Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Article Number 35
Number of page(s) 27
DOI https://doi.org/10.1051/bsgf/2021027
Published online 05 August 2021
  • Azmy K, Brand U, Sylvester P, Gleeson SA, Logan A, Bitner MA. 2011. Biogenic and abiogenic low-Mg calcite (bLMC and aLMC): Evaluation of seawater-REE composition, water masses and carbonate diagenesis. Chemical Geology 280: 180–190. [Google Scholar]
  • Baatartsogt B, Schwinn G, Wagner T, Taubald H, Beitter T, Markl G. 2007. Contrasting paleofluid systems in the continental basement: A fluid inclusion and stable isotope study of hydrothermal vein mineralisation, Schwarzwald district, Germany. Geofluids 7: 123–147. [Google Scholar]
  • Bächler D, Kohl T, Rybach L. 2003. Impact of graben-parallel faults on hydrothermal convection-Rhine Graben case study. Physics and Chemistry of the Earth 28: 431–441. [Google Scholar]
  • Baillieux P, Schill E, Edel J-B, Mauri G. 2013. Localization of temperature anomalies in the Upper Rhine Graben: Insights from geophysics and neotectonic activity. International Geology Review 55: 1744–1762. [Google Scholar]
  • Bau M, Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research 79: 37–55. [Google Scholar]
  • Bau M, Romer RL, Lüders V, Dulski P. 2003. Tracing element sources of hydrothermal mineral deposits: REE and Y distribution and Sr–Nd–Pb isotopes in fluorite from MVT deposits in the Pennine Orefield, England. Mineralium Deposita 38: 992–1008. [Google Scholar]
  • Bense VF, Gleeson T, Loveless SE, Bour O, Scibek J. 2013. Fault zone hydrogeology. Earth-Science Reviews. Elsevier B.V. 127: 171–192. [Google Scholar]
  • Bertrand L, Jusseaume J, Géraud Y, Diraison M, Damy PC, Navelot V, et al. 2018. Structural heritage, reactivation and distribution of fault and fracture network in a rifting context: Case study of the western shoulder of the Upper Rhine Graben. Journal of Structural Geology, Elsevier Ltd 108: 243–255. [Google Scholar]
  • Blaise T, Clauer N, Cathelineau M, Boiron M-CC, Techer I, Boulvais P. 2016. Reconstructing fluid-flow events in Lower-Triassic sandstones of the eastern Paris Basin by elemental tracing and isotopic dating of nanometric illite crystals. Geochimica et Cosmochimica Acta, Elsevier Ltd 176: 157–184. [Google Scholar]
  • Böcker J, Littke R, Forster A. 2016. An overview on source rocks and the petroleum system of the central Upper Rhine Graben. International Journal of Earth Sciences, Springer Berlin Heidelberg. [Google Scholar]
  • Boiron MC, Cathelineau M, Richard A. 2011. Fluid Flows and Metal Deposition near Basement/Cover Unconformity: Lessons and Analogies from Pb–Zn–F–Ba Systems for the Understanding of Proterozoic U Deposits. Frontiers in Geofluids 10: 270–292. [Google Scholar]
  • Bons PD, Fusswinkel T, Gomez-Rivas E, Markl G, Wagner T, Walter B. 2014. Fluid mixing from below in unconformity-related hydrothermal ore deposits. Geology 42: 1035–1038. [Google Scholar]
  • Bons PD, Gomez-Rivas E. 2013. Gravitational fractionation of isotopes and dissolved components as a first-order process in crustal fluids. Economic Geology 108: 1195–1201. [Google Scholar]
  • Boschetti T. 2013. Oxygen isotope equilibrium in sulfate–water systems: A revision of geothermometric applications in low-enthalpy systems. Journal of Geochemical Exploration, Elsevier B.V. 124: 92–100. [Google Scholar]
  • Boschetti T, Cortecci G, Toscani L, Iacumin P. 2011. Sulfur and oxygen isotope compositions of Upper Triassic sulfates from northern Apennines (Italy): Paleogeographic and hydrogeochemical implications. Geologica Acta 9: 129–147. [Google Scholar]
