Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Minéralisations périgranitiques
Article Number 22
Number of page(s) 24
DOI https://doi.org/10.1051/bsgf/2020044
Published online 16 April 2021
  • Aguilar C, Liesa M, Castineiras P, Navidad M. 2013. Late Variscan metamorphic and magmatic evolution in the eastern Pyrenees revealed by U–Pb age zircon dating. Journal of the Geological Society, London 171: 181–192. [Google Scholar]
  • Aleksandrov SM, Troneva MA. 2011. Genesis and Composition of Endogenous Borates in the Skarns of the Eastern and Central Pyrenees. Geochemistry International 49(8): 802–814. https://doi.org/10.1134/S0016702911080027. [Google Scholar]
  • Auréjac JB, Gleizes G, Diot H, Bouchez JL. 2004. Le complexe granitique de Quérigut (Pyrénées, France) ré-examiné par la technique de l’ASM : un pluton syntectonique de la transpression dextre hercynienne. Bulletin de la Société Géologique de France 175: 660–661. [Google Scholar]
  • Autran A, Fonteilles M, Guitard G. 1970. Relations entre les intrusions de granitoïdes, l’anatexie et le métamorphisme régional, considérées principalement du point de vue du rôle de l’eau : cas de la chaine hercynienne des Pyrénées orientales. Bulletin de la Société Géologique de France 7(XII): 673–731. [Google Scholar]
  • Ayora C, Ribera F, Cardellach E. 1992. The genesis of the arsenopyrite gold veins from the Vall de Ribes District, eastern Pyrenees, Spain. Economic Geology and the Bulletin of the Society of Economic Geologists 87(7): 1877–1896. https://doi.org/10.2113/gsecongeo.87.7.1877. [Google Scholar]
  • Ayora C, Casas JM. 1995. Strata-bound As-Au mineralization in pre-Caradocian rocks from the Vall de Ribes, eastern Pyrenees, Spain. Mineralium Deposita 21(4): 278–287. [Google Scholar]
  • Baker EM, Andrew AS. 1991. Geologic, fluid inclusion, and stable isotope studies of the gold-bearing breccia pipe at Kidston, Queensland, Australia. Economic Geology and the Bulletin of the Society of Economic Geologists 86(4), 810–830. https://doi.org/10.2113/gsecongeo.86.4.810. [Google Scholar]
  • Bakke A, Morrel B, Odden J, Bergstron T, Woodman J. 2000. Kinross Gold USA’s activities in the Fairbanks mining district, K2K. British Columbia and Yukon Chamber of Mines, Special Volume 2: 89–98. [Google Scholar]
  • Ballouard C, Poujol M, Mercadier J, Deloule E, Boulvais P, Baele JM, et al. 2017. Uranium metallogenesis in the peraluminous leucogranites from the Pontivy-Rostrenen magmatic complex (French Armorican Hercynian Belt): the result of long term oxidizing hydrothermal alteration during strikeslip deformation. Mineralium Deposita 53: 601–628. https://doi.org/10.1007/s00126-017-0761-5. [Google Scholar]
  • Barnolas A, Chiron JC. 1996. Synthèse géologique et géophysique des Pyrénées – Volume 1 Introduction. Géophysique. Cycle hercynien, vol. 2. Editions BRGM-ITGE. [Google Scholar]
  • Bodin J, Ledru P. 1986. Nappes hercyniennes précoces à matériel dévonien hétéropique dans les Pyrénées ariégeoises. Comptes Rendus de l’Académie des Sciences 302(II): 969–974. [Google Scholar]
  • Bois JP, Pouit G. 1976. Les minéralisations de Zn (Pb) de l’anticlinorium de Pierrefitte : Un exemple de gisements hydrothermaux et sédimentaires associés au volcanisme dans le Paléozoïque des Pyrénées centrales. Bureau Rech. Geol. Min. 6: 543–567. [Google Scholar]
  • Botros NS. 2015. The role of the granite emplacement and structural setting on the genesis of gold mineralization in Egypt. Ore Geology Reviews 70: 173–187. https://doi.org/10.1016/j.oregeorev.2015.04.014. [Google Scholar]
  • Bouchez JL, Gleizes G. 1995. Two-stage deformation of the Mont-Louis-Andorra granite pluton (Variscan Pyrenees) inferred from magnetic susceptibility anisotropy. Journal of the Geological Society, London 152(4): 669–679. https://doi.org/10.1144/gsjgs.152.4.0669. [Google Scholar]
  • Boulvais P, Ruffet G, Cornichet J, Mermet M. 2007. Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrenees). Lithos 93(1-2): 89–106. https://doi.org/10.1016/j.lithos.2006.05.001. [Google Scholar]
  • Boutin A, de Saint Blanquat M, Poujol M, Boulvais P, de Parseval P, Rouleau C, et al. 2016. Succession of Permian and Mesozoic metasomatic events in the eastern Pyrenees with emphasis on the Trimouns talc-chlorite deposit. International Journal of Earth Sciences 105(3): 747–770. https://doi.org/10.1007/s00531-015-1223-x. [Google Scholar]
