Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Article Number 39
Number of page(s) 11
DOI https://doi.org/10.1051/bsgf/2021034
Published online 22 September 2021
  • Algeo TJ, Lyons TW. 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21: PA1016. https://doi.org/10.1029/2004PA001112. [Google Scholar]
  • Algeo TJ, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology 268: 211–225. [CrossRef] [Google Scholar]
  • Averbuch O, Tribovillard N, Devleeschouwer X, Riquier L, Mistiaen B, Van Vliet-Lanoe B. 2005. Mountain building-enhanced continental weathering and organic carbon burial as major causes for climatic cooling at the Frasnian-Famennian boundary (ca. 376 Ma BP). Terra Nova 17: 33–42. [Google Scholar]
  • Aycard M, Derenne S, Largeau C, Tribovillard N, Baudin F. 2003. Formation pathways of proto-kerogens in Holocene sediments of the upwelling influenced Cariaco Trench, Venezuela. Organic Geochemistry 34: 701–718. [Google Scholar]
  • Bardelli F, Benvenuti M, Costagiola P, Di Benedetto F, Lattanzi P, Meneghini C, et al. 2011. Arsenic uptake by natural calcite: An XAS study. Geochimica et Cosmochimica Acta 75: 3011–3023. [Google Scholar]
  • Barker PE, Kennett JP, et al. 1988. Proc. ODP, Init. Repts, 113: College Station, TX (Ocean Drilling Program). https://doi.org/10.2973/odp.proc.ir.113.1988. [Google Scholar]
  • Basu A, Saha D, Saha R, Ghosh T, Saha B. 2014. A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Res. Chem. Interm. 40: 447–485. [Google Scholar]
  • Baudin F, Bulot LG, Cecca F, Coccioni R, Gardin S, Renard M. 1999. Un équivalent du « Niveau Faraoni » dans le Bassin du Sud-Est de la France, indice possible d’un événement anoxique fini-hauterivien étendu à la Téthys méditerranéenne. Bulletin de la Société géologique de France 170: 487–498. [Google Scholar]
  • Baux N, Murat A, Faivre Q, Lesourd S, Poizot E, Méar Y, et al. 2019. Sediment dynamic equilibrium, a key for assessing a coastal anthropogenic disturbance using geochemical tracers: Application to the eastern part of the Bay of Seine. Continental Shelf Research 175: 87–98. [Google Scholar]
  • Belzile N, Chen YW, Wang ZJ. 2001. Oxidation of antimony(III) by amorphous iron and manganese oxyhydroxides. Chem. Geol. 174: 379–387. [Google Scholar]
  • Bout-Roumazeilles V, Riboulleau A, Armynot du Châtelet E, Lorenzoni L, Tribovillard N, Murray RW, et al. 2013. Clay mineralogy of surface sediments as a tool for deciphering river contributions to the Cariaco Basin (Venezuela). Journal of Geophysical Research – Oceans 118: 750–761. [Google Scholar]
  • Broecker WS, Peng T-H. 1982. Tracers in the Sea. Palisades, NY, Columbia University. Eldigio Press, 689 p. [Google Scholar]
  • Calvert SE, Pedersen TF. 1993. Geochemistry of recent oxic and anoxic sediments: Implications for the geological record. Marine Geology 113: 67–88. [Google Scholar]
  • Chaillou G, Schäfer J, Blanc G, Anschutz P. 2008. Mobility of Mo, U, As, and Sb within modern turbidites. Marine Geology 254: 171–179. [Google Scholar]
  • Chen F, Hu Y, Feng D, Zhang X, Cheng S, Cao J, et al. 2016. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea. Chemical Geology 443: 173–181. [Google Scholar]
  • Crombez V, Rohais S, Euzen T, Riquier L, Baudin F, Hernandez-Bilbao E. 2020. Trace metal elements as paleoenvironmental proxies: Why should we account for sedimentation rate variations? Geology 48: 839–843. [Google Scholar]
  • Cutter GA. 1991. Dissolved arsenic and antimony in the Black Sea. Deep Sea Res. Part A 38(suppl): S825–S843. [Google Scholar]
  • Cutter GA, Cutter LS. 1995. Behavior of dissolved antimony, arsenic, and selenium in the Atlantic Ocean. Mar. Chem. 49: 295–306. [Google Scholar]
