. [Google Scholar]
  • Tesoriero AJ, Pankow JF. 1996. Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite. Geochim. Cosmochim. Acta 60: 1053–1063. [CrossRef] [Google Scholar]
  • Théry-Parisot I, Chabal L, Costamagno S 2008. Taphonomie de la combustion des résidus organiques et des structures de combustion en contexte archéologique. In: Théry-Parisot I, Chabal L, Costamagno S, eds. Actes de la table ronde du Centre d’Études Préhistoire, Antiquité, Moyen Âge − UMR 6130, Palethnologie. [Google Scholar]
  • Treble P, Shelley JMG, Chappell J. 2003. Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia. Earth Planet. Sci. Lett. 216: 141–153. [CrossRef] [Google Scholar]
  • Treble PC, Chappell J, Shelley JMG. 2005. Complex speleothem growth processes revealed by trace element mapping and scanning electron microscopy of annual layers. Geochim. Cosmochim. Acta 69: 4855–4863. [CrossRef] [Google Scholar]
  • Treble PC, Fairchild IJ, Griffiths A, et al. 2015. Impacts of cave air ventilation and in-cave prior calcite precipitation on Golgotha Cave dripwater chemistry, southwest Australia. Quat. Sci. Rev. 127: 61–72. [CrossRef] [Google Scholar]
  • Vadillo JM, Vadillo I, Carrasco F, Laserna JJ. 1998. Spatial distribution profiles of magnesium and strontium in speleothems using laser-induced breakdown spectrometry. Fresenius’ J. Anal. Chem. 361: 119–123. [CrossRef] [Google Scholar]
  • Vandevelde S. 2019. Y’a pas de suie sans feu ! Étude micro-chronologique des concrétions fuligineuses. Étude de cas : le site paléolithique de la Grotte Mandrin (France). Thèse de Doctorat, Université Paris 1 Panthéon-Sorbonne, Paris. [Google Scholar]
  • Vandevelde S, Brochier JÉ, Petit C, Slimak L. 2017. Establishment of occupation chronicles in Grotte Mandrin using sooted concretions: rethinking the Middle to Upper Paleolithic transition. J. Hum. Evol. 112: 70–78. [CrossRef] [Google Scholar]
  • Vandevelde S, Brochier JÉ, Desachy B, Petit C, Slimak L. 2018. Sooted concretions: A new Micro-chronological Tool for High Temporal Resolution Archaeology. Quat. Int. 474: 103–118. [CrossRef] [Google Scholar]
  • Vandevelde S, Brochier J, Slimak L. 2019. Couche archéologique, sol archéologique et films de suie pariétaux : une approche micro-chronologique de l’occupation des cavités. Archéologie, société et environnement 19(1): 1–15. [Google Scholar]
  • Vandevelde S, Genty D, Brochier JÉ, Petit C, Slimak L. 2020. Des concrétions fuligineuses dans des contextes archéologiques variés : quel potentiel informatif ? Géomorphologie : relief, processus, environnement 26(4): 241–254. [CrossRef] [Google Scholar]
  • Vansteenberge S, de Winter NJ, Sinnesael M, Xueqin Z, Verheyden S, Claeys P. 2020. Benchtop µXRF as a tool for speleothem trace elemental analysis: Validation, limitations and application on an Eemian to early Weichselian (125–97ka) stalagmite from Belgium. Palaeogeogr. Palaeoclimatol. Palaeoecol. 538: 109460. [CrossRef] [Google Scholar]
  • Verheyden S, Keppens E, Fairchild IJ, McDermott F, Weis D. 2000. Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem: implications for paleoclimate reconstructions. Chem. Geol. 169: 131–144. [CrossRef] [Google Scholar]
  • Wassenburg JA, Riechelmann S, Schröder-Ritzrau A, et al. 2020. Calcite Mg and Sr partition coefficients in cave environments: Implications for interpreting prior calcite precipitation in speleothems. Geochim. Cosmochim. Acta 269: 581–596. [CrossRef] [Google Scholar]
  • Wattez J. 1988. Contribution à la connaissance des foyers préhistoriques par l’étude des cendres. Bulletin de la Société préhistorique française 85: 352–366. [CrossRef] [Google Scholar]
  • Weissner PW. 2014. Embers of society: Firelight talk among the Ju/’hoansi Bushmen. PNAS 111: 14027–14035. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.