  • Cardellach E, Ayora C, Soler A, Delgado J, Stumpfl EF. 1992. The origin of fluids involved in the formation of gold-bearing skarns of the Andorra Granite (central Pyrenees, Spain); sulphur isotope data. Mineralogy and Petrology 45(3-4): 181–193. [Google Scholar]
  • Cardellach E, Canals A, Pujals I. 1996. La composicion isotopica del azufre y del plomo en las mineralizaciones de Zn-Pb del valle de Aran (Pirineo Central) y su significado metalogenetico. Estudios Geológicos 52: 189–195. [Google Scholar]
  • Carreras J, Capellà I. 1994. Tectonics levels in the Palaeozoic basement of the Pyrenees: a review and a new interpretation. Journal of Structural Geology 16(11): 1509–1524. [Google Scholar]
  • Cassata WS, Renne PR, Shuster DL. 2009. Argon diffusion in plagioclase and implications for thermochronometry: A case study from the Bushveld Complex, South Africa. Geochimica et Cosmochimica Acta 73(21): 6600–6612. [Google Scholar]
  • Cepedal A, Fuertes-Fuente M, Martin-Izard A, Garcia-Nieto J, Boiron M-C. 2013. An intrusion-related gold deposit (IRGD) in the NW of Spain, the Linares deposit: Igneous rocks, veins and related alterations, ore features and fluids involved. Journal of Geochemical Exploration 124: 101–126. [Google Scholar]
  • Charles N, Augier R, Gumiaux C, Monié P, Chen Y, Faure M, et al. 2013. Timing, duration and role of magmatism in wide rift systems: Insights from the Jiaodong Peninsula (China, East Asia). Gondwana Research 24(1): 412–428. [Google Scholar]
  • Ciobanu CL, Birch WD, Cook NJ, Pring A, Grundler PV. 2010. Petrogenetic significance of Au-Bi-Te-S associations: The example of Maldon, Central Victorian gold province, Australia. Lithos 116: 1–17. https://doi.org/10.1016/j.lithos.2009.12.004. [Google Scholar]
  • Cochelin B. 2016. Champ de déformation du socle paléozoïque des Pyrénées. Thèse de l’ Université Toulouse 3 Paul Sabatier. [Google Scholar]
  • Cochelin B, Lemirre B, Denèle Y, de Saint Blanquat M, Lahfid A, Duchêne S. 2018. Structural inheritance in the Central Pyrenees: the Variscan to Alpine tectonometamorphic evolution of the Axial Zone. Journal of the Geological Society, London 175: 336–351. https://doi.org/10.1144/jgs2017-066. [Google Scholar]
  • Colchen M, Ternet Y, Debroas EJ, Dommanget A, Gleizes G, Guérangé B, et al. 1997. Carte géologique de la France (1/50 000), feuille Aulus-les-Bains (1086). Orléans: Editions BRGM. [Google Scholar]
  • Coplen TB, Krouse HR. 1998. Sulphur isotope data consistency improved. Nature 392: 32. [Google Scholar]
  • Cowan EJ. 2020. Deposit-scale structural architecture of the Sigma-Lamaque gold deposit, Canada – Insights from a newly proposed 3D method for assessing structural controls from drill hole data. Mineralium Deposita 55: 217–240. [Google Scholar]
  • Cugerone A, Oliot E, Chauvet A, Gavaldà Bordes J, Laurent A, Le Goff E, et al. 2018. Structural control on the formation of Pb-Zn deposits: An example from the Pyrenean Axial Zone. Minerals 8(489): 20. https://doi.org/10.3390/min8110489. [Google Scholar]
  • Cugerone A, Cenki-Tok B, Oliot E, Munoz M, Barou F, Motto-Ros V, et al. 2020. Redistribution of germanium during dynamic recrystallization of sphalerite. Geology 48(3): 236–241. [Google Scholar]
  • Debon F, Guitard G. 1996. Carte de synthèse, métamorphisme et plutonisme hercyniens. In: Synthèse géologique et géophysique des Pyrénées, vol. 1. Éditions BRGM-ITGE. [Google Scholar]
  • Delchini S, Lahfid A, Plunder A, Michard A. 2016. Applicability of the RSCM geothermometry approach in a complex tectono-metamorphic context: The Jebilet massif case study (Variscan Belt, Morocco). Lithos 256-257: 1–12. https://doi.org/10.1016/j.lithos.2016.04.007. [Google Scholar]
  • Deloule E, Alexandrov P, Cheilletz A, Laumonier B, Barbey P. 2002. In-situ U-Pb zircon ages for Early Ordovician magmatism in the eastern Pyrenees, France; the Canigou Orthogneisses. International Journal of Earth Sciences 91(3): 398–405. https://doi.org/10.1007/s00531-001-0232-0. [Google Scholar]