  • Cutter GA, Cutter LS. 2006. Biogeochemistry of arsenic and antimony in the North Pacific Ocean. Geochemistry Geophysics Geosystems 7: Q05M08. [Google Scholar]
  • Cutter GA, Cutter LS, Featherstone AM, Lohrenz SE. 2001. Antimony and arsenic biogeochemistry in the western Atlantic Ocean. Deep Sea Res Part II 48: 2895–2915. [Google Scholar]
  • Deconinck J-F, Geyssant JR, Proust J-N, Vidier JP. 1996. Sédimentologie et biostratigraphie des dépôts kimméridgiens et tithoniens du Boulonnais. Annales de la Société Géologique du Nord 4: 157–170. [Google Scholar]
  • Denis D, Crosta X, Schmidt S, Carson DS, Ganeshram RS, Renssen H, et al. 2009, Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica. Quaternary Science Reviews 28: 1291–1303. [Google Scholar]
  • Feist R. 1985. Devonian stratigraphy of the South-eastern Montagne Noire (France). Cour. Forsch Inst. Senckenberg 75: 331–352. [Google Scholar]
  • Gao S, Luo TC, Zhang BR, Zhang HF, Han YW, Zhao ZD, et al. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta 62: 1959–1975. [Google Scholar]
  • Gaillard C, Bourseau JP, Boudeulle M, Pailleret P, Rio M, Roux M. 1985. Les pseudobiohermes de Beauvoisin (Drôme) : un site hydrothermal sur la marge téthysienne l’Oxfordien ? Bulletin de la Société Géologique de France Série 8: 69–78. [Google Scholar]
  • Gaillard C, Rio M, Rolin Y. 1992. Fossil chemosynthetic communities related to vents or seeps in sedimentary basins: The pseudobioherms of south-eastern France compared to other world examples. Palaios 7: 451–465. [CrossRef] [Google Scholar]
  • Gay A, Lopez M, Potdevin J-L, Vidal V, Varas G, Favier A, et al. 2019. 3D morphology and timing of the giant fossil pockmark of Beauvoisin, SE Basin of France. Journal of the Geological Society 176: 61–77. [Google Scholar]
  • Gregory DD, Large RR, Halpin JA, Baturina EL, Lyons TW, Wu S, et al. 2015. Trace element content in sedimentary pyrite in black shales. Economic Geology 110: 1389–1410. [Google Scholar]
  • Hatem E, Tribovillard N, Averbuch O, Vidier D, Sansjofre P, Birgel D, et al. 2014. Oyster patch reefs as indicators of fossil hydrocarbon seeps induced by synsedimentary faults. Marine and Petroleum Geology 55: 176–185. [CrossRef] [Google Scholar]
  • Hatem E, Tribovillard N, Averbuch O, Sansjofre P, Adatte T, Guillot F, et al. 2016. Early diagenetic formation of carbonates in a clastic-dominated ramp environment impacted by synsedimentary faulting-induced fluid seepage – Evidence from the Late Jurassic Boulonnais Basin (N France). Marine and Petroleum Geology 72C: 12–29. [CrossRef] [Google Scholar]
  • Haug GH, Pedersen TF, Sigman DM, Calvert SE, Nielsen B, Peterson LC. 1998. Glacial/interglacial variations in production and nitrogen fixation in the Cariaco Basin during the last 580 kyr. Paleoceanogry 13: 427–432. [Google Scholar]
  • He M, Wang N, Long X, Zhang C, Ma C, Zhong Q, et al. 2019. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects. J. Environ. Sci. 75: 14–39. [Google Scholar]
  • He YT, Hering JG. 2009. Enhancement of arsenic(III) sequestration by manganese oxides in the presence of iron(II). Water Air and Soil Pollution 203: 359–362. [Google Scholar]
  • Hu Z, Gao S. 2008. Upper crustal abundances of trace elements: A revision and update. Chemical Geology 253: 205–221. [Google Scholar]
  • Hu Y, Feng D, Peckmann J, Roberts HH, Chen D. 2014. New insights into cerium anomalies and mechanisms of trace metal enrichment in authigenic carbonate from hydrocarbon seeps. Chemical Geology 381: 55–66. [Google Scholar]
