Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
Article Number 11
Number of page(s) 31
DOI https://doi.org/10.1051/bsgf/2021006
Published online 24 March 2021
  • Acocella V, Funiciello R. 2006. Transverse systems along the extensional Tyrrhenian margin of central Italy and their influence on volcanism. Tectonics 25: TC2003. DOI: 2010.1029/2005TC001845. [CrossRef] [Google Scholar]
  • Armijo R, Meyer B, King GCP, Rigo A, Papanastassiou D. 1996. Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophys. J. Int. 126: 11–53. [CrossRef] [Google Scholar]
  • Armijo R, Meyer B, Hubert A, Barka A. 1999. Westward propagation of the north Anatolian into the northern Aegean: timing and kinematics. Geology 27: 267–270. [CrossRef] [Google Scholar]
  • Armijo R, Pondard N, Meyer B, Uçarkus G, Mercier de Lépinay B, Malavieille J, et al. 2004. Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian Fault): Implications for seismic hazard in Istanbul. Geochem. Geophys. Geosyst 6: Q06009. DOI: 06010.01029/02004GC000896. [Google Scholar]
  • Augier R, Agard P, Jolivet L, Monié P, Robin C, Booth-Rea G. 2005a. Exhumation, doming and slab retreat in the Betic Cordillera (SE Spain): in situ 40Ar/39Ar ages and P–T–d–t paths for the Nevado-Filabride complex. J. Metam. Geol. 23: 357–381. DOI: 310.1111/j.1525-1314.2005.00581.x. [CrossRef] [Google Scholar]
  • Augier R, Booth-Rea G, Agard P, Martinez-Martinez JM, Jolivet L, Azañon JM. 2005b. Exhumation constraints for the lower Nevado-Filabride Complex (Betic Cordillera, SE Spain): a Raman thermometry and Tweequ multiequilibrium thermobarometry approach. Bull. Soc. géol. Fr. 176: 403–416. DOI: 410.2113/2176.2115.2403. [CrossRef] [Google Scholar]
  • Augier R, Jolivet L, Do Couto D, Negro F. 2013. From ductile to brittle, late- to post-orogenic evolution of the Betic Cordillera: Structural insights from the northeastern Internal zones. Bull Soc géol France 184: 405–425. [CrossRef] [Google Scholar]
  • Backert N, Ford M, Malartre F. 2010. Architecture and sedimentology of the Kerinitis Gilbert-type fan delta, Corinth Rift, Greece. Sedimentology 57: 543–586. DOI: 510.1111/j.1365-3091.2009.01105.x. [CrossRef] [Google Scholar]
  • Balanya J.C, Garcia-Dueñas V, Azañon J.M, Sanchez-Gomez M. 1997. Alternating contractional and extensional events in the Alpujarride nappes of the Alboran Domain. Tectonics 16: 226–238. [CrossRef] [Google Scholar]
  • Bargnesi EA, Stockli DF, Mancktelow N, Soukis K. 2013. Miocene core complex development and coeval supradetachment basin evolution of Paros, Greece, insights from (U–Th)/He thermochronometry. Tectonophysics 595-596: 165–182. DOI: 110.1016/j.tecto.2012.1007.1015. [CrossRef] [Google Scholar]
  • Benmakhlouf M, Galindo-Zaldívar J, Chalouan A, Sanz de Galdeano C, Ahmamou M, López-Garrido AC. 2012. Inversion of transfer faults: The Jebha-Chrafate fault (Rif, Morocco). Journal of African Earth Sciences 73-74: 33–43. DOI: 10.1016/j.jafrearsci.2012.1007.1003. [CrossRef] [Google Scholar]
  • Bezada MJ, Humphreys ED, Toomey DR, Harnafi M, Davila JM, Gallart J. 2013. Evidence for slab rollback in westernmost Mediterranean from improved upper mantle imaging. Earth Planet. Sci. Lett. 368: 51–60. DOI: 10.1016/j.epsl.2013.1002.1024. [CrossRef] [Google Scholar]
  • Billi A, Barberi G, Faccenna C, Neri G, Pepe F, Sulli A. 2006. Tectonics and seismicity of the Tindari Fault System, southern Italy: Crustal deformations at the transition between ongoing contractional and extensional domains located above the edge of a subducting slab. Tectonics 25: TC2006. DOI: 2010.1029/2004TC001763. [Google Scholar]
  • Billi AD, Presti D, Faccenna C, Neri G, Orecchio B. 2007. Seismotectonics of the Nubia plate compressive margin in the south Tyrrhenian region, Italy: Clues for subduction inception. J. Geophys. Res. 112: B08302. DOI: 08310.01029/02006JB004837. [CrossRef] [Google Scholar]
  • Billi A, Faccenna C, Bellier O, Minelli L, Neri G, Piromallo C, et al. 2011. Recent tectonic reorganization of the Nubia-Eurasia convergent boundary heading for the closure of the western Mediterranean. Bull Soc géol France 182: 279–303. [CrossRef] [Google Scholar]
  • Biryol CB, Beck SL, Zandt G, Özacar AA. 2011. Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophys. J. Int. 184: 1037–1057. DOI: 1010.1111/j.1365-1246X.2010.04910.x. [CrossRef] [Google Scholar]
  • Boccaletti M, Nicolich R, Tortorici L. 1990. New data and hypothesis on the development of the Tyrrhenian Basin. Palaeogeogr. Palaeoclim. Palaeoecol. 77: 15–40. [CrossRef] [Google Scholar]
  • Booth-Rea G, Jabaloy-Sánchez A, Azdimousa A, Asebriy L, Vázquez Vílchez M, Martínez-Martínez JM. 2012. Upper-crustal extension during oblique collision: the temsamane extensional detachment (Eastern Rif, Morocco). Terra Nova 24: 505–512. [CrossRef] [Google Scholar]
  • Brichau S, Ring U, Ketcham RA, Carter A, Stockli D, Brunel M. 2006. Constraining the long-term evolution of the slip rate for a major extensional fault system in the central Aegean, Greece, using thermochronology Earth and Pl. Sc. Lett. 241: 293–306; DOI: 210.1016/j.epsl.2005.1009.1065. [Google Scholar]
  • Brichau S, Ring U, Carter A, Monie P, Bolhar R, Stockli D, et al. 2007. Extensional faulting on Tinos Island, Aegean Sea, Greece: How many detachments? Tectonics 26: TC4009. DOI: 4010.1029/2006TC001969. [CrossRef] [Google Scholar]
  • Brichau S, Ring U, Carter A, Bolhar R, Monié P, Stockli D, et al. 2008. Timing, slip rate, displacement and cooling history of the Mykonos detachment footwall, Cyclades, Greece, and implications for the opening of the Aegean Sea basin. J. Geol. Soc. London 165: 263–277. DOI: 210.1144/0016-76492006-76492145. [CrossRef] [Google Scholar]
  • Brun JP, Faccenna C. 2008. Exhumation of high-pressure rocks driven by slab rollback. Earth and Planetary Sciences Letters 272: 1–7. DOI: 10.1016/j.epsl.2008.1002.1038. [CrossRef] [Google Scholar]
  • Brun JP, Sokoutis D. 2007. Kinematics of the Southern Rhodope Core Complex (North Greece). International Journal of Earth Science. DOI: 10.1007/s00531-007-0174-2. [Google Scholar]
  • Brun JP, Sokoutis D. 2018. Core complex segmentation in North Aegean, a dynamic view. Tectonics 37: 1797–1830. DOI: 1710.1029/2017TC004939. [CrossRef] [Google Scholar]
  • Brun JP, Wenzel F, team E-D. 1991. Crustal-scale structure of the southern Rhine graben from ECORS-DEKORP seismic reflection data. Geology 19: 758–762. [CrossRef] [Google Scholar]
  • Brun JP, Gutscher MA, teams D-E. 1992. Deep crustal structure of the Rhine Graben from DEKORP-ECORS seismic reflection data: a summary. Tectonophysics 208: 139–147. [CrossRef] [Google Scholar]
  • Brunet C, Monié P, Jolivet L, Cadet JP. 2000. Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics 321: 127–155. [CrossRef] [Google Scholar]
  • Bruno PP, Di Fiore V, Ventura G. 2000. Seismic study of the “41st Parallel” Fault System offshore the Campanian-Latial continental margin, Italy. Tectonophysics 324: 37–55. [CrossRef] [Google Scholar]
  • Buck WR. 1991. Modes of continental lithospheric extension. Jour. Geoph. Res. 96: 20,161–120, 178. [NASA ADS] [CrossRef] [Google Scholar]
  • Burg JP. 2012. Rhodope: From Mesozoic convergence to Cenozoic extension. Review of petro-structural data in the geochronological frame. Journal of the Virtual Explorer 42. DOI: 10.3809/jvirtex.2011.00270. [Google Scholar]
  • Caire A. 1974. Tectonique spirale en Méditerranée centrale. C. R. Acad. Sc. Paris 278: 3165–3167. [Google Scholar]