  • Denèle Y, Olivier P, Gleizes G, Barbey P. 2007. The Hospitalet gneiss dome (Pyrenees) revisited: lateral flow during Variscan transpression in the middle crust. Terra Nova 19(6): 445–453. https://doi.org/10.1111/j.1365-3121.2007.00770.x. [Google Scholar]
  • Denèle Y, Olivier P, Gleizes G. 2008. Progressive deformation of a zone of magma transfer in a transpressional regime: The Variscan Mérens shear zone (Pyrenees, France). Journal of Structural Geology 30(9): 1138–1149. https://doi.org/10.1016/j.jsg.2008.05.006. [Google Scholar]
  • Denèle Y, Olivier P, Gleizes G, Barbey P. 2009a. Decoupling between the middle and upper crust during transpression-related lateral flow: Variscan evolution of the Aston gneiss dome (Pyrenees, France). Tectonophysics 477(3-4): 244–261. https://doi.org/10.1016/j.tecto.2009.04.033. [Google Scholar]
  • Denèle Y, Barbey P, Deloule E, Pelleter E, Olivier P, Gleizes G. 2009b. Middle Ordovician U-Pb age of the Aston and Hospitalet orthogneissic laccoliths: their role in the Variscan evolution of the Pyrenees. Bulletin de la Société Géologique de France 180(3): 209–216. https://doi.org/10.2113/gssgfbull.180.3.209. [Google Scholar]
  • Denèle Y, Paquette JL, Olivier P, Barbey P. 2011. Permian granites in the Pyrenees: The Aya pluton (Basque Country). Terra Nova 24(2): 105–113. https://doi.org/10.1111/j.13653121.2011.01043.x. [Google Scholar]
  • Denèle Y, Laumonier B, Paquette JL, Olivier P, Gleizes G, Barbey P. 2014. Timing of granite emplacement, crustal flow and gneiss dome formation in the Variscan segment of the Pyrenees. Geological Society of London 405: 265–287. https://doi.org/10.1144/SP405.5. [Google Scholar]
  • Derré C. 1973. Relations chronologiques entre la mise en place du granite de Salau (Haute Vallée du Salat, Pyrénées ariégeoises) et les déformations du Paléozoïque de la région. Comptes Rendus de l’Académie des Sciences 277(D): 1279–1281. [Google Scholar]
  • Derré C, Fonteilles M, Nansot YL. 1980. Le gisement de scheelite de Salau, (Ariège, Pyrénées). In: 26e CGI Gisements français, Paris, Fasc. E9, 42 p. [Google Scholar]
  • Derré C. 1982. Caractéristiques de la distribution des gisements à étain et tungstène dans l’Ouest de l’Europe. Mineralium Deposita 17: 55–77. [Google Scholar]
  • Derré C, Lafitte M, Maury R. 1984. Etude des minéralisations sulfurées du gisement de Salau, Pyrénées (France) et de ses environs. Mineralium Deposita 19: 176–182. [Google Scholar]
  • Dick LA, Hodgson CJ. 1982. The MacTung W-Cu (Zn) contact metasomatic and related deposits of the northeastern Canadian Cordillera. Economic Geology 77: 845–867. [Google Scholar]
  • Einaudi MT, Meinert LD, Newberry RJ. 1981. Skarn deposits. Economic Geology 75th Anniversary Volume: 317–391. [Google Scholar]
  • Einaudi MT, Burt DM. 1982. Introduction-terminology, classification, and composition of skarn deposits. Economic Geology 77: 745–754. [Google Scholar]
  • Evans NG, Gleizes G, Leblanc D, Bouchez JL. 1997. Hercynian tectonics in the Pyrenees: a new view based on structural observations around the Bassiès granite pluton. Journal of Structural Geology 19(2): 195–208. https://doi.org/10.1016/S0191-8141(96)00080-6. [Google Scholar]
  • Fallourd S, Poujol M, Boulvais P, Paquette J-L, de Saint Blanquat M, Remy P. 2014. Insitu LA-ICP-MS U-Pb titanite dating of Na-Ca metasomatism in orogenic belts; the North Pyrenean example. International Journal of Earth Sciences 103(3): 667–682. https://doi.org/10.1007/s00531-013-0978-1. [Google Scholar]
  • Fonteilles M, Machairas G. 1968. Eléments d’une description pétrographique et métallogénique du gisement de scheelite de Salau (Ariège) 2ème série. Bulletin BRGM 3: 62–85. [Google Scholar]
  • Fonteilles M, Nansot L, Soler P, Zahm A. 1988. Ore controls for the Salau Scheelite Deposit (Ariège, France): Evolution of ideas and present state of knowledge. Society of Geology Applied to Mineral Deposits Special Publication 6. Berlin-New York: Springer-Verlag, pp. 95–116. [Google Scholar]
  • Fonteilles M, Soler P, Demange M, Derré C, Krier-Schellen AD, Verkaeren J, et al. 1989. The scheelite skarn deposit of Salau (Ariège, French Pyrenees). Economic Geology 84: 1172–1209. [Google Scholar]
  • Fourel F, Lécuyer C, Martineau F, Seris M. 2014. Simultaneous N, C, S isotopic analyses using new purge and trap EA-IRMS technology. Rapid Communications in Mass Spectrometry 28: 2587–2594. [Google Scholar]
