Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Article Number 3
Number of page(s) 24
DOI https://doi.org/10.1051/bsgf/2020043
Published online 01 March 2021
  • Aerden DG. 1998. Tectonic evolution of the Montagne Noire and a possible orogenic model for syncollisional exhumation of deep rocks, Variscan belt, France. Tectonics 17(1): 62–79. [Google Scholar]
  • Alabouvette B, Arthaud F, Bambier A, Freytet P, Paloc H. 1982. Notice explicative de la carte géologique au 1/50 000 de Saint-Chinian, no 1014. Orléans, France : Bureau de Recherches Géologiques et Minières, pp. 1–44. [Google Scholar]
  • Alabouvette B, Demange M, Sauvel C, Vautrelle C. 1993. Notice explicative de la feuille Saint-Pons à 1/50 000. Orléans : Édition du Bureau de Recherches Géologiques et Minières. [Google Scholar]
  • Alabouvette B, Demange M, Guérangé-Lozes J, Ambert P. 2003. Notice explicative de la carte géologique au 1:250 000 de Montpellier. Orléans, France : Bureau de Recherches Géologiques et Minières. [Google Scholar]
  • Álvaro JJ, Vizcaïno D. 1998. Révision biostratigraphique du Cambrien moyen du versant méridional de la Montagne Noire (Languedoc, France). Bulletin de la Société géologique de France 169(2): 233–242. [Google Scholar]
  • Álvaro JJ, Courjault-Radé P, Chauvel JJ, Dabard MP, Debrenne F, Feist R, et al. 1998. Nouveau découpage stratigraphique des séries cambriennes des nappes de Pardailhan et du Minervois (versant sud de la Montagne Noire, France). Géologie de la France 2: 3–12. [Google Scholar]
  • Aoya M, Kouketsu Y, Endo S, Shimizu H, Mizukami T, Nakamura D, et al. 2010. Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks. Journal of Metamorphic Geology 28: 895–914 [Google Scholar]
  • Árkai P. 1991. Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. Journal of Metamorphic Geology 9: 723–734. [Google Scholar]
  • Arthaud F. 1970. Etude tectonique et microtectonique comparée de deux domaines hercyniens : les nappes de la Montagne Noire (France) et l’anticlinorium de l’Iglesiente (Sardaigne). Université des Sciences et Techniques du Languedoc, 175 p. [Google Scholar]
  • Baludikay BK, François C, Sforna MC, Beghin J, Cornet Y, Storme JY, et al. 2018. Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia). International Journal of Coal Geology 191: 80–94. [Google Scholar]
  • Bard JP, Rambeloson R. 1973. Métamorphisme plurifacial et sens de variation du degré géothermique durant la tectogenèse polyphasée hercynienne dans la partie orientale de la zone axiale de la Montagne Noire (Massif du Caroux, Sud du Massif Central français). Bulletin de la Société géologique de France 7(5-6): 579–586. [Google Scholar]
  • Berger G, Alabouvette B, Guérangé-Lozes J, Demange M, Ambert P. 2001. Carte géol. France (1/250 000), feuille Montpellier (38). Orléans : BRGM. Notice explicative par B. Alabouvette, M. Démange, J. Guérangé-Lozes, P. Ambert (2003), 164 p. [Google Scholar]
  • Beyssac O, Goffé B, Chopin C, Rouzaud JN. 2002. Raman spectra of carbonaceous material in metasediments: A new geothermometer. Journal of Metamorphic Geology 20: 859–871. [Google Scholar]
  • Beyssac O, Pattison DRM, Bourdelle F. 2019. Contrasting degrees of recrystallization of carbonaceous material in the Nelson aureole, British Columbia and Ballachulish aureole, Scotland, with implications for thermometry based on Raman spectroscopy of carbonaceous material. J. Metamorphic Geol. 37: 71–95. [Google Scholar]
  • Belmar M, Schmidt ST, Frey M, Ferreiro-Mählmann R, Mullis J, Stern W. 2002. Diagenesis, low-grade and contact metamorphism in the Triassic-Jurassic of the Vichuquén-Tilicura and Hualané-Gualleco Basins, Coastal Range of Chile. Schweizeriche Mineralogische und Petrographische Mitteilungen 82: 375–392. [Google Scholar]