  • Krim N, Bonnel C, Aubourg C, Imbert P, Tribovillard N. 2017. Paleoenvironmental evolution of the southern Neuquén Basin (Argentina) during the Tithonian-Berrisian interval (Vaca Muerta and Picun Leufu formations): A multi-proxy approach. Bulletin Société Géologique de France 188: 34. https://doi.org/10.1051/bsgf/2017196. [Google Scholar]
  • Krim N, Tribovillard N, Riboulleau A, Bout-Roumazeilles V, Bonnel C, Imbert P, et al. 2019. Reconstruction of paleoenvironmental conditions of the Vaca Muerta Formation in the southern part of the Neuquén Basin, using clay-mineral assemblages, inorganic geochemistry and Rock Eval data. Marine and Petroleum Geology 103: 176–201. [Google Scholar]
  • Liang Q, Hu Y, Feng D, Peckmann J, Chen L, Yang S, et al. 2017. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics. Deep Sea Research Part I 124: 31–41. [Google Scholar]
  • Liu J, Algeo TJ. 2020. Beyond redox: Control of trace-metal enrichment in anoxic marine facies by watermass chemistry and sedimentation rate. Geochimica et Cosmochimica Acta 287: 296–317. [Google Scholar]
  • McLennan SM. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2: 2000GC000109. [CrossRef] [Google Scholar]
  • Meyer-Dombard DR, Price RE, Pichler T, Amend JP. 2012. Prokaryotic populations in arsenic-rich shallow-sea hydrothermal sediments of Ambitle Island, Papua New Guinea. Geomicrobiology Journal 29: 1–17. [Google Scholar]
  • Montero-Serrano JC, Bout-Roumazeilles V, Tribovillard N, Sionneau T, Riboulleau A, Bory A, et al. 2009. Sedimentary evidence of deglacial megafloods in the northern Gulf of Mexico (Pigmy Basin). Quaternary Science Reviews 28: 3333–3347. [Google Scholar]
  • Montero-Serrano JC, Martinez M, Riboulleau A, Tribovillard N, Márquez G, Gutiérrez-Martín JV. 2010. Assessment of the oil source-rock potential of the Pedregoso Formation (Early Miocene) in the Falcón Basin of Northwestern Venezuela. Marine and Petroleum Geology 27(5): 1107–1118. [Google Scholar]
  • Montero-Serrano J-C, Bout-Roumazeilles V, Carlson AE, Tribovillard N, Bory A, Meunier G, et al. 2011. Contrasting rainfall patterns over North America during the Holocene and last interglacial as recorded by sediments of the northern Gulf of Mexico. Geophysical Research Letters 38: L14709. https://doi.org/10.1029/2011GL048194. [Google Scholar]
  • Polack R, Chen Y-W, Belzile N. 2009. Behaviour of Sb(V) in the presence of dissolved sulfide under controlled anoxic aqueous conditions. Chemical Geology 262: 179–185. [Google Scholar]
  • Presti M, Barbara L, Denis D, Schmidt S, De Santis L, Crosta X. 2011. Sediment delivery and depositional patterns off Adélie Land (East Antarctica) in relation to late Quaternary climatic cycles. Marine Geology 284: 96–113. [Google Scholar]
  • Proust J-N, Deconinck J-F, Geyssant JR, Herbin J-P, Vidier JP. 1995. Sequence analytical approach to the Upper Kimmeridgian-Lower Tithonian storm-dominated ramp deposits of the Boulonnais (Northern France). A landward time-equivalent to offshore marine source rocks. Geol. Rundsch. 84: 255–271. [Google Scholar]
  • Qin HB, Uesugi S, Yang S, Tanaka M, Kashiwabara T, Itai T, et al. 2019. Enrichment mechanisms of antimony and arsenic in marine ferromanganese oxides: Insights from the structural similarity. Geochimica et Cosmochimica Acta, in press. [Google Scholar]
  • Quijada M, Riboulleau A, Monnet C, Tribovillard N. 2015. Neutral aldoses derived from sequential acid hydrolysis of sediments as indicators of diagenesis over 120 000 years. Organic Geochemistry 81: 53–63. [Google Scholar]
  • Quijada M, Riboulleau A, Faure P, Michels R, Tribovillard N. 2016. Organic matter sulfurization on protracted diagenetic timescales: The possible role of anaerobic oxidation of methane. Marine Geology 381: 54–66. [CrossRef] [Google Scholar]