  • Gerbal A, Ledru P. 1985. Les indices de minéralisation à l’Est de la granodiorite de Salau : inventaire et cadre tectonométamorphique. Note technique BRGM 85-GEO-ET-57. [Google Scholar]
  • Gleizes G. 1992. Structure des granites hercyniens des Pyrénées de Mont-Louis-Andorre à la Maladeta. Thèse de 3e cycle de l’ Université Sabatier de Toulouse, France. [Google Scholar]
  • Gleizes G, Leblanc D, Bouchez JL. 1997. Variscan granites of the Pyrenees revisited: their role as syntectonic markers of the orogen. Terra Nova 9(1): 38–41. https://doi.org/10.1046/j.13653121.1997.d01-9.x. [Google Scholar]
  • Gleizes G, Leblanc D, Santana V, Olivier P, Bouchez JL. 1998a. Sigmoidal structures featuring dextral shear during emplacement of the Hercynian granite complex of Cauterets-Panticosa (Pyrenees). Journal of Structural Geology 20(9-10): 1229–1245. https://doi.org/10.1016/S0191-8141(98)00060-1. [Google Scholar]
  • Gleizes G, Leblanc D, Bouchez JL. 1998b. The main phase of the Hercynian orogeny in the Pyrenees is a dextral transpression. Geological Society of London Special Publication 135(1): 267–273. https://doi.org/10.1144/GSL.SP1998.135.01.17. [Google Scholar]
  • Gleizes G, Leblanc D, Olivier P, Bouchez J. 2001. Strain partitioning in a pluton during emplacement in transpressional regime: the example of the Néouvielle granite (Pyrenees). International Journal of Earth Sciences 90(2): 325–340. https://doi.org/10.1007/s005310000144. [Google Scholar]
  • Gleizes G, Crevon G, Asrat A, Barbey P. 2006. Structure, age and mode of emplacement of the Hercynian Bordères-Louron pluton (Central Pyrenees, France). International Journal of Earth Sciences 95(6): 1039–1052. https://doi.org/insu.bib.cnrs.fr/10.1007/s00531-006-0088-4. [Google Scholar]
  • Goldschmidt VM. 1911. Die Kontaktmetamorphose in Kristianiagebiete. Skr. Norske Vidensk. −Akad. i Oslo, Mat.-na-turv. Kl., 11., 405 p. [Google Scholar]
  • Guiraudie C, Passaqui B, Prouhe, JP. 1964. Le gisement de tungstène (scheelite) de Salau (Ariège). Rapport BRGM DRMM-64-A2. Orléans, 95 p. [Google Scholar]
  • Guy B. 1979. Pétrologie et géochimie isotopique (S, C, O) des skarns de Costabonne. Thèse Doct. Ing. École des Mines de Paris. [Google Scholar]
  • Hammarstrom JM, Zen EA. 1986. Aluminum in hornblende; an empirical igneous geobarometer. Am. Mineral. 71(11-12): 1297–1313. [Google Scholar]
  • Harlaux M, Romer RL, Mercadier J, Morlot C, Marignac C, Cuney M. 2018. 40 Ma of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U/Pb dating of wolframite. Mineralium Deposita 53(1): 21–51. [Google Scholar]
  • Harris M. 1980. Gold mineralization at the Salave gold prospect, north-west Spain: Institution of Mining and Metallurgy (London). Transactions, Applied Earth Sciences, sec. B, 89: B1–B4. [Google Scholar]
  • Harrison TM, Duncan I, McDougall I. 1985. Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta 49: 2461–2468. https://doi.org/10.1016/0016-7037(85)90246-7. [Google Scholar]
  • Harrison TM, Celerier J, Aikman AB, Hermann J, Heizler MT. 2009. Diffusion of 40Ar in muscovite. Geochimica et Cosmochimica Acta 73(4): 1039–1051. https://doi.org/10.1016/j.gca.2008.09.038. [Google Scholar]
  • Hart CJR., 2007. Reduced intrusion-related gold systems. In: Goodfellow, W.D. (Ed.) Mineral deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication 5: 95–112. [Google Scholar]
  • Hodgson CJ. 2000. Exploration Potential at Cantung Mine, District of Mackenzie, NWT. Andean Engineering. [Google Scholar]
  • Höll R, Ivanova G, Grinenko V. 1987. Sulfur isotope studies of the felbertal scheelite deposit, eastern Alps. Mineralium Deposita 22(4): 301–308. https://doi.org/10.1007/BF00204523. [Google Scholar]
  • Hollister LS, Grissom GC, Peters EK, Stowell HH, Sisson VB. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am. Mineral. 72(3-4): 231–239. [Google Scholar]
  • Ishihara S, Sasaki A. 1989. Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids of the Sierra Nevada batholith – A reconnaissance study. Geology 17: 788–791. [Google Scholar]
  • Jébrak M, Marcoux E. 2008. Géologie des ressources minérales. Ressources minérales et Faune, Québec. Bibliothèque et Archives nationales du Québec, 667 p. [Google Scholar]