  • Bossennec C, Geraud Y, Moretti I, Mattioni L, Stemmelen D. 2018. Pore network properties of sandstones in a fault damage zone. Journal of Structural Geology, Pergamon 110: 24–44. [Google Scholar]
  • Bouch JE, Naden J, Shepherd TJ, McKervey JA, Young B, Benham AJ, et al. 2006. Direct evidence of fluid mixing in the formation of stratabound Pb–Zn–Ba–F mineralisation in the Alston Block, North Pennine Orefield (England). Mineralium Deposita 41: 821–835. [Google Scholar]
  • Bourgeois O, Ford M, Diraison M, Le Carlier de Veslud C, Gerbault M, Pik R, et al. 2007. Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland. International Journal of Earth Sciences 96: 1003–1031. [Google Scholar]
  • Bourquin S, Peron S, Durand M. 2006. Lower Triassic sequence stratigraphy of the western part of the Germanic Basin (west of Black Forest): Fluvial system evolution through time and space. Sedimentary Geology 186: 187–211. [Google Scholar]
  • Bourquin S, Guillocheau F, Péron S. 2009. Braided rivers within an arid alluvial plain (example from the lower triassic, western german basin): Recognition criteria and expression of stratigraphic cycles. Sedimentology 56: 2235–2264. [Google Scholar]
  • Brockamp O, Clauer N. 2005. A km-scale illite alteration zone in sedimentary wall rocks adjacent to a hydrothermal fluorite vein deposit. Clay Minerals 40: 245–260. [Google Scholar]
  • Brockamp O, Schlegel A, Clauer N. 2011. Mesozoic hydrothermal impact on Rotliegende and Bunter immature sandstones of the High Rhine trough and its adjacent eastern area (southern Black Forest, Germany. Sedimentary Geology, Elsevier B.V. 234: 76–88. [Google Scholar]
  • Burisch M, Gerdes A, Walter BF, Neumann U, Fettel M, Markl G. 2017a. Methane and the origin of five-element veins: Mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany. Ore Geology Reviews, Elsevier B.V. 81: 42–61. [Google Scholar]
  • Burisch M, Walter BF, Gerdes A, Lanz M, Markl G. 2017b. Late-stage anhydrite–gypsum–siderite–dolomite–calcite assemblages record the transition from a deep to a shallow hydrothermal system in the Schwarzwald mining district, SW Germany. Geochimica et Cosmochimica Acta, Elsevier Ltd 223: 259–278. [Google Scholar]
  • Caetano M, Prego R, Vale C, de Pablo H, Marmolejo-Rodríguez J. 2009. Record of diagenesis of rare earth elements and other metals in a transitional sedimentary environment. Marine Chemistry, Elsevier B.V. 116: 36–46. [Google Scholar]
  • Carpentier C, Brigaud B, Blaise T, Vincent B, Durlet C, Boulvais P, et al. 2014. Impact of basin burial and exhumation on Jurassic carbonates diagenesis on both sides of a thick clay barrier (Paris Basin, NE France. Marine and Petroleum Geology, Elsevier Ltd 53: 44–70. [Google Scholar]
  • Cathelineau M, Boiron M-C. 2010. Downward penetration and mixing of sedimentary brines and dilute hot waters at 5 km depth in the granite basement at Soultz-sous-Forêts (Rhine graben, France. Comptes Rendus Geoscience. Academie des sciences 342: 560–565. [Google Scholar]
  • Cathelineau M, Fourcade S, Clauer N, Buschaert S, Rousset D, Boiron M-CC, et al. 2004. Dating multistage paleofluid percolations: A K–Ar and 18O/16O study of fracture illites from altered Hercynian plutonites at the basement/cover interface (Poitou High, France. Geochimica et Cosmochimica Acta 68: 2529–2542. [Google Scholar]
  • Cathelineau M, Boiron M-CC, Fourcade S, Ruffet G, Clauer N, Belcourt O, et al. 2012. A major Late Jurassic fluid event at the basin/basement unconformity in western France: 40Ar/39Ar and K–Ar dating, fluid chemistry, and related geodynamic context. Chemical Geology, Elsevier B.V. 322-323: 99–120. [Google Scholar]