  • Canva A, Peyrefitte A, Thinon I, Couëffé R, Maillard A, Jolivet L, et al. 2020. The Catalan magnetic anomaly: significance on crustal structure of the Gulf of Lion passive margin and link to the Catalan Transfer Zone. Marine and Petroleum Geology 113. DOI: 10.1016/j.marpetgeo.2019.104174. [CrossRef] [Google Scholar]
  • Capitanio FA. 2014. The dynamics of extrusion tectonics: Insights from numerical modeling. Tectonics 33: 2361–2381. DOI: 2310.1002/2014TC003688. [CrossRef] [Google Scholar]
  • Carminati E, Wortel MJR, Meijer PT, Sabadini R. 1998a. The two-stage opening of the western-central mediterranean basins: a forward modeling test to a new evolutionary model. Earth Planet. Sci. Lett. 160: 667–679. [CrossRef] [Google Scholar]
  • Carminati E, Wortel MJR, Spakman W, Sabadini R. 1998b. The role of slab detachment processes in the opening of the western-central Mediterranean basins: some geological and geophysical evidence. Earth Planet. Sci. Lett. 160: 651–665. [CrossRef] [Google Scholar]
  • Catalano R, Valenti V, Albanese C, Accaino F, Sulli A, Tinivella U, et al. 2013. Sicily’s fold–thrust belt and slab roll-back: the SI.RI.PRO. seismic crustal transect. Journal of the Geological Society, London 170: 451–464. DOI: 410.1144/jgs2012-1099. [CrossRef] [Google Scholar]
  • Chalouan A, Michard A, El Kadiri K, Negro F, Frizon de Lamotte D, Soto JI, et al. 2008. The Rif Belt. In: Michard A, et al., ed. Continental Evolution: The Geology of Morocco. Lecture Notes in Earth Sciences. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. [Google Scholar]
  • Chamot-Rooke N, Rangin C, Pichon X.L, Dotmed working group. 2005. DOTMED: Deep Offshore Tectonics of the Mediterranean. A synthesis of deep marine data in eastern Mediterranean. Mém. Soc. géol. France 177: 64. [Google Scholar]
  • Channell J.E.T, Oldow J.S, Catalano R, D’Argenio B. 1990. Paleomagnetically determined rotations in the western Sicilian fold and thrust belt. Tectonics 9: 641–660. DOI: 610.1029/TC1009i1004p00641. [CrossRef] [Google Scholar]
  • Chorowicz J. 2005. The East African rift system. Journal of African Earth Sciences 43: 379–410. DOI: 310.1016/j.jafrearsci.2005.1007.1019. [CrossRef] [Google Scholar]
  • Colletta B, Quellec P.L, Letouzey J, Moretti I. 1987. Longitudinal evolution of the Suez rift (Egypt). Tectonophysics 153: 221–233. [CrossRef] [Google Scholar]
  • Collettini C, Holdsworth R.E. 2004. Fault zone weakening and character of slip along low-angle normal faults: insights from the Zuccale fault, Elba, Italy. J. Geol. Soc. London 161: 1039–1051. [CrossRef] [Google Scholar]
  • Comas MC, Platt JP, Soto JI, Watts AB. 1999. The origin and tectonic history of the Alboran basin: insights from Leg 161 results. In: Zahn R, Comas MC, Klaus A, eds. Proc. ODP, Sci. Results. TX (Ocean Drilling Program), College Station, pp. 555–582. [Google Scholar]
  • Conti A, Bigi S, Cuffaro M, Doglioni C, Scrocca D, Muccini F, et al. 2017. Transfer zones in an oblique back-arc basin setting: Insights from the Latium-Campania segmented margin (Tyrrhenian Sea). Tectonics 36: 78–107. DOI: 110.1002/2016TC004198. [CrossRef] [Google Scholar]
  • Crespo Blanc A. 1995. Interference pattern of extensional fault systems: a case study of the Miocene rifting of the Alboran basement (North of Sierra Nevada, Betic Chain). J. Struct. Geol. 17: 1559–1569. [CrossRef] [Google Scholar]
  • Crespo Blanc A, Orozco M, Garcia-Duenas V. 1994. Extension versus compression during the Miocene tectonic evolution of the Betic chain. Late folding of normal fault system. Tectonics 13: 78–88. [CrossRef] [Google Scholar]
  • Crespo-Blanc A, Comas M, Balanyá JC. 2016. Clues for a Tortonian reconstruction of the Gibraltar Arc: Structural pattern, deformation diachronism and block rotations. [Google Scholar]
  • d’Acremont E, Lafosse M, Rabaute A, Teurquety G, Do Couto D, Ercilla G, et al. 2020. Polyphase tectonic evolution of fore-arc basin related to STEP fault as revealed by seismic reflection data from the Alboran Sea (W- Mediterranean). Tectonics. DOI: 10.1029/2019TC005885. [Google Scholar]
  • Daniel JM, Jolivet L. 1995. Detachment faults and pluton emplacement; Elba Island (Tyrrhenian Sea). Bull. Soc. géol. France 166: 341–354. [CrossRef] [Google Scholar]
  • Dannowski A, Kopp H, Grevemeyer I, Lange D, Thowart M, Bialas J, et al. 2019a. Oligocene-Miocene extension led to mantle exhumation in the central Ligurian Basin, Western Alpine Domain. Solid Earth Discuss. DOI: 10.5194/se-2019-5187, in review. [Google Scholar]
  • Dannowski A, Wolf F, Kopp H, Grevemeyer I, Lange D, Thorwart M, et al. 2019b. Investigations of the Ligurian Basin using refraction seismic data and the ambient noise technique. In: EGU General Assembly 2019, EGU2019-3802-2011. [Google Scholar]
  • de Boorder H, Spakman W, White SH, Wortel MJR. 1998. Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt. Earth and Pl. Sc. Letters 164: 569–575. [CrossRef] [Google Scholar]
  • De Ritis R, Pepe F, Orecchio B, Casalbore D, Bosman A, Chiappini M. 2019. Magmatism along lateral slab edges: Insights from the Diamante‐Enotrio‐Ovidio volcanic‐intrusive complex (Southern Tyrrhenian Sea). Tectonics 38: 2581–2605. DOI: 2510.1029/2019TC005533. [CrossRef] [Google Scholar]
  • Dèzes P, Schmid SM, Ziegler PA. 2004. Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389: 1–33. [CrossRef] [Google Scholar]
  • Dilek Y, Altunkaynak S. 2009. Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: Mantle response to collision, slab break-off, and lithospheric tearing in an orogenic belt. In: van Hinsbergen DJJ, Edwards DJJ, Govers R, eds. Collision and Collapse at the Africa–Arabia–Eurasia Subduction Zone. London: The Geological Society, pp. 213–233. [Google Scholar]
  • Dilek Y, Sandvol E. 2009. Seismic structure, crustal architecture and tectonic evolution of the Anatolian-African Plate Boundary and the Cenozoic Orogenic Belts in the Eastern Mediterranean Region. In: Murphy JB, Keppie JD, Hynes AJ, eds. Ancient Orogens and Modern Analogues. London: Geological Society, pp. 127–160. [Google Scholar]
  • Do Couto D, Gumiaux C, Jolivet L, Augier R, Lebret N, Folcher N, et al. 2015. 3D modelling of the Sorbas Basin (Spain): New constraints on the Messinian Erosional Surface morphology. Marine and Petroleum Geology 66: 101–116. DOI: 110.1016/j.marpetgeo.2014.1012.1011. [CrossRef] [Google Scholar]
  • Duggen S, Hoernle K, Klügel A, Geldmacher J, Thirlwall M, Hauff F, et al. 2008. Geochemical zonation of the Miocene Albora ́n Basin volcanism (westernmost Mediterranean): geodynamic implications. Contrib Mineral Petrol 156: 577–593. DOI: 510.1007/s00410-00008-00302-00414. [CrossRef] [Google Scholar]
  • Durand-Delga M, Fontboté JM. 1980. Le cadre structural de la Mdditerranée Occidentale. In: Aubouin J, Debelmas J, Latreille M, eds. Géologie des chaînes alpines issues de la Téthys. BRGM Mémoires. Orléans: BRGM, pp. 67–85. [Google Scholar]
  • Ersoy EY, Palmer MR. 2013. Eocene-Quaternary magmatic activity in the Aegean: Implications for mantle metasomatism and magma genesis in an evolving orogeny. Lithos 180-181: 5–24. DOI: 10.1016/j.lithos.2013.1006.1007. [CrossRef] [Google Scholar]
  • Faccenna C, Funiciello R, Bruni A, Mattei M, Sagnotti L. 1994. Evolution of a transfer-related basin: the Ardea basin (Latium, central Iatly). Basin Research 6: 35–46. [CrossRef] [Google Scholar]
  • Faccenna C, Becker T.W, Lucente F.P, Jolivet L, Rossetti F. 2001a. History of subduction and back-arc extension in the Central Mediterranean. Geophys. J. Int. 145: 809–820. [CrossRef] [Google Scholar]