  • Carmignani L, Carosi R, Di Pisa A, Gattiglio M, Musumeci G, Oggiano G, et al. 1994. The hercynian chain in Sardinia (Italy). Geodinamica Acta 7(1): 31–47. [Google Scholar]
  • Carosi R, Perillo M, Pertusati PC. 1998. Structural evolution of the Southern Sulcis Metamorphic Complex (SW Sardinia, Italy). C. R. Acad. Sci. Paris, Sciences de la terre et des planètes/Earth & Planetary Sciences 326: 505–512, Paris, Elsevier Gauthier-Villars. [Google Scholar]
  • Chardon D, Aretz M, Roques D. 2020. Reappraisal of Variscan tectonics in the southern French Massif Central. Tectonophysics 787. [Google Scholar]
  • Cocherie A, Baudin T, Autran A, Guerrot C, Fanning CM, Laumonier B. 2005. U-Pb zircon (ID-TIMS and SHRIMP) evidence for the early Ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees, and the Montagne Noire (France). Bull. Société géologique de France 176: 269–282. [Google Scholar]
  • Cózar P, Izart A, Vachard D, Coronado I. 2017 A mid-Tournaisian-late Viséan carbonate ramp reconstructed from nappes and olistolites in the southern Montagne Noire (France). Sedimentary Geology 358: 148–175. [Google Scholar]
  • Delchini S, Lahfid A, Plunder A, Michard A. 2016. Applicability of the RSCM geothermometry approach in a complex tectono-metamorphic context: The Jebilet massif case study (Variscan Belt, Morocco). Lithos 256: 1–12. [Google Scholar]
  • Demange M. 1982. Etude géologique du massif de l’Agoût, Montagne Noire, France. Thèse d’Etat, Paris 6, 1050 p. [Google Scholar]
  • Demange M. 1993. Que signifie la faille des Monts de Lacaune (Montagne Noire, France) ? Implications quant au problème de la patrie des nappes. Comptes rendus de l’Académie des sciences, Série 2, 317: 411–418. [Google Scholar]
  • Doublier MP, Potel S, Wemmer K. 2006. Age and grade of metamorphism in the eastern Monts de Lacaune-implications for the collisional accretion in Variscan externides (French Massif Central). Geodinamica Acta 19: 391–407. [Google Scholar]
  • Doublier MP, Potel S, Franke W, Roache T. 2012. Very low-grade metamorphism of Rhenohercynian allochthons (Variscides, Germany): facts and tectonic consequences. International J. Earth Sciences 101: 1229–1252. [Google Scholar]
  • Doublier MP, Potel S, Wemmer K. 2015. The tectono-metamorphic evolution of the very low‐grade hangingwall constrains two-stage gneiss dome formation in the Montagne Noire (Southern France). Journal of Metamorphic Geology 33: 71–89. [Google Scholar]
  • Dunoyer de Segonzac G, Ferrero J, Kübler B. 1968. Sur la cristallinité de l’illite dans la diagenèse et l’anchimétamorphisme. Sedimentology 10: 137–143. [Google Scholar]
  • Echtler H, Malavieille J. 1990. Extensional tectonics, basement uplift and Stephano-Permian collapse basin in a late Variscan metamorphic core complex (Montagne Noire, Southern Massif Central). Tectonophysics 177: 125–138. [Google Scholar]
  • Engel W, Feist R, Franke W. 1978. Synorogenic gravitational transport in the Carboniferous of the Montagne Noire (S-France). Zeitschrift der deutschen geologischen Gesellschaft 461–472. [Google Scholar]
  • Engel W, Feist R, Franke W. 1980-81. Le Carbonifère anté-stéphanien de la Montagne Noire: rapports entre mise en place des nappes et sédimentation. Bull. BRGM. 2: 341–389. [Google Scholar]
  • Epstein AG, Epstein JB, Harris LD. 1977. Conodont color alteration: an index to organic metamorphism. Geological Survey of America, Professional Paper 995: 1–27. [Google Scholar]
  • Faure M. 1995. Late orogenic carboniferous extensions in the Variscan French Massif Central. Tectonics 14: 132–153. [Google Scholar]
  • Faure M, Cottereau N. 1988. Données cinématiques sur la mise en place du dôme migmatique carbonifère moyen de la zone axiale, de la Montagne Noire (Massif Central, France). Comptes rendus Acad. Sci. Série 2 307: 1787–1794. [Google Scholar]