  • Johnson MC, Rutherford MJ. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17(9): 837–841. [Google Scholar]
  • Jolivet M, Labaume P, Monié P, Brunel M, Arnaud N, Campani M. 2007. Thermochronology constraints for the propagation sequence of the south Pyrenean basement thrust system (France-Spain). Tectonics 26: TC5007. https://doi.org/10.1029/2006TC002080. [Google Scholar]
  • Kaelin JL. 1982. Analyse structurale du gisement de scheelite de Salau (Ariège, France). Thèse doct. Ing. ENSMP, Paris, 176 p. [Google Scholar]
  • Kesler SE, Riciputi LC, Ye Z. 2005. Evidence for a magmatic origin for Carlin-type gold deposits: isotopic composition of sulfur in the Betze-Post-Screamer Deposit, Nevada, USA. Mineralium Deposita 40: 127–136. https://doi.org/10.1007/s00126-005-0477-9. [Google Scholar]
  • Krier-Schellen AD. 1988. Etude microthermométrique des inclusions fluides des différentes paragenèses du gisement de scheelite (tungstène) de Salau (Pyrénées Ariégeoises, France). Thèse de l’ Université Catholique de Louvain, La Neuve, 131 p. [Google Scholar]
  • Lancelot JR, Sarazin G, Allègre CJ. 1971. Composition isotopique du plomb et du soufre des galènes liées aux formations sédimentaires. Interprétations géologiques et géophysiques. Contributions to Mineralogy and Petrology 32: 315–333. [Google Scholar]
  • Lang JR, Baker T. 2001. Intrusion-related gold systems. The present level of understanding. Mineralium Deposita 36: 477–489. [Google Scholar]
  • Laumonier B, Marignac C, Kister P. 2010, Polymétamorphisme et évolution crustale dans les Pyrénées orientales pendant l’orogenèse varisque au Carbonifère supérieur. Bulletin de la Société Géologique de France 181(5): 411–428. [Google Scholar]
  • Lecouffe J. 1987. Les épisodes de fracturation dans le gisement de scheelite de Salau (Ariège), Caractères géométriques et pétrologiques, relation avec la minéralisation et implications minières. Thèse doct. Ing. ENSMP, Paris, 222 p. [Google Scholar]
  • Ledru P. 1986. Perspective d’extension du gisement de scheelite de Salau (Pyrénées Ariègeoises) : Données structurales. Rapport BRGM 86-SGN-063-GEO. Orléans, 22 p. [Google Scholar]
  • Ledru P, Autran A. 1987. Relationships between fluid circulation, ore deposition and shear zones: new evidence from the Salau scheelite deposit. Economic Geology 82: 224–229. [Google Scholar]
  • Lefebvre MG, Romer RL, Glodny J, Kroner U, Roscher M. 2018. The Hämmerlein skarn-hosted polymetallic deposit and the Eibenstock granite associated greisen, western Erzgebirge, Germany: two phases of mineralization – two Sn sources. Mineralium Deposita 126: 1–22. https://doi.org/10.1007/s00126-018-0830-4. [Google Scholar]
  • Lentz CPE, McFarlane CRM, Falck H. 2015. Petrogenetic controls on gold mineralization within the Amber Zone at Cantung W mine, Northwest Territories, Canada. Atlantic Geology 51: 120–121. https://doi.org/10.4138/atlgeol.2015.005. [Google Scholar]
  • Link G, Vanderhaeghe O, Béziat D, de Saint Blanquat M, Munoz M, Estrade G, et al. 2019. Thermal peak detected in gold-bearing shear zones by a thermo-structural study: a new tool toretrieve fluid flow? In: 15th SGA Biennal Meeting on Life with Ore Deposits on Earth, Society for Geology Applied to Mineral Deposits, Aug. 2019, Glasgow, United Kingdom, pp. 260–263. [Google Scholar]
  • Maloof TL, Baker T, Thompson JFN. 2001. The Dublin Gulch intrusion-related gold deposit, Tombstone Plutonic Suite, Yukon Territory, Canada. Mineralium Deposita 36: 583–593. [Google Scholar]
  • Mao M, Rukhlov AS, Rowins SM, Spence J, Coogan LA. 2016. Apatite trace element compositions: a robust new tool for mineral exploration. Economic Geology 111: 1187–1222. [Google Scholar]
  • Marcoux E, Nerci K, Branquet Y, Ramboz C, Ruffet G, Peucat JJ, et al. 2015. Late-Hercynian intrusion-related gold deposits: an integrated model on the Tighza polymetallic district, central Morocco. Journal of African Earth Sciences 107: 65–88. https://doi.org/10.1016/j.jafrearsci.2015.01.011. [Google Scholar]
  • Massone HJ, Schreyer R. 1987. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contributions to Mineralogy and Petrology 96: 212–224. [Google Scholar]