  • Faccenna C, Funiciello F, Giardini D, Lucente P. 2001b. Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth Planet. Sci. Lett. 187: 105–116. [CrossRef] [Google Scholar]
  • Faccenna C, Piromallo C, Crespo-Blanc A, Jolivet L, Rossetti F. 2004. Lateral slab deformation and the origin of the Western Mediterranean arcs. Tectonics 23. DOI: 10.1029/2002TC001488. [CrossRef] [Google Scholar]
  • Faccenna C, Bellier O, Martinod J, Piromallo C, Regard V. 2006. Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault. Earth and Planetary Science Letters 242: 85–97. [CrossRef] [Google Scholar]
  • Faccenna C, Funiciello F, Civetta L, D’Antonio M, Moroni M, Piromallo C. 2007. Slab disruption, mantle circulation, and the opening of the Tyrrhenian basins. In: Beccaluva L, Bianchini G, Wilson M, eds. Cenozoic Volcanism in the Mediterranean Area, pp. 153–169. DOI: 110.1130/2007.2418(1108). [Google Scholar]
  • Faccenna C, Becker TW, Auer L, Billi A, Boschi L, Brun JP, et al. 2014. Mantle dynamics in the Mediterranean. Reviews of Geophysics 52: 283–332. DOI: 210.1002/2013RG000444. [CrossRef] [Google Scholar]
  • Faulds J.E, Bouchot V, Moeck I, Oguz K. 2009. Structural control on geothermal systems in Western Turkey: a preliminary report. GRC Transactions 33: 375–381. [Google Scholar]
  • Flotté N, Sorel D. 2001. Structural cross-section through the Corinth-Patras detachment fault-system in northern Peloponnesus (Aegean arc, Greece). Bull. Soc. Geol. Greece XXXIV(1): 235–241. [CrossRef] [Google Scholar]
  • Flotté N, Sorel D, Müller C, Tensi J. 2005. Along strike changes in the structural evolution over a brittle detachment fault: Example of the Pleistocene Corinth-Patras rift (Greece). Tectonophysics 403: 77–94. [CrossRef] [Google Scholar]
  • Ford M, Williams EA, Malartre F, Popescu SP. 2007. In: Paola C, Nichols GJ, Williams EA, eds. Stratigraphic architecture, sedimentology and structure of the Vouraikos Gilbert-type deltas, Gulf of Corinth, Greece. I.A.S. Special Publication. [Google Scholar]
  • Frasca G, Gueydan F, Brun JP. 2015. Structural record of lower miocene westward Alboran domain motion in the western Betics (southern Spain). Tectonophysics 657: 1–20. [CrossRef] [Google Scholar]
  • Frasca G, Gueydan F, Brun JP, Monie P. 2016. Deformation mechanisms in a continental rift up to mantle exhumation. Field evidence from the western Betics, Spain. Marine and Petroleum Geology 76: 310–328. DOI: 310.1016/j.marpetgeo.2016.1004.1020. [CrossRef] [Google Scholar]
  • Frizon de Lamotte D, Andrieux J, Guézou JC. 1991. Cinématique des chevauchements Néogènes dans l’arc bético-Rifains, discussion sur les modèles géodynamiques. Bull. Soc. Géol. France 4: 611–626. [CrossRef] [Google Scholar]
  • Gailler A, Klingelhoefer F, Olivet JL, Aslanian D, The Sardinia scientific party, Technical OBS team. 2009. Crustal structure of a young margin pair: New results across the Liguro–Provencal Basin from wide-angle seismic tomography. Earth and Planetary Science Letters 286: 333–345. DOI: 310.1016/j.epsl.2009.1007.1001. [CrossRef] [Google Scholar]
  • Gasparo Morticelli M, Valenti V, Catalano R, Sulli A, Agate M, Avellone G. 2015. Deep controls on foreland basin system evolution along the Sicilian fold and thrust belt. Bulletin de la Societe Geologique de France 186: 273–290. DOI: 210.2113/gssgfbull.2186.2114-2115.2273. [CrossRef] [Google Scholar]
  • Gautier P, Brun JP. 1994a. Crustal-scale geometry and kinematics of late-orogenic extension in the central Aegean (Cyclades and Evvia island). Tectonophysics 238: 399–424. DOI: 310.1016/0040-1951(1094)90066-90063. [CrossRef] [Google Scholar]
  • Gautier P, Brun JP. 1994b. Ductile crust exhumation and extensional detachments in the central Aegean (Cyclades and Evvia islands). Geodinamica Acta 7: 57–85. [CrossRef] [Google Scholar]
  • Gautier P, Bosse V, Cherneva Z, Didier A, Gerdjikov I, Tiepolo M. 2017. Polycyclic alpine orogeny in the Rhodope metamorphic complex: the record in migmatites from the Nestos shear zone (N. Greece). BSGF – Earth Sciences Bulletin 188: 36. DOI: 10.1051/bsgf/2017195. [CrossRef] [Google Scholar]
  • Gessner K, Ring U, Johnson C, Hetzel R, Passchier CW, Güngör T. 2001. An active bivergent rolling-hinge detachment system: Central Menderes metamorphic core complex in Western Turkey. Geology 29: 611–614. [CrossRef] [Google Scholar]
  • Gessner K, Gallardo LA, Markwitz V, Ring U, Thomson ST. 2013. What caused the denudation of the Menderes Massif: Review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Research 24: 243–274. DOI: 210.1016/j.gr.2013.1001.1005. [CrossRef] [Google Scholar]
  • Gibbs AD. 1984. Structural evolution of extensional basin margins. J. geol. Soc. London 141: 609–620. [CrossRef] [Google Scholar]
  • Gibbs AD. 1990. Linked fault families in basin formation. Journal of Structural Geology 12: 795–803. [CrossRef] [Google Scholar]
  • Giunta G, Nigro F, Renda P, Giorgianni A. 2000. The Sicilian-Maghrebides Tyrrhenian margin: A neotectonic evolutionary model. Bollettino della Societa Geologica Italiana 119: 553–565. [Google Scholar]
  • Goes S, Spakman W, Bijwaard H. 1999. A Lower Mantle Source for Central European Volcanism. Science 286: 1928–1931. [CrossRef] [Google Scholar]
  • Govers R, Fichtner A. 2016. Signature of slab fragmentation beneath Anatolia from full-waveform tomography. Earth and Planetary Science Letters 450: 10–19. DOI: 10.1016/j.epsl.2016.1006.1014. [CrossRef] [Google Scholar]
  • Govers R, Wortel M.J.R. 2005. Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth and Planet. Sci. Lett. 236: 505–523. [CrossRef] [Google Scholar]
  • Grasemann B, Schneider D.A, Stockli D.F, Iglseder C. 2012. Miocene bivergent crustal extension in the Aegean: evidence from the western Cyclades (Greece). Lithosphere. DOI: 10.1130/L1164.1131. [Google Scholar]
  • Grasemann B, Huet B, Schneider DA, Rice HN, Lemonnier N, Tschegg C. 2017. Miocene postorogenic extension of the Eocene synorogenic imbricated Hellenic subduction channel: New constraints from Milos (Cyclades, Greece). GSA Bulletin. DOI: 10.1130/B31731.31731. [Google Scholar]
  • Guarnieri P. 2004. Structural evidence for deformation by block rotation in the context of transpressive tectonics, northwestern Sicily (Italy). Journal of Structural Geology 26: 207–219. DOI: 210.1016/S0191-8141(1003)00102-00100. [CrossRef] [Google Scholar]
  • Guennoc P, Debeglia N, Gorini C, Le Marrec A, Mauffret A. 1994. Anatomy of a young passive margin (Gulf of Lions – South france) – Contribution of geophysical data. Bulletin des Centres de recherche exploration-production ELF Aquitaine 18: 33–57. [Google Scholar]
  • Gutscher MA, Kopp H, Krastel S, Bohrmann G, Garlan T, Zaragosi S, et al. 2017. Active tectonics of the Calabrian subduction revealed by new multi-beam bathymetric data and high-resolution seismic profiles in the Ionian Sea (Central Mediterranean). Earth and Planetary Science Letters 461: 61–72; DOI: 10.1016/j.epsl.2016.1012.1020. [CrossRef] [Google Scholar]
  • Haddad A, Ganas A, Kassaras I, Lupi M. 2020. Seismicity and geodynamics of western Peloponnese and central Ionian T Islands: Insights from a local seismic deployment. Tectonophysics 778: 228353. DOI: 228310.221016/j.tecto.222020.228353. [CrossRef] [Google Scholar]
  • Hafkenscheid E, Wortel MJR, Spakman W. 2006. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. J. Geophys. Res. 111. DOI: 10.1029/2005JB003791. [Google Scholar]