  • Clauer N, Liewig N, Ledesert B, Zwingmann H. 2008. Thermal history of Triassic sandstones from the Vosges Mountains-Rhine Graben rifting area, NE France, based on K–Ar illite dating. Clay Minerals 43: 363–379. [Google Scholar]
  • Cloetingh S, Ziegler PA, Beekman F, Andriessen PAM, Hardebol N, Dèzes P. 2005. Intraplate deformation and 3D rheological structure of the Rhine Rift System and adjacent areas of the northern Alpine foreland. International Journal of Earth Sciences 94: 758–778. [Google Scholar]
  • Cloetingh S, Cornu T, Ziegler PA, Beekman F, Ustaszewski K, Schmid SM, et al. 2006. Neotectonics and intraplate continental topography of the northern Alpine Foreland. Earth-Science Reviews 74: 127–196. [Google Scholar]
  • Cloetingh S, van Wees JD, Ziegler PA, Lenkey L, Beekman F, Tesauro M, et al. 2010. Lithosphere tectonics and thermo-mechanical properties: An integrated modelling approach for Enhanced Geothermal Systems exploration in Europe. Earth-Science Reviews, Elsevier B.V. 102: 159–206. [Google Scholar]
  • Danišík M, Pfaff K, Evans NJ, Manoloukos C, Staude S, McDonald BJ, et al. 2010. Tectonothermal history of the Schwarzwald Ore District (Germany): An apatite triple dating approach. Chemical Geology 278: 58–69. [Google Scholar]
  • Derer CE, Schumacher ME, Schäfer A. 2005. The northern Upper Rhine Graben: basin geometry and early syn-rift tectono-sedimentary evolution. International Journal of Earth Sciences 94: 640–656. [Google Scholar]
  • Dezayes C, Lerouge C. 2019. Reconstructing Paleofluid Circulation at the Hercynian Basement/Mesozoic Sedimentary Cover Interface in the Upper Rhine Graben. Geofluids 2019: 1–30. [Google Scholar]
  • Dezayes C, Lerouge C, Sanjuan B, Ramboz C, Brach M. 2015. Toward a better understanding of the fluid circulation in the Rhine Graben for a better geothermal exploration of the deep basins. In: Proceedings World Geothermal Congress 2015, pp. 19–25. [Google Scholar]
  • Dolníček Z, Lehotský T, Slobodník M, Hejtmánková E, Grígelová A, Zapletal J. 2014. Mineral-forming and diagenetic processes related to tertiary hydrocarbon seepage at the bohemian massif/outer western carpathians interface: Evidence from the hrab??vka quarry, moravia, czech republic. Marine and Petroleum Geology 52: 77–92. [Google Scholar]
  • Dubois M, Ledésert B, Potdevin J-L, Vançon S. 2000. Détermination des conditions de précipitation des carbonates dans une zone d’altération du granite de Soultz (soubassement du fossé Rhénan, France) : l’enregistrement des inclusions fluides. Comptes Rendus de l’Académie des Sciences – Series IIA – Earth and Planetary Science 331: 303–309. [Google Scholar]
  • Dubois M, Ougougdal MA, Meere P, Royer JJ, Boiron MC, Cathelineau M. 1996. Temperature of paleo- to modern self-sealing within a continental rift basin: The fluid inclusion data (Soultz-sous-Forets, Rhine graben, France). European Journal Of Mineralogy 8: 1065–1080. [Google Scholar]
  • Edel J-B, Schulmann K, Rotstein Y. 2007. The Variscan tectonic inheritance of the Upper Rhine Graben: evidence of reactivations in the Lias, Late Eocene–Oligocene up to the recent. International Journal of Earth Sciences 96: 305–325. [Google Scholar]
  • Eisbacher GH, Fielitz W. 2010. Karlsruhe und seine Region – Nordschwarzwald, Kraichgau, Neckartal, südlicher Odenwald, Oberrhein-Graben, Pfälzerwald und westliche Schwäbische Alb. Stuttgart, Germany: Schweizerbart Science Publishers. [Google Scholar]
  • Freymark J, Sippel J, Scheck-Wenderoth M, Bär K, Stiller M, Fritsche JG, et al. 2017. The deep thermal field of the Upper Rhine Graben. Tectonophysics, Elsevier B.V. 694: 114–129. [Google Scholar]