  • Maurel O, Monié P, Pik R, Arnaud N, Brunel M, Jolivet M. 2008. The Meso-Cenozoic thermo-tectonic evolution of the Eastern Pyrenees: an 40Ar/39Ar fission track and (U-Th)/He thermochronological study of the Canigou and Mont-Louis massifs. International Journal of Earth Sciences 97: 565–584. https://doi.org/10.1007/s00531-007-0179-x. [Google Scholar]
  • McCaig A, Miller JA. 1986. 40Ar/39Ar age of mylonites along the Mérens fault, Central Pyrenees. Tectonophysics 129: 149–172. https://doi.org/10.1016/0040-1951(86)90250-7. [Google Scholar]
  • Meinert LD, Dipple GM, Nicolesku S. 2005. World skarn deposits. Economic Geology 100: 299–336. [Google Scholar]
  • Metcalf JR, Fitzgerald PG, Baldwin SL, Muñoz JA. 2009. Thermochronology of a convergent orogen: Constraints on the timing of thrust faulting and subsequent exhumation of the Maladeta Pluton in the Central Pyrenean Axial Zone. Earth and Planetary Sciences Letters 287(3-4): 488–503. https://doi.org/10.1016/j.epsl.2009.08.036. [Google Scholar]
  • Mezger J.E. 2009. Transpressional tectonic setting during the main Variscan deformation: evidence from four structural levels in the Bossòst and Aston-Hospitalet mantled gneiss domes, central Axial Zone, Pyrenees. Bulletin de la Société Géologique de France 180(3): 199–207. https://doi.org/10.2113/gssgfbull.180.3.199. [Google Scholar]
  • Mezger JE, Schnapperelle S, Rölke C. 2012. Evolution of the Central Pyrenean Mérens fault controlled by near collision of two gneiss domes. Hallesches Jahrb. Für Geowiss 34(0): 11–30. [Google Scholar]
  • Michard AG, Bouquet C. 1986. Inventaire du territoire métropolitain, recherches de tungstène dans la haute vallée du Salat (Ariège), historique et bilan des travaux à fin 1985. Rapport BRGM 86-DAM-008-OP4. Orléans, 18 p. [Google Scholar]
  • Monié P, Soliva J, Brunel M, Maluski H. 1994. Les cisaillements mylonitiques du granite de Millas (Pyrénées, France). Age Crétacé 40Ar/39Ar et interprétation tectonique. Bulletin de la Société Géologique de France 165: 559–571. [Google Scholar]
  • Monier G, Robert JL. 1986. Muscovite solid solutions in the system K2O–Mgo–FeO–Al2O3–SiO2–H2O: an experimental study at 2 kbar PH2O and comparison with natural Li-free white micas. Mineralogical Magazine 50: 257–266. [Google Scholar]
  • Mustard R. 2001. Granite-hosted gold mineralization at Timbarra, northern New South Wales, Australia. Mineralium Deposita 36(6): 542–562. [Google Scholar]
  • Mutch EJF, Blundy JD, Tattitch BC, Cooper FJ, Brooker RA. 2016. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contrib. Mineral. Petrol. 171(85). https://doi.org/10.1007/s00410-016-1298-9. [Google Scholar]
  • Olivier P, Gleizes G, Paquette JL, Muñóz Sáez C. 2008. Structure and U-Pb dating of the Saint-Arnac pluton and the Ansignan charnockite (Agly Massif): a cross-section from the upper to the middle crust of the Variscan Eastern Pyrenees. Journal of the Geological Society, London 165:141–152. [Google Scholar]
  • Olivier P, Druguet E, Castano LM, Gleizes G. 2016. Granitoid emplacement by multiple sheeting during Variscan dextral transpression; the Saint-Laurent-La Jonquera Pluton (eastern Pyrenees). Journal of Structural Geology 82: 80–92. https://doi.org/10.1016/j.jsg.2015.10.006. [Google Scholar]
  • Palau i Ramirez J, Arcos D, Delgado J, Soler A. 1995. Gold-bearing metasomatic bodies related to the Hercynian plutonism in the Marimanya area (Central Pyrenees, Spain). In: Mineral Deposits: From Their Origin to Their Environmental Impacts, pp. 493–496. [Google Scholar]
  • Palau i Ramirez J, Soler A, Solé J, Espinola MR, Delgado J. 1997. Dating of gold-bearing skarns and intragranitic mineralizations in the Central Pyrenees. A new approach to thematic mapping. In: Second Congress on Regional Geological Cartography and Information Systems, pp. 53–58. [Google Scholar]
  • Palmer EM, McFarlane CRM, Lentz DR, Falck H. 2013. Gold in the Cantung W skarn deposit, Northwest Territories: distribution, mineralogy, and paragenesis. Atlantic Geology 49: 174–175. [Google Scholar]
  • Passaqui B, Costargent R. 1965. Gisement de scheelite de Salau (Ariège), résultats de la campagne 1964. Rapport BRGM DRMM-65-A6. Orléans, 13 p. [Google Scholar]
  • Paquette J-L, Gleizes G, Leblanc D, Bouchez JL. 1997. Le granite de Bassiès (Pyrénées) : un pluton syntectonique d’âge Westphalien. Géochronologie U-Pb sur zircons. Comptes Rendus de l’Académie des Sciences 324(IIa): 387–392. [Google Scholar]