  • Haq B, Gorini C, Baur J, Moneron J, Rubino JL. 2020. Deep Mediterranean’s Messinian evaporite giant: How much salt? Global and Planetary Change 184: 103052. DOI: 103010.101016/j.gloplacha.102019.103052. [CrossRef] [Google Scholar]
  • Hoernle K, Zhang YS, Graham D. 1995. Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374: 34–39. [CrossRef] [Google Scholar]
  • Iglseder C, Grasemann B, Rice AHN, Petrakakis K, Schneider DA. 2011. Miocene south directed low-angle normal fault evolution on Kea (West Cycladic Detachment System, Greece). Tectonics 30: TC4013. DOI: 4010.1029/2010TC002802. [CrossRef] [Google Scholar]
  • Iribarren L, Vergés J, Fernàndez M. 2009. Sediment supply from the Betic–Rif orogen to basins through Neogene. Tectonophysics 475: 68–84. DOI: 10.1016/j.tecto.2008.1011.1029. [CrossRef] [Google Scholar]
  • Jabaloy A, Galindo-Saldivar J, Gonzales-Lodeiro F. 1993. The Alpujarride-Nevado-Filabride extensional shear zone, Betic Cordillera, SE Spain. J. Struct. Geol. 15: 555–569. [CrossRef] [Google Scholar]
  • Jackson J.A, McKenzie D. 1983. The geometrical evolution of normal fault systems. J. Struct. Geol. 5: 471–482. [CrossRef] [Google Scholar]
  • Janowski M, Loget N, Gautheron C, Barbarand J, Bellahsen N, Van Den Driessche J, et al. 2017. Neogene exhumation and relief evolution in the eastern Betics (SE Spain): Insights from the Sierra de Gador. Terra Nova 1–7. DOI: 10.1111/ter.12252. [Google Scholar]
  • Johnson C, Harbury N, Hurford AJ. 1997. The role of extension in the Miocene denudation of the Nevado-Filabrides Complex, Betic Cordillera (SE Spain). Tectonics 16: 189–204. [CrossRef] [Google Scholar]
  • Jolivet L, Brun J.P. 2010. Cenozoic geodynamic evolution of the Aegean region. Int. J. Earth Science 99: 109–138. DOI: 110.1007/s00531-00008-00366-00534. [CrossRef] [Google Scholar]
  • Jolivet L, Faccenna C. 2000. Mediterranean extension and the Africa-Eurasia collision. Tectonics 19: 1095–1106. DOI: 1010.1029/2000TC900018. [CrossRef] [Google Scholar]
  • Jolivet L, Dubois R, Fournier M, Goffé B, Michard A, Jourdan C. 1990. Ductile extension in Alpine Corsica. Geology 18: 1007–1010. [CrossRef] [Google Scholar]
  • Jolivet L, Brun J.P, Gautier P, Lallemant S, Patriat M. 1994. 3-D kinematics of extension in the Aegean from the Early Miocene to the Present, insight from the ductile crust. Bull. Soc. géol. France 165: 195–209. [Google Scholar]
  • Jolivet L, Faccenna C, Goffé B, Mattei M, Rossetti F, Brunet C, et al. 1998. Mid-crustal shear zones in post-orogenic extension: the northern Tyrrhenian Sea case. J. Geophys. Res. 103: 12123–12160. DOI: 12110.11029/12197JB03616. [CrossRef] [Google Scholar]
  • Jolivet L, Famin V, Mehl C, Parra T, Aubourg C, Hébert R, et al. 2004. Strain localization during crustal-scale boudinage to form extensional metamorphic domes in the Aegean Sea. In: Whitney DL, Teyssier C, Siddoway CS, eds. Gneiss Domes in Orogeny. Boulder, Colorado: Geological Society of America, pp. 185–210. [Google Scholar]
  • Jolivet L, Augier R, Robin C, Suc JP, Rouchy JM. 2006. The geodynamic context of the Messinian salinity crisis. Sedimentary Geology 188-189: 9–33. [CrossRef] [Google Scholar]
  • Jolivet L, Augier R, Faccenna C, Negro F, Rimmele G, Agard P, et al. 2008. Subduction, convergence and the mode of backarc extension in the Mediterranean region. Bull Soc géol France 179: 525–550. [CrossRef] [Google Scholar]
  • Jolivet L, Faccenna C, Piromallo C. 2009. From Mantle to crust: stretching the Mediterranean. Earth Planet. Sci. Lett. 285: 198–209. DOI: 110.1016/j.epsl.2009.1006.1017. [CrossRef] [Google Scholar]
  • Jolivet L, Labrousse L, Agard P, Lacombe O, Bailly V, Lecomte E, et al. 2010. Corinth Rifting and shallow-dipping detachments, clues from the Corinth Rift and the Aegean. Tectonophysics 483: 287–304. DOI: 210.1016/j.tecto.2009.1011.1001. [CrossRef] [Google Scholar]
  • Jolivet L, Lecomte E, Huet B, Denèle Y, Lacombe O, Labrousse L, et al. 2010. The North Cycladic Detachment System. Earth and Planet. Sci. Lett. 289: 87–104. DOI: 110.1016/j.epsl.2009.1010.1032. [CrossRef] [Google Scholar]
  • Jolivet L, Faccenna C, Huet B, Labrousse L, Le Pourhiet L, Lacombe O, et al. 2013. Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics 597-598: 1–33. DOI: 10.1016/j.tecto.2012.06.011. [CrossRef] [Google Scholar]
  • Jolivet L, Gorini C, Smit J, Leroy S. 2015a. Continental breakup and the dynamics of rifting in back-arc basins: The Gulf of Lion margin. Tectonics 34. DOI: 10.1002/2014TC003570. [CrossRef] [Google Scholar]
  • Jolivet L, Menant A, Sternai P, Rabillard A, Arbaret L, Augier R, et al. 2015b. The geological signature of a slab tear below the Aegean. Tectonophysics 659: 166–182. DOI: 110.1016/j.tecto.2015.1008.1004. [Google Scholar]
  • Jolivet L, Menant A, Clerc C, Sternai P, Bellahsen N, Leroy S, et al. 2018. Extensional crustal tectonics and crust-mantle coupling, a view from the geological record. Earth Science Reviews 185: 1187–1209. DOI: 1110.1016/j.earscirev.2018.1109.1010. [CrossRef] [Google Scholar]
  • Jolivet L, Romagny A, Gorini C, Maillard A, Thinon I, Couëffé R, et al. 2019. Fast dismantling of a mountain belt by mantle flow: late-orogenic evolution of Pyrenees and Liguro-Provençal rifting. Tectonophysics 776: 228312. DOI: 228310.221016/j.tecto.222019.228312. [Google Scholar]
  • Kastens K, Mascle J, Auroux C, Bonatti E, Broglia C, Channell J, et al. 1988. ODP Leg 107 in the Tyrrhenian Sea: insight into passive margin and back-arc basin evolution. Geological Society of America Bulletin 100: 1140–1156. [CrossRef] [Google Scholar]
  • Keller JV, Pialli G. 1990. Tectonics of the island of Elba: a reappraisal. Boll. Soc. Geol. It. 109: 413–425. [Google Scholar]
  • Kissel C, Laj C. 1988. The Tertiary geodynamic evolution of the Aegean arc: a paleomagnetic reconstruction. Tectonophysics 146: 183–201. [CrossRef] [Google Scholar]
  • Kissel C, Laj C, Poisson A, Görür N. 2003. Paleomagnetic reconstruction of the Cenozoic evolution of the Eastern Mediterranean. Tectonophysics 362: 199–217. [CrossRef] [Google Scholar]
  • Krohe A, Mposkos E. 2002. Multiple generations of extensional detachments in the Rhodope mountains (northern Greece): evidence of episodic exhumation of high-pressure rocks. In: Blundell DJ, Neubauer F, Von Quadt A, eds. The timing and location of major ore deposits in an evolving orogen. London: Geological Society, pp. 151–178. [Google Scholar]
  • Lacombe O, Jolivet L, Le Pourhiet L, Lecomte E, Mehl C. 2013. Initiation, geometry and mechanics of brittle faulting in exhuming metamorphic rocks: insights from the northern Cycladic islands (Aegean, Greece). Bull Soc géol France 184: 383–403. DOI: 310.2113/gssgfbull.2184.2114-2115.2383. [CrossRef] [Google Scholar]
  • Lafosse M, d’Acremont E, Rabaute A, Estrada F, Jollivet-Castelot M, Vazquez JT, et al. 2020. Plio-Quaternary tectonic evolution of the southern margin of the Alboran Basin (Western Mediterranean). Solid Earth 11: 741–765. DOI: 710.5194/se-5111-5741-2020. [CrossRef] [Google Scholar]
  • Le Pichon X, Angelier J. 1981. The Aegean Sea. Phil. Trans. Roy. Soc. London 300: 357–372. [Google Scholar]
  • Le Pichon X, Sengör AMC, Demirbag E, Rangin C, Imren C, Armijo R, et al. 2001. The active Main Marmara Fault. Earth Planet. Sci. Lett. 192: 595–616. [CrossRef] [Google Scholar]
  • Le Pichon X, Lallemant S, Chamot-Rooke N, Lemeur D, Pascal G. 2002. The Mediterranean ridge backstop and the Hellenic nappes. Marine Geology 186: 111–125. [CrossRef] [Google Scholar]