  • Freymark J, Bott J, Cacace M, Ziegler M, Scheck-wenderoth M. 2019. Influence of the main border faults on the 3D hydraulic field of the Central Upper Rhine Graben. Geofluids 2019: 19–22. [Google Scholar]
  • Genter A, Evans K, Cuenot N, Fritsch D, Sanjuan B. 2010. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS). Comptes Rendus – Geoscience. Academie des sciences 342: 502–516. [Google Scholar]
  • Gleeson SA, Wilkinson JJ, Stuart FM, Banks DA. 2001. The origin and evolution of base metal mineralising brines and hydrothermal fluids, South Cornwall, UK. Geochimica et Cosmochimica Acta 65: 2067–2079. [Google Scholar]
  • Göb S, Loges A, Nolde N, Bau M, Jacob DE, Markl G. 2013. Major and trace element compositions (including REE) of mineral, thermal, mine and surface waters in SW Germany and implications for water-rock interaction. Applied Geochemistry, Elsevier Ltd 33: 127–152. [Google Scholar]
  • Griffiths L, Heap MJ, Wang F, Daval D, Gilg HA, Baud P, et al. 2016. Geothermal implications for fracture-filling hydrothermal precipitation. Geothermics. CNR-Istituto di Geoscienze e Georisorse 64: 235–245. [Google Scholar]
  • Guillocheau F, Robin C, Allemand P, Bourquin S, Brault N, Dromart G, et al. 2000. Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints. Geodinamica Acta 13: 189–245. [EDP Sciences] [Google Scholar]
  • Guillou-Frottier L, Carre C, Bourgine B, Bouchot V, Genter A. 2013. Structure of hydrothermal convection in the Upper Rhine Graben as inferred from corrected temperature data and basin-scale numerical models. Journal of Volcanology and Geothermal Research 256: 29–49. [Google Scholar]
  • Haffen S. 2012. Caractéristiques géothermiques du réservoir gréseux du Buntsandstein d’Alsace. University of Strasbourg. [Google Scholar]
  • Haley BA, Klinkhammer GP, McManus J. 2004. Rare earth elements in pore waters of marine sediments. Geochimica et Cosmochimica Acta 68: 1265–1279. [Google Scholar]
  • Harlé P, Kushnir Alexandra RL, Aichholzer C, Heap Michael J, Hehn R, Maurer V, et al. 2019. Heat flow density estimates in the Upper Rhine Graben using laboratory measurements of thermal conductivity on sedimentary rocks. Geothermal Energy. Springer Berlin Heidelberg. [Google Scholar]
  • Illies JH. 1972. The Rhine Graben rift system – Plate tectonics and transform faulting. Geophysical Surveys 1: 27–60. [Google Scholar]
  • Joosu L, Lepland A, Kreitsmann T, Üpraus K, Roberts NMW, Paiste P, et al. 2016. Petrography and the REE-composition of apatite in the Paleoproterozoic Pilgujärvi Sedimentary Formation, Pechenga Greenstone Belt, Russia. Geochimica et Cosmochimica Acta 186: 135–153. [Google Scholar]
  • Kristensen TB, Rotevatn A, Peacock DCP, Henstra GA, Midtkandal I, Grundvåg SA. 2016. Structure and flow properties of syn-rift border faults: The interplay between fault damage and fault-related chemical alteration (Dombjerg Fault, Wollaston Forland, NE Greenland. Journal of Structural Geology, Elsevier Ltd 92: 99–115. [Google Scholar]
  • Kusakabe M, Robinson BW. 1977. Oxygen and sulfur isotope equilibria in the BaSO4HSO4\n-H2O system from 110 to 350 °C and applications. Geochimica et Cosmochimica Acta 41: 1033–1040. [Google Scholar]
  • Kushnir ARL, Heap MJ, Baud P, Gilg HA, Reuschlé T, Lerouge C, et al. 2018. Characterising the physical properties of rocks from the Paleozoic to Permo-Triassic transition in the Upper Rhine Graben. Geothermal Energy, Springer Berlin Heidelberg, 6 p. [Google Scholar]
  • Lampe C, Person M, Nöth S, Ricken W. 2001. Episodic fluid flow within continental rift basins: Some insights from field data and mathematical models of the Rhinegraben. Geofluids 1: 42–52. [Google Scholar]
