Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
Article Number 57
Number of page(s) 17
DOI https://doi.org/10.1051/bsgf/2021045
Published online 15 November 2021
  • Albarède F, Michard-Vitrac A. 1978. Age and significance of the North Pyrenean metamorphism. Earth and Planetary Science Letters 40(3): 327–332. https://doi.org/10.1016/0012-821X(78)90157-7. [Google Scholar]
  • Alonso JL, Pulgar JA, García-Ramos JC, Barba P. 1996. Tertiary basins and Alpine tectonics in the Cantabrian Mountains, NW Spain. In: Friend PF, Dabrio CJ, eds. Tertiary basins of Spain: the stratigraphic record of crustal kinematics. Cambridge: Cambridge University Press, pp. 214–227. [Google Scholar]
  • Álvarez-Marrón J, Pérez-Estaún A, Dañobeitia JJ, Pulgar JA, Martínez-Catalán JR, Marcos A, et al. 1996. Seismic Structure of the northern continental margin of Spain from ESCIN Deep seismic profiles. Tectonophysics 264: 153–174. [Google Scholar]
  • Arthaud F, Matte P. 1977. Late Paleozoic strike-slip faulting in southern Europe and northern Africa: Result of a right-lateral shear zone between the Appalachians and the Urals. Geol Soc Am Bull 88: 1305–1320. [Google Scholar]
  • Asti R, Lagabrielle Y, Fourcade S, Corre B, Monié P. 2019. How do continents deform during mantle exhumation? Insights from the northern Iberia inverted paleo-passive margin, western Pyrenees. Tectonics 38: 1666–1693. https://doi.org/10.1029/2018TC005428. [Google Scholar]
  • Ayarza P, Martínez-Catalán JR, Álvarez-Marrón J, Zeyen H, Juhlin C. 2004. Geophysical constraints on the deep structure of a limited ocean-continent subduction zone at the North Iberian margin. Tectonics 23. https://doi.org/10.1029/2002TC001487. [Google Scholar]
  • Axen G. 2005. Mechanics of low-angle normal faults. In: Karner G, et al., eds. Rheology and Deformation of the Lithosphere at Continental Margins. New York: Columbia University Press, pp. 46–91. [Google Scholar]
  • Bixel F, Lucas C. 1987. Approche géodynamique du Permien et du Trias des Pyrénées dans le cadre du Sud-Ouest Européen. Cuadernos de Geología Ibérica = Journal of Iberian Geology: An International Publication of Earth Sciences (11): 57–82. [Google Scholar]
  • Boillot G, Winterer EL, et al. 1988. Drilling on the Galicia margin: retrospect and prospect. In: Boillot G, Winterer EL, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 103. College Station, TX: Ocean Drilling Program, pp. 809–828. [Google Scholar]
  • Boillot G, Dupeuble PA, Malod J. 1979. Subduction and Tectonics on the continental margin off northern Spain. Marine Geology 32: 53–70. [Google Scholar]
  • Boillot G, Dupeuble PA, Lamboy M, D’Ozouville L, Sibuet JC. 1971. Structure et histoire géologique de la marge continentale au Nord de l’Espagne (entre 4° et 9°W). In: Debysier J, Le Pichon X, Montadert M, eds. Historie structurale du Golfe de Gascogne. Paris: Technip, pp. V.6–V6.52. [Google Scholar]
  • Boissonnas J, Pochat GL, Thibault C, Bernatzk M. 1974. Carte géologique de la France au 1/50000 ; feuille d’Iholdy. Orléans, France: Bureau de recherche géologique et minière. [Google Scholar]
  • Brune S, Heine C, Pérez-Gussinyé M, Sobolev SV. 2014. Rift migration explains continental margin asymmetry and crustal hyper-extension. Nature Comunnications 5: 4014. https://doi.org/10.1038/ncomms5014. [Google Scholar]
  • Cadenas P, Fernández-Viejo G. 2017. The Asturian Basin within the North Iberian margin (Bay of Biscay): Seismic characterization of its geometry and its Mesozoic and Cenozoic cover. Basin Research 29: 521–541. https://doi.org/10.1111/bre.1287. [Google Scholar]