  • Le Pichon X, Chamot-Rooke N, Rangin C, Sengor AMC. 2003. The North Anatolian Fault in the Sea of Marmara. J. Geophys. Res. 108. DOI: 10.1029/2002JB001862. [Google Scholar]
  • Le Pourhiet L, Huet B, May DA, Labrousse L, Jolivet L. 2012. Kinematic interpretation of the 3D shapes of metamorphic core complex. Geochem. Geophys. Geosyst. 13: Q09002. DOI: 09010.01029/02012GC004271. [CrossRef] [Google Scholar]
  • Le Pourhiet L, Huet B, Traoré N. 2014. Links between long-term and short-term rheology of the lithosphere: Insights from strike-slip fault modelling. Tectonophysics 631: 146–159. DOI: 110.1016/j.tecto.2014.1006.1034. [CrossRef] [Google Scholar]
  • Le Pourhiet L, May DA, Huille L, Watremez L, Leroy S. 2017. A genetic link between transform and hyper-extended margins. Earth and Planetary Science Letters 465: 184–192; DOI: 110.1016/j.epsl.2017.1002.1043. [CrossRef] [Google Scholar]
  • Leprêtre R, Frizon de Lamotte D, Combier V, Gimeno-Vives O, Mohn G, Eschard R. 2018. The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin. BSGF – Earth Sciences Bulletin 189: 10. DOI: 10.1051/bsgf/2018009. [CrossRef] [Google Scholar]
  • Liotta D, Brogi A, Meccheri M, Dini A, Bianco C, Ruggieri G. 2015. Coexistence of low-angle normal and high-angle strike- to oblique-slip faults during Late Miocene mineralization in eastern Elba Island (Italy). Tectonophysics 660: 17–34. DOI: 10.1016/j.tecto.2015.1006.1025. [CrossRef] [Google Scholar]
  • Lonergan L, Platt JP. 1995. The Malaguide-Alpujarride boundary: a major extensional contact in the internal zones of the eastern Betic Cordillera, SE Spain. J. Struct. Geol. 17: 1655–1671. [CrossRef] [Google Scholar]
  • Lonergan L, White N. 1997. Origin of the Betic-Rif mountain belt. Tectonics 16: 504–522. [CrossRef] [Google Scholar]
  • Loreto MF, Düşünür-Doğan D, Üner S, Işcan-Alp Y, Ocakoğlu N, Cocchi L, et al. 2019. Fault-controlled deep hydrothermal flow in a back-arc tectonic setting, SE Tyrrhenian Sea. Scientific Reports 9: 17724. DOI: 17710.11038/s41598-17019-53696-z. [CrossRef] [Google Scholar]
  • Loÿe-Pilot MD, Durand-Delga M, Feinberg H, Gourinard Y, Magné J. 2004. Les formations burdigaliennes de Corse orientale dans leur cadre géodynamique. C. R. Geoscience 336: 919–930. DOI: 910.1016/j.crte.2004.1002.1011. [CrossRef] [Google Scholar]
  • Lymer G, Lofi J, Gaullier V, Maillard A, Thinon I, Sage F, et al. 2016. The Western Tyrrhenian Sea revisited: New evidence for a rifted basin during the Messinian Salinity Crisis. Marine Geology 398: 1–21. DOI: 10.1016/j.margeo.2017.12.009. [CrossRef] [Google Scholar]
  • Maffione M, Speranza F, Faccenna C, Cascella A, Vignaroli G, Sagnotti L. 2008. A synchronous Alpine and Corsica-Sardinia rotation. J. Geophys. Res. 113: B03104. DOI: 03110.01029/02007JB005214. [Google Scholar]
  • Maillard A, Mauffret A. 1999. Crustal structure and riftogenesis of the Valencia Trough (north-western Mediterranean Sea). Basin Res. 11: 357–379. [CrossRef] [Google Scholar]
  • Maillard A, Jolivet L, Lofi J, Couëffé R, Thinon I. 2020. Transfer Faults and associated volcanic province in the transition zone between the Valencia Basin and the Gulf of Lion: consequences on crustal thinning. Marine and Petroleum Geology 119: 104419. DOI: 10.1016/j.marpetgeo.2020.104419. [CrossRef] [Google Scholar]
  • Martinez-Garcia P, Comas M, Soto JI, Lonergan L, Watts AB. 2013. Strike-slip tectonics and basin inversion in the Western Mediterranean: the Post-Messinian evolution of the Alboran Sea. Basin Research 25: 361–387. DOI: 310.1111/bre.12005. [CrossRef] [Google Scholar]
  • Martinez-Garcia P, Comas M, Lonergan L, Watts AB. 2017. From extension to shortening: Tectonic inversion distributed in time and space in the Alboran sea, western Mediterranean. Tectonics 36: 2777–2805. DOI: 2710.1002/2017TC004489. [CrossRef] [Google Scholar]
  • Martinez-Martinez JM, Azañon JM. 1997. Mode of extensional tectonics in the southeastern Betics (SE Spain): implications for the tectonic evolution of the peri-Alboran orogenic system. Tectonics 16: 205–225. [CrossRef] [Google Scholar]
  • Martínez-Martínez J, Soto J, Balanyá J. 1997. Large scale structures in the Nevado-Filáride Complex and crustal seismic fabrics of the deep seismic reflection profile ESCI-Béticas 2. Bol. Soc. Geol. Esp 8: 477–489. [Google Scholar]
  • Martínez-Martínez JM, Soto JI, Balanyá JC. 2002. Orthogonal folding of extensional detachments: structure and origin of the Sierra Nevada elongated dome (Betics, SE Spain). Tectonics 21. DOI: 10.1029/2001TC001283. [Google Scholar]
  • Martínez-Martínez JM, Booth-Rea G, Azañón JM, Torcal F. 2006. Active transfer fault zone linking a segmented extensional system (Betics, southern Spain): Insight into heterogeneous extension driven by edge delamination. Tectonophysics 422: 159–173. [CrossRef] [Google Scholar]
  • Mascle J, Chaumillon E. 1997. Pre-collisional geodynamics of the Mediterranean Sea: the Mediterranean Ridge and the Tyrrhenian Sea. Annali di Geofisica XL: 569–586. [Google Scholar]
  • Mascle GH, Tricart P, Torelli L, Bouillin JP, Compagnoni R, Depardon S, et al. 2004. Structure of the Sardinia Channel: crustal thinning and tardi-orogenic extension in the Apenninic-Maghrebian orogen; results of the Cyana submersible survey (SARCYA and SARTUCYA) in the western Mediterranean. Bull. Soc. géol. Fr. 175: 607–627. [CrossRef] [Google Scholar]
  • Mauffret A, Pascal G, Maillard A, Gorini C. 1995. Tectonics and deep structure of the north-western Mediterranean basin. Marine and Petroleum Geology 12: 645–666. [CrossRef] [Google Scholar]
  • Mauffret A, Contrucci I, Brunet C. 1999. Structural evolution of the Northern Tyrrhenian Sea from new seismic data. Marine and Petroleum Geology 16: 381–407. [CrossRef] [Google Scholar]
  • Mauffret A, Durand de Grossouvre B, Dos Reis AT, Gorini C, Nercessian A. 2001. Structural geometry in the eastern Pyrenees and western Gulf of Lion (Western Mediterranean). Journal of Structural Geology 23: 1701–1726. [CrossRef] [Google Scholar]
  • Maury RC, Fourcade S, Coulonc C, El Azzouzia M, Bellona H, Coutelle A, et al. 2000. Post-collisional Neogene magmatism of the Mediterranean Maghreb margin: a consequence of slab breakoff. C. R. Acad. Sci. Paris, Sciences de la Terre et des planètes / Earth and Planetary Sciences 331: 159–173. [Google Scholar]
  • McKenzie D. 1972. Active tectonics in the Mediterranean region. Geophys. J. R. Astr. Soc. 30: 109–185. [CrossRef] [Google Scholar]
  • McKenzie D. 1978. Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. Geophys. J. R. Astr. Soc. 55: 217–254. [CrossRef] [Google Scholar]
  • McKenzie DP, Jackson JA. 1986. A block model of distributed deformation by faulting. J. Geol. Soc. London 143: 349–353. [CrossRef] [Google Scholar]
  • Medaouri M, Déverchère J, Graindorge D, Bracene R, Badjia R, Ouabadic A, et al. 2014. The transition from Alboran to Algerian basins (Western Mediterranean Sea): Chronostratigraphy, deep crustal structure and tectonic evolution at the rear of a narrow slab rollback system. Journal of Geodynamics 77: 186–205. DOI: 110.1016/j.jog.2014.1001.1003. [CrossRef] [Google Scholar]
  • Mehl C, Jolivet L, Lacombe O. 2005. From ductile to brittle: evolution and localization of deformation below a crustal detachment (Tinos, Cyclades, Greece). Tectonics 24: TC4017. DOI: 4010.1029/2004TC001767. [CrossRef] [Google Scholar]