  • Loges A, Wagner T, Kirnbauer T, Göb S, Bau M, Berner Z, et al. 2012. Source and origin of active and fossil thermal spring systems, northern Upper Rhine Graben, Germany. Applied Geochemistry, Elsevier Ltd 27: 1153–1169. [Google Scholar]
  • Lopes Cardozo GGO, Behrmann JH. 2006. Kinematic analysis of the Upper Rhine Graben boundary fault system. Journal of Structural Geology 28: 1028–1039. [Google Scholar]
  • Lucazeau F, Vasseur G. 1989. Heat flow density data from France and surrounding margins. Tectonophysics 164: 251–258. [Google Scholar]
  • Lutz H, Kaulfuss U, Wappler T, Löhnertz W, Wilde V, Mertz DF, et al. 2010. Eckfeld Maar: Window into an Eocene Terrestrial Habitat in Central Europe. Acta Geologica Sinica – English Edition 84: 984–1009. [Google Scholar]
  • Lutz H, Lorenz V, Engel T, Häfner F, Haneke J. 2013. Paleogene phreatomagmatic volcanism on the western main fault of the northern Upper Rhine Graben (Kisselwörth diatreme and Nierstein-Astheim Volcanic System, Germany. Bulletin of Volcanology 75: 1–11. [Google Scholar]
  • Majzlan J, Brey-Funke M, Malz A, Donndorf S, Milovský R. 2016. Fluid evolution and mineralogy of Mn–Fe–barite–fluorite mineralisations at the contact of the Thuringian Basin, Thüringer Wald and Thüringer Schiefergebirge in Germany. Geologica Carpathica 67: 3–20. [Google Scholar]
  • McConnell D. 1973. Apatite – Its crystal chemistry, mineralogy, utilization, and geologic and biologic occurrences. Applied Mineralogy, 48–80. [Google Scholar]
  • McKinley JM, Atkinson PM, Lloyd CD, Ruffell AH, Worden RH. 2011. How porosity and permeability vary spatially with grain size, sorting, cement volume, and mineral dissolution in fluvial Triassic sandstones: the value of geostatistics and local regression. Journal of Sedimentary Research 81: 844–858. [Google Scholar]
  • Meixner J, Grimmer JC, Becker A, Schill E, Kohl T. 2018. Comparison of different digital elevation models and satellite imagery for lineament analysis: Implications for identification and spatial arrangement of fault zones in crystalline basement rocks of the southern Black Forest (Germany. Journal of Structural Geology, Elsevier Ltd 108: 256–268. [Google Scholar]
  • Olivarius M, Weibel R, Hjuler ML, Kristensen L, Mathiesen A, Nielsen LH, et al. 2015. Diagenetic effects on porosity – Permeability relationships in red beds of the Lower Triassic Bunter Sandstone Formation in the North German Basin. Sedimentary Geology, Elsevier B.V. 321: 139–153. [Google Scholar]
  • Paradis S, Hannigan P, Dewing K. 2007. Mineral Deposits of Canada Mississippi Valley-type Lead-Zinc deposits (MVT). [Google Scholar]
  • Person M, Garven G. 1992. Hydrologic constraints on petroleum generation within continental rift basins: theory and application to the Rhine Graben. American Association of Petroleum Geologists Bulletin 76: 468–488. [Google Scholar]
  • Pfaff K, Hildebrandt LH, Leach DL, Jacob DE, Markl G. 2010. Formation of the Wiesloch Mississippi Valley-type Zn–Pb–Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany. Mineralium Deposita 45: 647–666. [Google Scholar]
  • Pourmand A, Dauphas N, Ireland TJ. 2012. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chemical Geology, Elsevier B.V. 291: 38–54. [Google Scholar]
  • Pribnow D, Schellschmidt R. 2000. Thermal tracking of upper crustal fluid flow in the Rhine Graben. Geophysical Research Letters 27: 1957–1960. [Google Scholar]
  • Ranalli G, Rybach L. 2005. Heat flow, heat transfer and lithosphere rheology in geothermal areas: Features and examples. Journal of Volcanology and Geothermal Research 148: 3–19. [Google Scholar]
  • Reicherter K, Froitzheim N, Jarosiński M, Badura J, Franzke H-J, Hansen M, et al. 2008. Alpine tectonics north of the Alps. Geology of Central Europe 2: 1233–1285. [Google Scholar]