  • Faure M, Bé Mézème E, Duguet M, Cartier C, Talbot JY. 2005. Paleozoic tectonic evolution of medio-Europa from the example of the French Massif Central and Massif Armoricain. Journal of the Virtual Explorer 19: 1–25. [Google Scholar]
  • Faure M, Lardeaux JM, Ledru P. 2009. A review of the pre-Permian geology of the Variscan French Massif Central. Comptes Rendus Geoscience 341: 202–213. [Google Scholar]
  • Faure M, Cocherie A, Bé Mézème E, Charles N, Rossi P. 2010. Middle Carboniferous crustal melting in the Variscan belt: New insights from U-Th-Pb tot monazite and U-PB zircon ages of the Montagne Noire Axial Zone (southern French Massif Central). Gondwana Res. 18: 653–673. [Google Scholar]
  • Faure M, Cocherie A, Gaché J, Esnault C, Guerrot C, Rossi P, et al. 2014. Middle Carboniferous intracontinental subduction in the Outer Zone of the Variscan belt (Montagne Noire Axial Zone, French Massif Central): multimethod geochronological approach of polyphase metamorphism. Multimethod geochronological approach of polyphase metamorphism. Geological Society, London, Special Publications 405(1): 289–311. [Google Scholar]
  • Faure M, Li XH, Lin W. 2017. The northwest-directed “Bretonian phase” in the French Variscan Belt (Massif Central and Massif Armoricain): a consequence of the Early Carboniferous Gondwana-Laurussia collision. C. R. Géoscience 349: 126–136. [Google Scholar]
  • Feist R, Galtier J. 1985. Découverte de flores d’âge namurien probable dans le flysch à olistolites de Cabrières (Hérault). Implication sur la durée de la sédimentation synorogénique dans la Montagne Noire (France méridionale). Comptes Rendus Acad. Sciences, Série 2 300: 207–212. [Google Scholar]
  • Fielitz W, Mansy JL. 1999. Pre-and synorogenic burial metamorphism in the Ardenne and neighbouring areas (Rhenohercynian zone, central European Variscides). Tectonophysics 309: 227–256. [Google Scholar]
  • Franke W, Doublier MP, Klama K, Potel S, Wemmer K. 2011. Hot metamorphic core complex in a cold foreland. International Journal of Earth Sciences 100: 753–785. [Google Scholar]
  • Fréville K, Cenki‐Tok B, Trap P, Rabin M, Leyreloup A, Régnier JL, et al. 2016. Thermal interaction of middle and upper crust during gneiss dome formation: Example from the Montagne Noire (French Massif Central). Journal of Metamorphic Geology 34: 447–462. [Google Scholar]
  • Frey M. Very low grade metamorphism of clastic sedimentary rock. In: Frey M, ed. Low temperature metamorphism. New York: Chapman and Hall, 1987, pp. 9–58. [Google Scholar]
  • Frey M, Robinson D. (eds) 1999. Low-grade metamorphism. Blackwell, 313 p. [Google Scholar]
  • Fukuchi R, Fujimoto K, Kameda J, Hamahashi M, Yamaguchi A, Kimura G, et al. 2014. Changes in illite crystallinity within an ancient tectonic boundary thrust caused by thermal, mechanical, and hydrothermal effects: an example from the Nobeoka Thrust, southwest Japan. Earth, Planets and Space 116: 1–12. [Google Scholar]
  • García-López S, Bastida F, Aller J, Sanz-López J. 2001. Geothermal palaeogradients and metamorphic zonation from the conodont colour alteration index (CAI). Terra Nova 13(2): 79–83. [Google Scholar]
  • Gerya T, Stöckhert B. 2002. Exhumation rates of high-pressure metamorphic rocks in subduction channels: The effect of Rheology. Geophysical Research Letters 29: 1261–1264. [Google Scholar]
  • Gèze B. 1949. Etude géologique de la Montagne Noire et des Cévennes méridionales. Soc.Géol. Fr. Mém. 62: 1–125. [Google Scholar]
  • Guggenheim S, Bain DC, Bergaya F, Brigatti MF, Drits VA, Eberl DD, et al. 2002. Report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2001: Order, disorder and crystallinity in phyllosilicates and the use of the “Crystallinity Index”. Clay Minerals 37: 389–393. [Google Scholar]