  • Mehl C, Jolivet L, Lacombe O, Labrousse L, Rimmelé G. 2007. Structural evolution of Andros island (Cyclades, Greece): a key to the behaviour of a flat detachment within an extending continental crust. In: Taymaz T, Dilek Y, Ylmaz Y, eds. The geodynamics of the Aegean and Anatolia. London: Geological Society, pp. 41–73. DOI: 10.1144/SP1291.11430305-8719/1107/$1115.1100. [Google Scholar]
  • Menant A, Jolivet L, Augier R, Skarpelis N. 2013. The North Cycladic Detachment System and associated mineralization, Mykonos, Greece: insights on the evolution of the Aegean domain. Tectonics 32: 433–452. DOI: 410.1002/tect.20037. [CrossRef] [Google Scholar]
  • Menant A, Jolivet L, Vrielynck B. 2016a. Kinematic reconstructions and magmatic evolution illuminating crustal and mantle dynamics of the eastern Mediterranean region since the late Cretaceous. Tectonophysics 675: 103–140. DOI: 110.1016/j.tecto.2016.1003.1007. [CrossRef] [Google Scholar]
  • Menant A, Sternai P, Jolivet L, Guillou-Frottier L, Gerya T. 2016b. 3D numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: The eastern Mediterranean case. Earth Planet. Sci. Lett. 442: 93–107. DOI: 110.1016/j.epsl.2016.1003.1002. [CrossRef] [Google Scholar]
  • Merle O, Michon L. 2001. The formation of the West European Rift: a new model as exemplified by the Massif Central Area. Bull. Soc. Géol. France 172: 213–221. [CrossRef] [Google Scholar]
  • Milia A, Iannace P, Tesauro M, Torrente MM. 2017. Upper plate deformation as marker for the Northern STEP fault of the Ionian slab (Tyrrhenian Sea, central Mediterranean). Tectonophysics 710-711: 127–148. DOI: 10.1016/j.tecto.2016.08.017. [CrossRef] [Google Scholar]
  • Milia A, Iannace P, Tesauro M, Torrente MM. 2018. Marsili and Cefalù basins: The evolution of a rift system in the southern Tyrrhenian Sea (Central Mediterranean). Global and Planetary Change 171: 225–237. DOI: 210.1016/j.gloplacha.2017.1012.1003. [CrossRef] [Google Scholar]
  • Moulin M, Klingelhoeffer F, Afilhado A, Aslanian A, Schnurle P, Nouzé H, et al. 2015. Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) – I. Gulf of Lion’s margin. Bull. Soc. géol. France 186: 309–330. [CrossRef] [Google Scholar]
  • Negro F, Rimmelé G, Jolivet L, Augier R, Goffé B, Azañon JM. 2005. Tectonic and metamorphic evolution of the Alpujárride Complex in Central and Eastern Betics (Alboran Domain, SE Spain). Tectonics submitted. [Google Scholar]
  • Oldow JS, Channell JET, Catalano R, D’Argenio B. 1990. Contemporaneous thrusting and large-scale rotations in the western Sicilian fold and thrust belt. Tectonics 9: 661–681. DOI: 610.1029/TC1009i1004p00661. [CrossRef] [Google Scholar]
  • Orozco M, Alonso-Chaves FM, Nieto F. 1997. Gravity-induced recumbent folds and low-angle normal faults in the Alpujarras region (Betic Cordilleras, Spain): indications of Miocene extensional tectonics in the western Mediterranean. C.R. Acad. Sci. Paris 325: 215–219. [Google Scholar]
  • Papanikolaou DJ, Royden LH. 2007. Disruption of the Hellenic arc: Late Miocene extensional detachment faults and steep Pliocene-Quaternary normal faults – Or what happened at Corinth? Tectonics 26: TC5003. DOI: 10.1029/2006TC002007. [CrossRef] [Google Scholar]
  • Patacca E, Sartori R, Scandone P. 1990. Tyrrhenian basin and Apenninic arcs: kinematic relations since late Tortonian times. Mem. Soc. Geol. It. 45: 425–451. [Google Scholar]
  • Pe-Piper G, Piper DJW. 2006. Unique features of the Cenozoic igneous rocks of Greece. In: Dilek Y, Pavlides S, eds. Postcollisional tectonics and magmatism in the Mediterranean region and Asia. Geological Society of America, pp. 259–282. DOI: 210.1130/2006.2409(1114). [Google Scholar]
  • Pe-Piper G, Piper DJW. 2007. Neogene back-arc volcanism of the Aegean: new insights into the relationship between magmatism and tectonics. In: Beccaluva L, Bianchini G, eds. Cenozoic Volcanism in the Mediterranean Area. Geological Society of America, pp. 17–31. DOI: 10.1130/2007.2418(1102). [Google Scholar]
  • Pellen R, Aslanian D, Rabineau M, Leroux E, Gorini C, Silenziario C, et al. 2016. The Minorca Basin: a buffer zone between the Valencia and Liguro-Provençal Basins (NW Mediterranean Sea). Terra Nova 28: 245–256. DOI: 210.1111/ter.12215. [CrossRef] [Google Scholar]
  • Pérouse E, Chamot-Rooke N, Rabaute A, Briole P, Jouanne F, Georgiev I, et al. 2012. Bridging onshore and offshore present-day kinematics of central and eastern Mediterranean: Implications for crustal dynamics and mantle flow. Geochem. Geophys. Geosyst 13: Q09013. DOI: 09010.01029/02012GC004289. [Google Scholar]
  • Pérouse E, Sébrier M, Braucher R, Chamot-Rooke N, Bourles D, Briole P, et al. 2017. Transition from collision to subduction in Western Greece: the Katouna-Stamna active fault system and regional kinematics. Int. J. Earth Sci. 106: 967–989. DOI: 910.1007/s00531-00016-01345-00539. [CrossRef] [Google Scholar]
  • Philippon M, Brun JP, Gueydan F, Sokoutis D. 2014. The interaction between Aegean back-arc extension and Anatolia escape since Middle Miocene. Tectonophysics 631: 176–188. DOI: 110.1016/j.tecto.2014.1004.1039. [CrossRef] [Google Scholar]
  • Piromallo C, Morelli A. 2003. P wave tomography of the mantle under the Alpine-Mediterranean area. J. Geophys. Res. 108: 2065. DOI: 2010.2129/2002JB001757. [Google Scholar]
  • Piromallo C, Becker TW, Funiciello F, Faccenna C. 2006. Three-dimensional instantaneous mantle flow induced by subduction. J. Geophys. Res. 33. [Google Scholar]
  • Platt JP, Behr WM, Johanesen K, Williams JR. 2013. The Betic-Rif Arc and Its Orogenic Hinterland: A Review. Annu. Rev. Earth Planet. Sci. 41: 313–357. DOI: 310.1146/annurev-earth-050212-123951. [CrossRef] [Google Scholar]
  • Polonia A, Torelli L, Artoni A, Carlini M, Faccenna C, Ferranti L, et al. 2016. The Ionian and Alfeo-Etna fault zones: New segments of an evolving plate boundary in the central Mediterranean Sea? Tectonophysics 675: 69–90. DOI: 10.1016/j.tecto.2016.1003.1016. [CrossRef] [Google Scholar]
  • Prada M, Sallares V, Ranero CR, Vendrell MG, Grevemeyer I, Zitellini N, et al. 2014. Seismic structure of the Central Tyrrhenian basin: Geophysical constraints on the nature of the main crustal domains. J. Geophys. Res. Solid Earth 119: 52–70. DOI: 10.1002/2013JB010527. [CrossRef] [Google Scholar]
  • Prada M, Ranero CR, Sallarès V, Zitellini N, Grevemeyer I. 2016. Mantle exhumation and sequence of magmatic events in the Magnaghi–Vavilov Basin (Central Tyrrhenian, Italy): New constraints from geological and geophysical observations. Tectonophysics 689: 133–142. DOI: 110.1016/j.tecto.2016.1001.1041. [CrossRef] [Google Scholar]
  • Prada M, Sallares V, Ranero CR, Vendrell MG, Grevemeyer I, Zitellini N, et al. 2018. Spatial variations of magmatic crustal accretion during the opening of the Tyrrhenian back-arc from wide-angle seismic velocity models and seismic reflection images. Basin Research 30: 124–141. DOI: 110.1111/bre.12211. [CrossRef] [Google Scholar]
  • Presti D, Billi A, Orecchio B, Totaro C, Faccenna C, Neri G. 2013. Earthquake focal mechanisms, seismogenic stress, and seismotectonics of the Calabrian Arc, Italy. Tectonophysics 602: 153–175. DOI: 110.1016/j.tecto.2013.1001.1030. [CrossRef] [Google Scholar]
  • Rabillard A, Arbaret L, Jolivet L, Le Breton N, Gumiaux C, Augier R, et al. 2015. Interactions between plutonism and detachments during Metamorphic Core Complex formation, Serifos Island (Cyclades, Greece). Tectonics 34: 1080–1106. DOI: 1010.1002/2014TC003650. [CrossRef] [Google Scholar]
  • Réhault JP, Boillot G, Mauffret A. 1984. The Western Mediterranean basin geological evolution. Marine Geology 5: 447–477. [CrossRef] [Google Scholar]