  • Poitrenaud T. 2018. Le gisement périgranitique à tungstène et or de Salau (Pyrénées, France), histoire polyphasée d’un système minéralisé tardi-varisque. Thèse de l’ Université d’Orléans, 490 p. [Google Scholar]
  • Poitrenaud T, Poujol M, Augier R, Marcoux E. 2019. The polyphase evolution of a late Variscan W/Au deposit (Salau, French Pyrenees): insights from REE and U/Pb LA-ICP-MS analyses. Mineralium Deposita. https://doi.org/10.1007/s00126-019-00923-2. [Google Scholar]
  • Pouit G. 1984. Les gisements à sulfures massifs exhalatifs-sédimentaires : une mise au point sur leur classification et la méthodologie de leur recherche. Chronique de la Recherche Minière 476: 31–34. [Google Scholar]
  • Poujol M, Boulvais P, Kosler J. 2010. Regional-scale Cretaceous albitization in the Pyrenees; evidence from in situ U-Th-Pb dating of monazite, titanite and zircon. Journal of the Geological Society, London 167(4): 751–767. https://doi.org/10.1144/0016-76492009-144. [Google Scholar]
  • Prouhet JP, Guiraudie C, Passaqui B, Costargent R. 1966. Gisement de scheelite de Salau (Ariège), résultats en fin de campagne 1965. Rapport BRGM DRMM-66-A5. Orléans, 44 p. [Google Scholar]
  • Pura A, Canet C, Melgarejo JC, Fallick AE. 2002. Sulphur isotope composition of Silurian shale-hosted PGE-Ag-Au-Zn-Cu mineralisations of the Prades Mountains (Catalonia, Spain). Mineralium Deposita 37(2): 198–212. https://doi.org/10.1007/s00126-001-0217-8. [Google Scholar]
  • Raimbault L. 1981. Pétrographie et géochimie des roches du massif granodioritique de Salau (Pyrénées). Rapport de l’ École des Mines de Saint-Etienne, 85 p. [Google Scholar]
  • Raju PVS, Hart CJR, Sangurmath P. 2015. Scheelite geochemical signatures by LA-ICP-MS and potential for rare earth elements from Hutti Gold Mines and fingerprinting ore deposits. Journal of African Earth Sciences 114: 220–227. [Google Scholar]
  • Rasmussen KL. 2004. The aplitic dykes of the Cantung Mine, NWT: Petrology, geochemistry, and implications for the mineralization process. Unpublished B.Sc. Thesis, Department of Geology and Geophysics, The University of Calgary, Calgary, Alberta, Canada. [Google Scholar]
  • Rasmussen KL, Lentz DR, Falck H, Pattison DRM. 2011. Felsic magmatic phases and the role of late-stage aplitic dikes in the formation of the world class Cantung tungsten skarn deposit, Northwest Territories, Canada. Ore Geology Reviews 41: 75–111. [Google Scholar]
  • Roberts MP, Pin C, Clemens JD, Paquette J-L. 2000. Petrogenesis of mafic to felsic plutonic rock associations: the calc-alkaline Quérigut Complex, French Pyrenees. Journal of Petrology 41(6): 809–844. https://doi.org/10.1093/petrology/41.6.809. [Google Scholar]
  • Romer RL, Soler A. 1995. U-Pb age and lead isotopic characterization of Au-bearing skarn related to Andorra granite (Pyrenees, Spain). Mineralium Deposita 30: 374–383. [Google Scholar]
  • Rye RO, Ohmoto H. 1974. Sulfur and carbon isotopes and ore genesis: A review. Economic Geology 69: 826–842. [Google Scholar]
  • Schmidt MW. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol. 110(2-3): 304–310. [Google Scholar]
  • Seal RR. 2006. Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry 61: 633–677. [Google Scholar]
  • Sharman ER, Bruce T, Minarik W, Dubé B, Boswell AW. 2014. Sulfur isotope and trace element data from ore sulfides in the Noranda district (Abitibi, Canada): implications for volcanogenic massive sulfide deposit genesis. Mineralium Deposita 50: 591–606. https://doi.org/10.1007/s00126-014-0559-7. [Google Scholar]
  • Sitter de LU, Zwart HJ. 1960. Tectonic development in supra and infra-structures of a mountain chain. In: Proc. 21st International Congress of Copenhagen 18: 248–256. [Google Scholar]
  • Soler P. 1977. Pétrographie, thermochimie et métallogénie du gisement de scheelite de Salau (Pyrénées ariègeoises, France). Thèse doct. Ing. ENSMP, Paris, 270 p. [Google Scholar]
  • Soler A. 1990. Geologia i metallogenia de la terminacio sud del granit d’Andorra (Pirineu Central). Tesis doctoral, Universitat de Barcelona, 886 p. [Google Scholar]