  • Rotstein Y, Schaming M, Rousse S. 2005. Tertiary tectonics of the Dannemarie basin, upper Rhine graben, and regional implications. International Journal of Earth Sciences 94: 669–679. [Google Scholar]
  • Roussé S. 2006. Architecture et dynamique des séries marines et continentales de l’Oligocène Moyen et Supérieur du Sud du Fossé Rhénan : évolution des milieux de dépôt en contexte de rift en marge de l’avant-pays alpin. PhD Thesis, University Louis Pasteur of Strasbourg. [Google Scholar]
  • Sanjuan B, Millot R, Dezayes C, Brach M. 2010. Main characteristics of the deep geothermal brine (5 km) at Soultz-sous-Forêts (France) determined using geochemical and tracer test data. Comptes Rendus Geoscience. Academie des sciences 342: 546–559. [Google Scholar]
  • Sanjuan B, Millot R, Dezayes C, Brach M, Sanjuan B, Millot R, et al. 2013. Fluid origin and circulation in the heat exchanger of ETS ( France) estimated using geochemical and tracer test data. To cite this version. [Google Scholar]
  • Sanjuan B, Millot R, Innocent C, Dezayes C, Scheiber J, Brach M. 2016. Major geochemical characteristics of geothermal brines from the Upper Rhine Graben granitic basement with constraints on temperature and circulation. Chemical Geology, Elsevier B.V. 428: 27–47. [Google Scholar]
  • Schleicher AM, Warr LN, Kober B, Laverret E, Clauer N. 2006a. Episodic mineralisation of hydrothermal illite in the Soultz-sous-Forêts granite (Upper Rhine Graben, France). Contributions to Mineralogy and Petrology 152: 349–364. [Google Scholar]
  • Schleicher AM, Warr LN, Van der Pluijm BA. 2006b. Fluid focusing and back-reactions in the uplifted shoulder of the Rhine rift system: A clay mineral study along the Schauenburg Fault zone (Heidelberg, Germany. International Journal of Earth Sciences 95: 19–33. [Google Scholar]
  • Schumacher ME. 2002. Upper Rhine Graben: Role of preexisting structures during rift evolution. Tectonics 21. [Google Scholar]
  • Schwinn G, Wagner T, Baatartsogt B, Markl G. 2006. Quantification of mixing processes in ore-forming hydrothermal systems by combination of stable isotope and fluid inclusion analyses. Geochimica et Cosmochimica Acta 70: 965–982. [Google Scholar]
  • Shields G, Stille P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chemical Geology 175: 29–48. [Google Scholar]
  • Sissingh W. 1998. Comparative tertiary stratigraphy of the Rhine Graben, Bresse Graben and Molasse Basin: Correlation of Alpine foreland events. Tectonophysics 300: 249–284. [Google Scholar]
  • Sizun J-P. 1995. Modifications des structures de porosité de grès lors de transformations pétrographiques dans la diagenèse et l’hydrothermalisme : application au Trias de la marge ardéchoise et du fossé rhénan. Université Louis Pasteur de Strasbourg. [Google Scholar]
  • Skrzypek E. 2011. Contribution structurale, pétrologique et géochronologique à la tectonique intracontinentale de la chaîne hercynienne d’Europe (Sudètes, Vosges). Unpublished PhD. Thesis, Université de Strasbourg, 380 p. [Google Scholar]
  • Smith MP, Savary V, Yardley BWD, Valley JW, Royer JJ, Dubois M. 1998. The evolution of the deep flow regime at Soultz-sous-Forêts, Rhine Graben, eastern France: Evidence from a composite quartz vein. J. Geophys. Res. 103: 27223–27237. [Google Scholar]
  • Soyk D. 2015. Diagenesis and reservoir quality of the Lower and Middle Buntsandstein (Lower Triassic), SW Germany. Ruprecht-Karls-Universität Heidelberg. [Google Scholar]
  • Staude S, Bons PD, Markl G. 2009. Hydrothermal vein formation by extension-driven dewatering of the middle crust: An example from SW Germany. Earth and Planetary Science Letters, Elsevier B.V. 286: 387–395. [Google Scholar]