  • Réhault JP, Moussat E, Fabbri A. 1987. Structural evolution of the tyrrhenian back-arc basin. Mar. Geol. 74: 123–150. [CrossRef] [Google Scholar]
  • Réhault JP, Honthaas C, Guennoc P, Bellon H, Ruffet G, Cotten J, et al. 2012. Offshore Oligo-Miocene volcanic fields within the Corsica-Liguria Basin: Magmatic diversity and slab evolution in the western Mediterranean Sea. Journal of Geodynamics 58: 73–95. DOI: 10.1016/j.jog.2012.1002.1003. [CrossRef] [Google Scholar]
  • Ring U, Laws S, Bernet M. 1999. Structural analysis of a complex nappe sequence and late-orogenic basins from the Aegean island of Samos, Greece. J. Struct. Geol. 21: 1575–1601. [CrossRef] [Google Scholar]
  • Ring U, Glodny J, Will T, Thomson S. 2010. The Hellenic Subduction System: High-Pressure Metamorphism, Exhumation, Normal Faulting, and Large-Scale Extension. Annu. Rev. Earth Planet. Sci. 38: 45–76. DOI: 10.1146/annurev.earth.050708.170910. [CrossRef] [Google Scholar]
  • Ring U, Gessner K, Thomson S. 2017. Variations in fault-slip data and cooling history reveal corridor of heterogeneous backarc extension in the eastern Aegean Sea region. Tectonophysics 700-701: 108–130. DOI: 110.1016/j.tecto.2017.1002.1013. [CrossRef] [Google Scholar]
  • Roca E, Guimerà J. 1992. The Neogene structure of the eastern Iberian margin: structural constraints on the crustal evolution of the Valencia trough (western Mediterranean). Tectonophysics 203: 203–218. [CrossRef] [Google Scholar]
  • Roche V, Bouchot V, Beccaletto L, Jolivet L, Guillou-Frottier L, Tuduri J, et al. 2018a. Structural, lithological and geodynamic controls on geothermal activity in the Menderes geothermal Province (Western Anatolia, Turkey). Int J Earth Sci (Geol Rundsch) in press. DOI: 10.1007/s00531-00018-01655-00531. [Google Scholar]
  • Roche V, Sternai P, Guillou-Frottier L, Menant A, Jolivet L, Bouchot V, et al. 2018b. Emplacement of metamorphic core complexes and associated geothermal systems controlled by slab dynamics. Earth and Planetary Science Letters 498: 322–333. DOI: 310.1016/j.epsl.2018.1006.1043. [CrossRef] [Google Scholar]
  • Roche V, Jolivet L, Papanikolaou D, Bozkurt E, Menant A, Rimmelé G. 2019. Slab fragmentation beneath the Aegean/Anatolia transition zone: Insights from the tectonic and metamorphic evolution of the Eastern Aegean region. Tectonophysics 754: 101–129. DOI: 110.1016/j.tecto.2019.1001.1016. [CrossRef] [Google Scholar]
  • Rohais S, Moretti I. 2017. Structural and Stratigraphic Architecture of the Corinth Rift (Greece): An Integrated Onshore to Offshore Basin-Scale Synthesis. In: Roure F, ed. Lithosphere Dynamics and Sedimentary Basins of the Arabian Plate and Surrounding Areas. Springer International Publishing, pp. 89–120. DOI: 110.1007/1978-1003-1319-44726-44721_44725. [Google Scholar]
  • Rohais S, Eschard R, Ford M, Guillocheau F, Moretti I. 2007. Stratigraphic architecture of the Plio-Pleistocene infill of the Corinth Rift, implications for its structural evolution. Tectonophysics 440: 5–28. [CrossRef] [Google Scholar]
  • Rohais S, Joannin S, Colin JP, Suc JP, Guillocheau F, Eschard R. 2007. Age and environmental evolution of the syn-rift fill of the southern coast of the Gulf of Corinth (Akrata-Derveni region, Greece). Bull. Soc. Géol. France 178. [Google Scholar]
  • Romagny A, Jolivet L, Menant A, Bessière E, Maillard A, Canva A, et al. 2020. Detailed tectonic reconstructions of the Western Mediterranean region for the last 35 Ma, insights on driving mechanisms. BSGF-Earth Sciences Bulletin, in press, this volume. [Google Scholar]
  • Rosenbaum G, Lister GS, Duboz C. 2002. Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. Journal of the Virtual Explorer 8: 107–126. [Google Scholar]
  • Rossetti F, Faccenna C, Goffé B, Monié P, Argentieri A, Funiciello R, et al. 2001. Alpine structural and metamorphic signature of the Sila Piccola massif nappe stack (Calabria, Italy): insights for the tectonic evolution of the Calabrian arc. Tectonics 20: 112–133. [CrossRef] [Google Scholar]
  • Rossetti F, Goffé B, Monié P, Faccenna C, Vignaroli G. 2004. Alpine orogenic P-T-t-deformation history of the Catena Costiera area and surrounding regions (Calabrian Arc, southern Italy): the nappe edifice of north Calabria revised with insights on the Tyrrhenian-Apennine system formation. Tectonics 23. DOI: 10.1029/2003TC001560. [CrossRef] [Google Scholar]
  • Rossetti F, Theye T, Lucci F, Bouybaouene ML, Dini A, Gerdes A, et al. 2010. Timing and modes of granite magmatism in the core of the Alboran Domain (Rif chain, northern Morocco): implications for the Alpine evolution of the western Mediterranean. Tectonics 29: TC2017. DOI: 2010.1029/2009TC002487. [CrossRef] [Google Scholar]
  • Rossetti F, Dini A, Lucci F, Bouybaouenne M, Faccenna C. 2013. Early Miocene strike-slip tectonics and granite emplacement in the Alboran Domain (Rif Chain, Morocco): significance for the geodynamic evolution of Western Mediterranean. Tectonophysics 608: 774–791. DOI: 710.1016/j.tecto.2013.1008.1002. [CrossRef] [Google Scholar]
  • Roure F, Howell DG, Müller C, Moretti I. 1990. Late Cenozoic subduction complex of Sicily. Journal of Structural Geology 12: 259–266. DOI: 210.1016/0191-8141(1090)90009-N. [CrossRef] [Google Scholar]
  • Royden LH, Papanikolaou DJ. 2011. Slab segmentation and late Cenozoic disruption of the Hellenic arc. Geochem. Geophys. Geosyst. 12: Q03010. DOI: 03010.01029/02010GC003280. [CrossRef] [Google Scholar]
  • Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, et al. 2009. Global Multi-Resolution Topography synthesis. Geochem. Geophys. Geosyst. 10: Q01005. DOI: 01010.01029/02003GC000614. [Google Scholar]
  • Sachpazi M, Laigle M, Charalampakis M, Diaz J, Kissling E, Gesret A, et al. 2016. Segmented Hellenic slab rollback driving Aegean deformation and seismicity. Geophys. Res. Lett. 43. DOI: 10.1002/2015GL066818. [Google Scholar]
  • Salaün G, Pedersen H, Paul A, Farra V, Karabulut H, Hatzfeld D, et al. 2012. High resolution surface wave tomography beneath the Aegean-Anatolia region: constraints on upper mantle structure. Geophysical J. Int. 190: 406–420. DOI: 410.1111/j.1365-1246X.2012.05483.x. [CrossRef] [Google Scholar]
  • Sanz de Galdeano C, Vera JA. 1992. Stratigraphic record and paleogeographical context of the Neogene basins in the Betic Cordillera, Spain. Basin Research 4: 21–36. [CrossRef] [Google Scholar]
  • Sartori R. 1990. In: Kastens KA, Mascle J, et al., eds. The main results of ODP Leg 107 in the frame of neogene to Recent geology of peri-Tyrrhenian areas, pp. 715–730. [Google Scholar]
  • Sartori R. 2003. The Tyrrhenian back-arc basin and subduction of the Ionian lithosphere. Episodes 26: 217–221. [CrossRef] [Google Scholar]
  • Sartori R, Torelli L, Zitellini N, Carrara G, Magaldi M, Mussoni P. 2004. Crustal features along a W-E Tyrrhenian transect from Sardinia to Campania margins (Central Mediterranean). Tectonophysics 383: 171–192. [CrossRef] [Google Scholar]
  • Schellart WP, Freeman J, Stegman DR, Moresi L, May D. 2007. Evolution and diversity of subduction zones controlled by slab width. Nature 446: 308–311. DOI: 310.1038/nature05615. [CrossRef] [Google Scholar]
  • Schneider DA, Soukis K, Grasemann B, Draganits E. 2018. Geodynamic significance of the Santorini Detachment System (Cyclades, Greece). Terra Nova 30: 414–422. DOI: 410.1111/ter.12357. [CrossRef] [Google Scholar]