  • Guiraud M, Sauniac S, Burg JP. 1981. Précision sur les conditions Pression-Température lors de la mise en place de la nappe de Pardailhan (Montagne Noire), par la détermination des inclusions fluides. Comptes-rendus de l’Académie des Sciences, Série II 292: 229–232. [Google Scholar]
  • Hamet J, Allègre CJ. 1976. Hercynian orogeny in the Montagne Noire (France): Application of Rb87-Sr87 systematics. Geological Society of America Bulletin 87: 1429–1442. [Google Scholar]
  • Hara H, Kurihara T, Mori H. 2013. Tectono-stratigraphy and low-grade metamorphism of Late Permian and Early Jurassic accretionary complexes within the Kurosegawa belt, Southwest Japan: Implications for mechanisms of crustal displacement within active continental margin. Tectonophysics 592: 80–93. [Google Scholar]
  • Harris LB, Burg JP, Sauniac S. 1983. Strain distribution within the Pardailhan nappe (Montagne Noire, France), and structure of its basal thrust zone: implications for events associated with nappe emplacement. J. Struct. Geol. 5: 431–440. [Google Scholar]
  • Hilchie LJ, Jamieson RA. 2014. Graphite thermometry in a low-pressure contact aureole, Halifax, Nova Scotia. Lithos 208: 21–33. [Google Scholar]
  • Kouketsu Y, Mizukami T, Mori H, Endo S, Aoya M, Hara H, et al. 2014. A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width. Island Arc 23: 33–50. [Google Scholar]
  • Kretschmer S, Franke W, Wemmer K, Köngigshof P, Gerdes A. 2015. Tectono-metamorphic evolution of the Mouthoumet Massif (Variscides, S-France): Interference of orogenic accretion and crustal extension. Géologie de la France 1: 78. [Google Scholar]
  • Kübler B. 1964. Les argiles, indicateurs de métamorphisme. Revue Institut de la Française de Pétrole 19: 1093–1112. [Google Scholar]
  • Kübler B. 1968. Evaluation quantitative du metamorphism par la cristallinite de l’Illite. Bull. Centre Rech. Pau-SNPA 2: 385–397. [Google Scholar]
  • Lahfid A, Beyssac O, Deville E, Negro F, Chopin C, Goffé B. 2010. Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova 22: 354–360. [Google Scholar]
  • Le Bayon R, Brey GP, Ernst WG, Mählmann RF. 2011. Experimental kinetic study of organic matter maturation: time and pressure effects on vitrinite reflectance at 400 °C. Organic Geochemistry 42: 340–355. [Google Scholar]
  • Lescuyer JL, Bouchot V, Cassard D, Feybesse JL, Marcoux E, Moine B, et al. 1973. Le gisement aurifère de Salsigne (Aude, France) : une concentration syntectonique tardivarisque dans les sédiments détritiques et carbonatés de la Montagne Noire. Chronique de la Recherche Minière 512: 3–73. [Google Scholar]
  • Mählmann RF. 2001. Correlation of very low-grade data to calibrate a thermal maturity model in a nappe tectonic setting, a case study from the Alps. Tectonophysics 334: 1–33. [Google Scholar]
  • Mählmann RF, Bozkaya Ö, Potel S, Le Bayon R, Šegvić B, Nieto F. 2012. The pioneer work of Bernard Kübler and Martin Frey in very low-grade metamorphic terranes: paleo-geothermal potential of variation in Kübler-Index/organic matter reflectance correlations. A review. Swiss Journal of Geosciences 105(2): 121–152. [Google Scholar]
  • Malavieille J. 2010. Impact of erosion, sedimentation and structural heritage on the structure and kinematics of orogenic wedges: analog models and case studies. GSA Today 20: 4–10. [Google Scholar]
  • Mattauer M, Laurent P, Matte P. 1996. Plissement hercynien synschisteux post-nappe et étirement subhorizontal dans le versant sud de la Montagne noire (Sud du Massif central, France). Comptes rendus de l’Acad. des Sciences, Série 2 322: 309–315. [Google Scholar]
  • Matte P, Lancelot J, Mattauer M. 1998. La zone axiale hercynienne de la Montagne Noire n’est pas un “metamorphic core complex” extensif mais un anticlinal post-nappe à cœur anatectique. Geodinamica Acta 11: 13–22. [Google Scholar]