  • Staude S, Göb S, Pfaff K, Ströbele F, Premo WR, Markl G. 2011. Deciphering fluid sources of hydrothermal systems: A combined Sr- and S-isotope study on barite (Schwarzwald, SW Germany. Chemical Geology, Elsevier B.V. 286: 1–20. [Google Scholar]
  • Staude S, Mordhorst T, Nau S, Pfaff K, Brügmann G, Jacob DE, et al. 2012. Hydrothermal carbonates of the Schwarzwald ore district, southwestern Germany: Carbon source and conditions of formation using delta18O, delta13C, 87Sr/86Sr, and fluid inclusions. The Canadian Mineralogist 50: 1401–1434. [Google Scholar]
  • Stober I, Bucher K. 2004. Fluid sinks within the earth’s crust. Geofluids 4: 143–151. [Google Scholar]
  • Taillefer A, Guillou-Frottier L, Soliva R, Magri F, Lopez S, Courrioux G, et al. 2018. Topographic and Faults Control of Hydrothermal Circulation Along Dormant Faults in an Orogen. Geochemistry, Geophysics, Geosystems 19: 4972–4995. [Google Scholar]
  • Tostevin R, Shields GA, Tarbuck GM, He T, Clarkson MO, Wood RA. 2016. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chemical Geology, The Authors 438: 146–162. [Google Scholar]
  • Vidal J. 2017. Altérations hydrothermales associées aux zones de fractures à l’interfae de la couverture sédimentaire et du socle cristallin dans le Fossé rhénan supérieur. Application aux forages géothermiques de Rittershoffen (Alsace, France, Université de Strasbourg). [Google Scholar]
  • Vidal J, Genter A. 2018. Overview of naturally permeable fractured reservoirs in the central and southern Upper Rhine Graben: Insights from geothermal wells. Geothermics, Pergamon 74: 57–73. [Google Scholar]
  • Vidal J, Genter A, Schmittbuhl J. 2015. How do permeable fractures in the Triassic sediments of Northern Alsace characterise the top of hydrothermal convective cells? Evidence from Soultz geothermal boreholes (France). Geothermal Energy 3: 8. [Google Scholar]
  • Walter BF, Burisch M, Markl G. 2016. Long-term chemical evolution and modification of continental basement brines – A field study from the Schwarzwald, SW Germany. Geofluids 16: 604–623. [Google Scholar]
  • Walter BF, Burisch M, Marks MAW, Markl G. 2017. Major element compositions of fluid inclusions from hydrothermal vein-type deposits record eroded sedimentary units in the Schwarzwald district, SW Germany. Mineralium Deposita 52: 1191–1204. [Google Scholar]
  • Walter BF, Burisch M, Fusswinkel T, Marks MAW, Steele-MacInnis M, Wälle M, et al. 2018. Multi-reservoir fluid mixing processes in rift-related hydrothermal veins, Schwarzwald, SW-Germany. Journal of Geochemical Exploration, Elsevier 186: 158–186. [Google Scholar]
  • Walter BF, Kortenbruck P, Scharrer M, Zeitvogel C, Wälle M, Mertz-Kraus R, et al. 2019. Chemical evolution of ore-forming brines – Basement leaching, metal provenance, and the redox link between barren and ore-bearing hydrothermal veins. A case study from the Schwarzwald mining district in SW-Germany. Chemical Geology, Elsevier B.V. 506: 126–148. [Google Scholar]
  • Wilkinson JJ. 2003. On diagenesis, dolomitisation and mineralisation in the Irish Zn–Pb orefield. Mineralium Deposita 38: 968–983. [Google Scholar]
  • Ziegler PA. 1992. European Cenozoic rift system. Tectonophysics 208: 91–111. [Google Scholar]
  • Ziegler PA. 2005. Europe | Permian to recent evolution. Encyclopedia of Geology, 102–105. [Google Scholar]
  • Ziegler PA, Schumacher ME, Dezes P, Van Wees J-D, Cloetingh S. 2004. Post-Variscan evolution of the lithosphere in the Rhine Graben area: Constraints from subsidence modelling. Geological Society, London, Special Publications 223: 289–317. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.