  • Scrocca D. 2006. Thrust front segmentation induced by differential slab retreat in the Apennines (Italy). Terra Nova 18: 154–161. DOI: 110.1111/j.1365-3121.2006.00675.x. [CrossRef] [Google Scholar]
  • Séranne M. 1999. The Gulf of Lions continental margin (NW Mediterranean) revisited by IBS: an overview. In: Durand B, Jolivet L, Horvàth F, Séranne M, eds. The Mediterranean basins: Tertiary extension within the Alpine Orogen. London: Geological Society, pp. 15–36. [Google Scholar]
  • Séranne M, Couëffé R, Husson E, Villard J. 2019. The transition from Pyrenean shortening to Gulf of Lion rifting in Languedoc (South France) – A tectonic-sedimentation analysis. BSGF – Earth Sciences Bulletin submitted. [Google Scholar]
  • Sorel D. 2000. A Pleistocene and still-active detachment fault and the origin of the Corinth-Patras rift, Greece. Geology 28: 83–86. [CrossRef] [Google Scholar]
  • Soto JI, Platt JP. 1999. Petrological and structural evolution of high-grademetamorphic rocks from the floor of the Alboran Sea basin, Western Mediterranean. J. Petrol. 40: 21–60. [CrossRef] [Google Scholar]
  • Sözbilir H, Sarı B, Uzel B, Sümer Ö, Akkiraz S. 2011. Tectonic implications of transtensional supradetachment basin development in an extension-parallel transfer zone: the Kocaçay Basin, western Anatolia, Turkey. Basin Research 23: 423–448. DOI: 410.1111/j.1365-2117.2010.00496.x. [CrossRef] [Google Scholar]
  • Spadini G, Wezel FC. 1994. Structural evolution of the “41st parallel zone”, Tyrrhenian Sea. Terra Nova 6: 552–562. [CrossRef] [Google Scholar]
  • Spakman W, Wortel R. 2004. A tomographic view on Western Mediterranean geodynamics. In: Cavazza W, Roure FM, Spakman W, Stampfli GM, Ziegler P.A, eds. The TRANSMED Atlas − The Mediterranean region from crust to Mantle. Berlin, Heidelberg: Springer, pp. 31–52. [CrossRef] [Google Scholar]
  • Speranza F, Hernandez-Moreno C, Avellone G, Gasparo Morticelli M, Agate M, Sulli A, et al. 2018. Understanding Paleomagnetic rotations in Sicily: Thrust versus strike- slip tectonics. Tectonics 37: 1138–1158. DOI: 1110.1002/2017TC004815. [CrossRef] [Google Scholar]
  • Sternai P, Jolivet L, Menant A, Gerya T. 2014. Subduction and mantle flow driving surface deformation in the Aegean-Anatolian system. Earth Planet. Sci. Lett. 405: 110–118. DOI: 110.1016/j.epsl.2014.1008.1023. [CrossRef] [Google Scholar]
  • Sternai P, Avouac JP, Jolivet L, Faccenna C, Gerya T, Becker TW, et al. 2016. On the influence of the asthenospheric flow on the tectonics and topography at a collision-subduction transition zones: comparison with the eastern Tibetan margin. Journal of Geodynamics 100: 184–197. DOI: 110.1016/j.jog.2016.1002.1009. [CrossRef] [Google Scholar]
  • Suckale J, Rondenay S, Sachpazi M, Charalampakis M, Hosa A, Royden LH. 2009. High-resolution seismic imaging of the western Hellenic subduction zone using teleseismic scattered waves. Geophys. J. Int. 178: 775–791. DOI: 710.1111/j.1365-1246X.2009.04170.x. [CrossRef] [Google Scholar]
  • Sulli A. 2000. Structural framework and crustal characteristics of the Sardinia Channel Alpine transect in the central Mediterranean. Tectonophysics 324: 321–336. [CrossRef] [Google Scholar]
  • Taymaz T, Jackson J, McKenzie D. 1991. Active tectonics of the north and central Aegean Sea. Geophys. J. Int. 106: 433–490. [CrossRef] [Google Scholar]
  • Thinon I, Guennoc P, Serrano O, Maillard A, Lasseur E, Rehault JP. 2016. Seismic markers of the Messinian Salinity Crisis in an intermediate-depth basin: Data for understanding the Neogene evolution of the Corsica Basin (northern Tyrrhenian Sea). Marine and Petroleum Geology 77: 1274–1296. DOI: 1210.1016/j.marpetgeo.2016.1202.1017. [CrossRef] [Google Scholar]
  • Tricart P, Torelli L, Argnani A, Rekhiss F, Zitellini N. 1994. Extensional collapse related to compressional uplift in the Alpine Chain off northern Tunisia (Central Mediterranean). Tectonophysics 238: 317–329. [CrossRef] [Google Scholar]
  • Uzel B, Sözbilir H, Özkaymak C, Kaymakci N, Langereis CG. 2012. Structural evidence for strike-slip deformation in the Izmir-Balikesir Transfer Zone and consequences for late Cenozoic evolution of western Anatolia (Turkey). Journal of Geodynamics. DOI: 10.1016/j.jog.2012.1006.1009. [Google Scholar]
  • Uzel B, Kuiper K, Sözbilir H, Kaymakci N, Langereis CG, Boehm K. 2019. Miocene geochronology and stratigraphy of western Anatolia: Insights from new Ar/Ar dataset. Lithos. DOI: 10.1016/j.lithos.2019.105305. [Google Scholar]
  • van Bemmelen RW. 1973. Geodynamic models for the Alpine type of orogeny (test-case II: the Alps in central Europe). Tectonophysics 18: 33–79. [CrossRef] [Google Scholar]
  • Van Bemmelen RW. 1974. Driving forces of orogeny, with emphasis on blue-schist facies of metamorphism (test-case III: the Japan Arc). Tectonophysics 22: 83–125. [CrossRef] [Google Scholar]
  • van Hinsbergen DJJ, Schmid SM. 2012. Map view restoration of Aegean–West Anatolian accretion and extension since the Eocene. Tectonics 31: TC5005. DOI: 5010.1029/2012TC003132. [Google Scholar]
  • van Hinsbergen DJJ, Langereis CG, Meulenkamp JE. 2005. Revision of the timing, magnitude and distribution of Neogene rotations in the western Aegean region. Tectonophysics 396: 1–34. [CrossRef] [Google Scholar]
  • van Hinsbergen DJJ, Vissers RLM, Spakman W. 2014. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics 33: 393–419. DOI: 310.1002/tect.20125. [CrossRef] [Google Scholar]
  • Vergés J, Fernàndez M. 2012. Tethys-Atlantic interaction along the Iberia-Africa plate boundary: The Betic-Rif orogenic system. Tectonophysics 579: 144–172. DOI: 110.1016/j.tecto.2012.1008.1032. [CrossRef] [Google Scholar]
  • Vignaroli G, Faccenna C, Jolivet L, Piromallo C, Rossetti F. 2008. Orogen-parallel extension and arc bending forced by slab tearing and toroidal flow at the junction between Alps and Apennines. Tectonophysics 450: 34–50. DOI: 10.1016/j.tecto.2007.1012.1012. [CrossRef] [Google Scholar]
  • Villaseñor A, Chevrot S, Harnafi M, Gallart J, Pazos A, Serrano I, et al. 2015. Subduction and volcanism in the Iberia-North Africa collision zone from tomographic images of the upper mantle. Tectonophysics 663: 238–249. [CrossRef] [Google Scholar]
  • Walcott CR, White SH. 1998. Constraints on the kinematics of post-orogenic extension imposed by stretching lineations in the Aegean region. Tectonophysics 298: 155–175. [CrossRef] [Google Scholar]
  • Williams JR, Platt JP. 2018. A new structural and kinematic framework for the Alborán Domain (Betic-Rif arc, western Mediterranean orogenic system). Journal of the Geological Society. DOI: 10.1144/jgs2017-1086. [Google Scholar]
  • Wortel M.J.R, Spakman W. 2000. Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290: 1910–1917. [CrossRef] [Google Scholar]
  • Wortel R, Govers R, Spakman W. 2009. Continental Collision and the STEP-wise Evolution of Convergent Plate Boundaries: From Structure to Dynamics. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Berlin Heidelberg: Springer-Verlag, pp. 47–59. DOI 10.1007/1978-1003-1540-87974-87979. [CrossRef] [Google Scholar]
  • Ziegler PA, Dèzes P. 2005. Evolution of the lithosphere in the area of the Rhine Rift System. Int J Earth Sci (Geol Rundsch) 94: 594–614. DOI: 510.1007/s00531-00005-00474-00533. [CrossRef] [Google Scholar]
  • Zitellini N, Ranero CR, Loreto MF, Ligi M, Pastore M, D’Oriano P, et al. 2019. Recent inversion of the Tyrrhenian Basin. Geology 48: 123–127. DOI: 110.1130/G46774.46771. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.