  • Merriman R, Frey M. Patterns of very low-grade metamorphism in metapelitic rocks. In: Robinson D, Frey M, eds. Low-grade metamorphism, 1999, pp. 61–108. [Google Scholar]
  • Merriman R, Peacor DR. Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. In: Robinson D, Frey M, eds. Low-grade metamorphism, 1999, pp. 10–60. [Google Scholar]
  • Mori H, Wallis S, Fujimoto K, Shigematsu N. 2015. Recognition of shear heating on a long-lived major fault using Raman carbonaceous material thermometry: implications for strength and displacement history of the MTL, SW Japan. Island Arc 24: 425–446. [Google Scholar]
  • Mori H, Mori N, Wallis S, Westaway R, Annen C. 2017. The importance of heating duration for Raman CM thermometry: evidence from contact metamorphism around the Great Whin Sill intrusion, UK. Journal of Metamorphic Geology 35: 165–180. [Google Scholar]
  • Mukoyoshi H, Hirono T, Hara H, Sekine K, Tsuchiya N, Sakaguchi A, et al. 2009. Style of fluid flow and deformation in and around an ancient out-of-sequence thrust: An example from the Nobeoka Tectonic Line in the Shimanto accretionary complex, southwest Japan. Island Arc 18: 333–351. [Google Scholar]
  • Mullis J, Mählmann RF, Wolf M. 2017. Fluid inclusion microthermometry to calibrate vitrinite reflectance (between 50 and 270 °C), illite Kübler-Index data and the diagenesis/anchizone boundary in the external part of the Central Alps. Applied Clay Science 143: 307–319. [Google Scholar]
  • Pitra P, Poujol M, Van Den Driessche J, Poilvet JC, Paquette JL. 2012. Early Permian extensional shearing of an ordovician granite: The saint-eutrope “c/s-like” orthogneiss (montagne noire, French massif central). Comptes Rendus Géoscience 344(8): 377–384. [Google Scholar]
  • Poilvet JC, Poujol M, Pitra P, Van Den Driessche J, Paquette JL. 2011. The Montalet granite, Montagne Noire, France: An Early Permian syn-extensional pluton as evidenced by new U-Th-Pb data on zircon and monazite. Comptes Rendus Géoscience 343(7): 454–461. [Google Scholar]
  • Poty É, Aretz M, Barchy L. 2002. Stratigraphie et sédimentologie des « calcaires à Productus » du Carbonifère inférieur de la Montagne noire (Massif central, France). Comptes Rendus Geoscience 334: 843–848. [Google Scholar]
  • Rahl JM, Anderson KM, Brandon MT, Fassoulas C. 2005. Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: calibration and application to tectonic exhumation in Crete, Greece. Earth and Planetary Science Letters 240: 339–354. [Google Scholar]
  • Rahn M, Mullis J, Erdelbrock K, Frey M. 1995. Alpine metamorphism in the north Helvetic flysch of the Glarus-Alps, Switzerland. Eclogae Geologicae Helvetiae 88: 157–178. [Google Scholar]
  • Roger F, Respaut JP, Brunel M, Matte P, Paquette JL. 2004. Première datation U-Pb des orthogneiss œillés de la zone axiale de la Montagne noire (Sud du Massif central): nouveaux témoins du magmatisme ordovicien dans la chaı̂ne Varisque. Comptes Rendus Geoscience 336: 19–28. [Google Scholar]
  • Roger F, Teyssier C, Respaut JP, Rey PF, Jolivet M, Whitney DL, et al. 2015. Timing of formation and exhumation of the Montagne Noire double dome, French Massif Central. Tectonophysics 640: 53–69. [Google Scholar]
  • Sadezky A, Muckenhube H, Grothe H, Niessner R, Pöschl U. 2005. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43: 1731–1742. [Google Scholar]
  • Sauniac S. 1980. Utilisation des exsudats de quartz come critères de reconnaissance d’un régime cisaillant: exemple de la base de la nappe de Pardailhan (versant sud de la Montagne Noire). Rev. Géol. Dyn. Geog. Phys 22: 177–186. [Google Scholar]
  • Schuiling R. 1960. Le dôme gneissique de l’Agoût (Tarn et Hérault). Mémoire de la Société Géologique de France, 91 p. [Google Scholar]