  • Riboulleau A, Bout-Roumazeilles V, Tribovillard N. 2014. Controls on detrital sedimentation in the Cariaco Basin during the last climatic cycle: Insight from clay minerals. Quaternary Science Reviews 94: 62–73. [Google Scholar]
  • Riquier L, Tribovillard N, Averbuch O, Joachimski MM, Racki G, Devleeschouwer X, et al. 2005. Productivity and bottom water redox conditions at the Frasnian-Famennian boundary on both sides of the Eovariscan Belt: Constraints from trace-element geochemistry. In: Over DJ, Morrow JR, Wignall PB, eds. Understanding Late Devonian and Permian-Triassic Biotic and Climatic Events: Towards an Integrated Approach. Developments in Palaeontology and Stratigraphy, vol. 20, Elsevier, pp. 199–224. [Google Scholar]
  • Riquier L, Tribovillard N, Averbuch O, Devleeschouwer X, Riboulleau A. 2006. The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): Two oxygen-deficient periods resulting from different mechanisms. Chem. Geol. 233: 137–155. [Google Scholar]
  • Riquier L, Averbuch O, Tribovillard N, El Albani A, Lazreq N, Chakiri S. 2007. Environmental changes at the Frasnian-Famennian boundary in Central Morocco (Northern Gondwana): Integrated rock-magnetic and geochemical studies. In: Becker T, Kirchgasser B, eds. Devonian Events and Correlations. Geological Society, London, Special Publications, 278, pp. 197–217. [Google Scholar]
  • Riquier L, Averbuch O, Devleeschouwer X, Tribovillard N. 2010. Diagenetic versus detrital origin of the magnetic susceptibility variations in some carbonate Frasnian-Famennian boundary sections from Northern Africa and Western Europe: Implications for paleoenvironmental reconstructions. International Journal of Earth Sciences 99: S57–S73. https://doi.org/10.1007/s00531-009-0492-7. [Google Scholar]
  • Robertson AHF, Necdet M, Raffi I, Chen G. 2019. Early Messinian manganese deposition in NE Cyprus related to cyclical redox changes in a silled hemipelagic basin prior to the Mediterranean salinity Crisis. Sediment. Geol. 385: 126–148. [Google Scholar]
  • Rudnick R, Gao S. 2003. Composition of the continental crust. In: Rudnick RL, ed. The crust. In: Holland HD, Turekian KK, eds. Treatise on Geochemistry, vol. 3. Oxford: Elsevier–Pergamon, pp. 1–64. [Google Scholar]
  • Sims KWW, Newsom HE, Gladneys ES. 1990. Chemical fractionation during formation of the Earth’s core and continental crust: Clues from As, Sb, W and Mo. In: Newsome HF, Jones JH, eds. Origin of the Earth. Oxford University Press, pp. 291–317. [Google Scholar]
  • Smrzka D, Zwicker J, Kolonic SF, Birgel D, Little CTS, Marzouk AM. 2017. Methane seepage in a Cretaceous greenhouse world recorded by an unusual carbonate deposit from the Tarfaya Basin, Morocco. The Depositional Record. https://doi.org/10.1002/dep2.24. [Google Scholar]
  • Smrzka D, Zwicker J, Bach W, Feng D, Himmler T, Chen D, et al. 2019. The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: A review. Facies 65: 41. https://doi.org/10.1007/s10347-019-0581-4. [Google Scholar]
  • Smrzka D, Feng D, Himmler T, Zwicker J, Hu Y, Monien P, et al. 2020. Trace elements in methane-seep carbonates: Potentials, limitations, and perspectives. Earth-Science Reviews 208: 103263. [Google Scholar]
  • Taylor SR, McLennan SM. 1985. The continental crust: Its composition and evolution. Oxford: Blackwell, 312 p. [Google Scholar]
  • Thanabalasingam P, Pickering WF. 1990. Specific sorption of antimony(III) by the hydrous oxides of Mn, Fe, and Al. Water Air Soil Pollut. 49: 175–185. [Google Scholar]
  • Tribovillard N. 2020. Arsenic in marine sediments: how robust a redox proxy? Palaeogeography, Palaeoclimatology, Palaeoecology 550: 109745. [Google Scholar]