  • Soler A, Ayora C, Cardellach E, Delgado J. 1990. Gold-bearing hedenbergite skarns from the SW contact of the Andorra Granite (central Pyrenees, Spain). Mineralium Deposita 25: 59–68. [Google Scholar]
  • Soloviev SG, Kryazhev SG, Dvurechenskaya SS. 2017a. Geology, mineralization, and fluid inclusion characteristics of the Lermontovskoe reduced-type tungsten (± Cu, Au, Bi) skarn deposit, Sikhote-Alin, Russia. Ore Geology Reviews 89: 15–39. https://doi.org/10.1016/j.oregeorev.2017.06.002. [Google Scholar]
  • Soloviev SG, Kryazhev SG, Dvurechenskaya SS. 2017b. Geology, mineralization, stable isotope, and fluid inclusion characteristics of the Vostok-2 reduced W-Cu skarn and Au-W-Bi-As stockwork deposit, Sikhote-Alin, Russia. Ore Geology Reviews 86: 338–365. https://doi.org/10.1016/j.oregeorev.2017.02.029. [Google Scholar]
  • Soloviev SG, Kryazhev SG. 2017c. Geology, mineralization, and fluid inclusion characteristics of the Skrytoe reduced-type W skarn and stockwork deposit, Sikhote-Alin, Russia. Mineralium Deposita 52: 903–928. https://doi.org/10.1007/s00126-016-0705-1. [Google Scholar]
  • Tanner D, Henley RW, Mavrogenes JA, Holden P. 2016. Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au-Cu-Ag deposit, Chile. Contributions to Mineralogy and Petrology 171(4): 1–17. [Google Scholar]
  • Thomas W, Ernst WG. 1990. The aluminum content of hornblende in calc-alkaline granitic rocks; a mineralogic barometer calibrated experimentally to 12 kbars. In: Spencer RJ, Chou IM, (eds). Fluid–Mineral Interactions: A Tribute to H.P. Eugster. Geochem. Soc. Spec. Publ. 2: 59–63. [Google Scholar]
  • Thompson JFG, Sillitoe RH, Baker T, Lang JR, Mortensen JK. 1999. Intrusion related gold deposits associated with tungsten-tin provinces. Mineralium Deposita 34: 323–344. [Google Scholar]
  • Thompson JFH, Newberry RJ. 2000. Gold deposits related to reduced granitic intrusions. Reviews in Economic Geology 13: 377–400. [Google Scholar]
  • Toulhoat P. 1982. Pétrographie et géochimie des isotopes stables (D/H, 18O/16O, 13C/12C, 34S/32S) des skarns du Quérigut. Comparaison avec les skarns à scheelite des Pyrénées. Thèse d’ Université Paris VI. [Google Scholar]
  • Uchida E, Endo S, Makino M. 2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology 57(1): 47–56. [Google Scholar]
  • Van den Eeckhout B, de Bresser H. 2014. On the dextral offset of a Variscan shear zone across the Mérens fault in the central Pyrenees (Andorra, France). Bulletin de la Société Géologique de France 185(2): 131–143. https://doi.org/10.2113/gssgfbull.185.2.131. [Google Scholar]
  • Velde B. 1965. Phengitic micas: synthesis, stability and natural occurrence. American Journal of Science 263: 886–913. [Google Scholar]
  • Villa IM. 1998. Isotopic closure. Terra Nova 10: 42–47. [Google Scholar]
  • Vissers RLM, van Hinsbergen DJJ, Wilkinson CM, Ganerød M. 2017. Middle Jurassic shear zones at Cap de Creus (eastern Pyrenees, Spain): a record of pre-drift extension of the Piemonte-Ligurian Ocean? Journal of the Geological Society, London 174: 289–300. https://doi.org/10.1144/jgs2016-014. [Google Scholar]
  • Wayne DM, McCaig AM. 1998. Dating fluid flow in shear zones: Rb–Sr and U–Pb studies of syntectonic veins in the Néouvielle Massif, Pyrenees. In: Parnell J, ed. Dating and Duration of Fluid Flow and Fluid–Rock Interaction. Geological Society of London, Special Publications 144: 129–135. https://doi.org/10.1144/GSL.SP.1998.144.01.09. [Google Scholar]
  • Yang XM, Lentz DR. 2010. Sulfur isotopic systematics of granitoids from southwestern New Brunswick, Canada; implications for magmatic-hydrothermal processes, redox conditions, and gold mineralization. Mineralium Deposita 45: 795–816. https://doi.org/10.1007/s00126-010-0307-6. [Google Scholar]
  • Zahm A. 1987. Pétrographie, minéralogie et géochimie des cornéennes calciques et des skarns dans le gisement de scheelite de Salau (Ariège, France). Thèse d’ Université Paris VI, 384 p. [Google Scholar]
  • Zhang W, Williams-Jones AE, Leng CB, Zhang XC, Chen WT, Qin CJ, et al. 2019. The origin of CH4-rich fluids in reduced porphyry-skarn Cu-Mo-Au systems. Ore Geology Reviews 114: 103–135. https://doi.org/10.1016/j.oregeorev.2019.103135. [Google Scholar]
  • Zwart HJ. 1979. The geology of the Central Pyrenees. Leidse Geol. Meded. 50: 1–74. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.