  • Soula JC, Debat P, Brusset S, Bessière G, Christophoul F, Déramond J. 2001. Thrust-related, diapiric, and extensional doming in a frontal orogenic wedge: example of the Montagne Noire, Southern French Hercynian Belt. Journal of Structural Geology 23: 1677–1699. [Google Scholar]
  • Thompson PH, Bard JP. 1982. Isograds and mineral assemblages in the eastern Axial Zone, Montagne Noire (France): implications for temperature gradients and P-T history. Canadian Journal of Earth Sciences 19: 129–143. [Google Scholar]
  • Trap P, Roger F, Cenki-Tok B, Paquette JL. 2017. Timing and duration of partial melting and magmatism in the Variscan Montagne Noire gneiss dome (French Massif Central). International Journal of Earth Sciences 106: 453–476. [Google Scholar]
  • Underwood M, Byrne T, Hibbard JP, DiTullio L. A comparison among organic and inorganic indicators of diagenesis and low-temperature metamorphism, Tertiary Shimanto Belt, Shikoku, Japan. In: Underwood M, ed. Thermal Evolution of the Tertiary Shimanto Belt, Southwest Japan: An Example of Ridge-Trench Interaction, 1993, pp. 45–61. [Google Scholar]
  • Vachard D, Aretz M. 2004. Biostratigraphical precisions on the Early Serpukhovian (Late Mississippian), by means of a carbonate algal microflora (cyanobacteria, algae and pseudo-algae) from La Serre (Montagne Noire, France). Geobios 37: 643–666. [Google Scholar]
  • Vachard D, Izart A, Cózar P. 2017. Mississippian (middle Tournaisian-late Serpukhovian) lithostratigraphic and tectonosedimentary units of the southeastern Montagne Noire (Hérault, France). Géologie de la France 1: 47–88 [Google Scholar]
  • Van Den Driessche J, Brun JP. 1989. Un modèle cinématique de l’extension paléozoïque supérieur dans le Sud du Massif Central. Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre 309(16): 1607–1613. [Google Scholar]
  • Van Den Driessche J, Brun JP. 1992. Tectonic evolution of the Montagne Noire (French Massif Central): a model of extensional gneiss dome. Geodinamica Acta 5: 85–97. [Google Scholar]
  • Velde B, Lanson B. 1993. Comparison of I/S transformation and maturity of organic matter at elevated temperatures. Clays and Clay Minerals 41: 178–178. [Google Scholar]
  • Vizcaïno D, Álvaro JJ. 2001. The Cambrian and lower Ordovician of the southern Montagne Noire: a synthesis for the beginning of the new century. Ann. Soc. géol. Nord (2° sér.) 8: 185–242. [Google Scholar]
  • Wada H, Tomita T, Matsuura K, Tuchi K, Ito M, Morikiyo T. 1994. Graphitization of carbonaceous matter during metamorphism with references to carbonate and pelitic rocks of contact and regional metamorphisms, Japan. Contributions to Mineralogy and Petrology 118: 217–228. [Google Scholar]
  • Weber K. 1972. Notes on the determination of illite crystallinity. Neues Jahrbuch für Mineralogie, Monatshefte 6: 267–276. [Google Scholar]
  • Whitney DL, Roger F, Teyssier C, Rey PF, Respaut JP. 2015. Syn-collapse eclogite metamorphism and exhumation of deep crust in a migmatite dome: the P-T-t record of the youngest Variscan eclogite (Montagne Noire, French Massif Central). Earth and Planetary Science Letters 430: 224–234. [Google Scholar]
  • Wiederer U, Koenigshof P, Feist R, Franke W, Doublier MP. (2002). Low-grade metamorphism in the Montagne Noire (S-France): Conodont Alteration Index (CAI) in Palaeozoic carbonates and implications for the exhumation of a hot metamorphic core complex. Schweizerische Mineralogische und Petrographische Mitteilungen 82: 393–407. [Google Scholar]
  • Zhu C, Rao S, Hu S. 2016. Application of illite crystallinity for paleo-temperature reconstruction: A case study in the western Sichuan basin, SW China. Carpathian Journal of Earth and Environmental Sciences 11(2): 599–608. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.