  • Tribovillard N, Averbuch O, Devleeschouwer X, Racki G, Riboulleau A. 2004. Deep-water anoxia over the Frasnian-Famennian boundary (La Serre, France): A tectonically-induced oceanic anoxic event? Terra Nova 16(5): 288–295. [Google Scholar]
  • Tribovillard N, Algeo TJ, Lyons TW, Riboulleau A. 2006. Trace metals as paleoredox and paleoproduc-tivity proxies: An update. Chem. Geol. 232: 12–32. [Google Scholar]
  • Tribovillard N, Bout-Roumazeilles V, Algeo TJ, Lyons TW, Sionneau T, Montero-Serrano JC, et al. 2008. Paleodepositional conditions in the Orca Basin as inferred from organic matter and trace metal contents. Marine Geology 254: 62–72. [CrossRef] [Google Scholar]
  • Tribovillard N, Armynot du Châtelet E, Gay A, Barbecot F, Sansjofre P, Potdevin J-L. 2013. Geochemistry of cold seepage-impacted sediments: Per-ascensum or per-descensum trace metal enrichment? Chemical Geology 340: 1–12. [CrossRef] [Google Scholar]
  • Tribovillard N, Hatem E, Averbuch O, Barbecot F, Bout-Roumazeilles V, Trentesaux A. 2015. Iron availability as a dominant control on the primary composition and diagenetic overprint of organic-matter-rich rocks. Chemical Geology 401: 67–82. [CrossRef] [Google Scholar]
  • Van de Schootbrugge B, Föllmi KB, Bulot LG, Burns SJ. 2000. Paleoceanographic changes during the early Cretaceous (Valanginian ̄Hauterivian): Evidence from oxygen and carbon stable isotopes. Earth and Planetary Science Letters 181: 15–31. [Google Scholar]
  • Van de Schootbrugge B, Kuhn O, Adatte T, Steinmann P, Föllmi K. 2003. Decoupling of P- and Corg-burial following Early Cretaceous (Valanginian–Hauterivian) platform drowning along the NW Tethyan margin. Palaeogeography, Palaeoclimatology, Palaeoecology 199: 315–331. [Google Scholar]
  • Van der Weijden CH. 2002. Pitfalls of normalization of marine geochemical data using a common divisor. Marine Geology 184: 167–187. [CrossRef] [Google Scholar]
  • Wang X, Li N, Feng D, Hu Y, Bayon G, Liang Q, et al. 2018. Using chemical compositions of sediments to constrain methane seepage dynamics: A case study from Haima cold seeps of the South China Sea. Journal of Asian Earth Sciences 168: 137–144. [Google Scholar]
  • Wang Q, Chen D, Peckmann J. 2019a. Iron shuttle control on molybdenum, arsenic and antimony enrichment in Pliocene methane-seep carbonates from the southern Western Foothills, Southwestern Taiwan. Marine and Petroleum Geology 100: 263–269. [Google Scholar]
  • Wang X, Bayon G, Kim JH, Lee D-H, Kim D, Guéguen B, et al. 2019b. Trace element systematics in cold seep carbonates and associated lipid compounds. Chemical Geology 528: 119277. [Google Scholar]
  • Wang X, He M, Lin C, Gao Y, Zheng L. 2012. Antimony(III) oxidation and antimony(V) adsorption reactions on synthetic manganite. Chem. Erde-Geochem. 72: 41–47. [Google Scholar]
  • Wedepohl KH. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta 59: 1217–1232. [Google Scholar]
  • Ye L, Meng X, Jing C. 2020. Influence of sulfur on the mobility of arsenic and antimony during oxic-anoxic cycles: differences and competition. Geochimica et Cosmochimica Acta 288: 51–67. [Google Scholar]
  • Zeng Z, Wang X, Chen C-TA, Qi H. 2018. Understanding the compositional variability of the major components of hydrothermal plumes in the Okinawa Trough. Geofluids, Article ID 1536352. https://doi.org/10.1155/2018/1536352. [Google Scholar]
  • Zwicker J, Smrzka D, Himmler T, Monien P, Gier S, Goedert JL, et al. 2018. Rare earth elements as tracers for microbial activity and early diagenesis: A new perspective from carbonate cements of ancient methane-seep deposits. Chemical Geology 501: 77–85. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.