  • Cadenas P, Manatschal G, Fernández-Viejo G. 2020. Unravelling the Architecture and evolution of the multi-stage North Iberian/Bay of Biscay rift. Gondwana Research. https://doi.org/10.1016/j.gr.2020.06.0261342-937/2020. [Google Scholar]
  • Cadenas P, Fernández-Viejo G, Pulgar JA, Tugend J, Manatschal G, Minshull TA. 2018. Constraints imposed by rift inheritance on the compressional reactivation of a hyperextended margin: mapping rift domains within the North Iberian margin and the Cantabrian Mountains. Tectonics 37. https://doi.org/10.1002/2016TC004454. [Google Scholar]
  • Capdevila R, Lamboy M, Leprête JP. 1974. Découvertes de granulites, de charnokites et de syénites néphéliniques dans la partie occidental de la marge continentale nord-espagnole. C R Acad Sci Paris 278, série D: 17–20. [Google Scholar]
  • Capdevila R, Boillot G, Lepvrier C, Malod JA, Mascle G. 1980. Metamorphic and plutonic rocks from the Le Danois Bank (North Iberian Margin). In: Comptes rendus hebdomadaires des séances de l’Académie des sciences, Serie D, vol. 291. Paris: Académie des sciences de Paris, pp. 317–320. [Google Scholar]
  • Casas A, Kearey P, Rivero L, Adam CR. 1997. Gravity anomaly map of the Pyrenean region and a comparison of the deep geological structure of the western and eastern Pyrenees. Earth and Planetary Science Letters 150(1–2): 65–78. [Google Scholar]
  • Chenin P, Schmalholz SM, Manatschal G, Duretz T. 2020. Impact of crust-mantle mechanical coupling of the topographic and thermal evolutions during necking phase of magma-poor and sediment-starved rift systems: A numerical modelling study. Tectonophysics 786: 228472. https://doi.org/10.1016/j.tecto.2020.228472. [Google Scholar]
  • Chevrot S, Sylvander M, Diaz J, Martin R, Mouthereau F, Manatschal G, et al. 2018. The non-cylindrical crustal architecture of the Pyrenees. Scientific Reports 8(1): 9591. https://doi.org/10.1038/s41598-018-27889-x. [Google Scholar]
  • Choukroune P. 1972. Relations entre tectonique et métamorphisme dans les terrains secondaires de la zone nord-pyrénéenne centrale et orientale. Bulletin de la Société géologique de France S7-XIV(1–5): 3–11. https://doi.org/10.2113/gssgfbull.S7-XIV.1-5.3. [Google Scholar]
  • Choukroune P, ECORS Team. 1989. The ECORS-Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics 8: 23–39. https://doi.org/10.1029/TC008i001p00023. [Google Scholar]
  • Claude D. 1990. Étude stratigraphique, sédimentologique et structurale des dépôts mésozoïques au nord du massif du Labourd. Rô le de la faille de Pamplona (Pays Basque). PhD Thesis. Bordeaux, France: Univ. Bordeaux II, 436 p. [Google Scholar]
  • Clerc C, Lagabrielle Y. 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the Cretaceous Pyrenean hot paleomargins. Tectonics 33(7): 1340–1359. [Google Scholar]
  • Clerc C, Lahfid A, Monié P, Lagabrielle Y, Chopin C, Poujol M, et al. 2015. High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the North Pyrenean passive paleomargin. Solid Earth 6(2): 643. [Google Scholar]
  • Clerc C, Lagabrielle Y, Neumaier M, Reynaud J-Y, de Saint Blanquat M. 2012. Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bulletin de la Société géologique de France 183(5): 443–459. https://doi.org/10.2113/gssgfbull.183.5.443 [Google Scholar]
  • Cochelin B, Chardon D, Denèle Y, Gumiaux C, Le Bayon B. 2017. Vertical strain partitioning in hot Variscan crust: Syn-convergence escape of the Pyrenees in the Iberian-Armorican syntax. Bulletin de la Société géologique de France 188 (6): 39. [Google Scholar]
  • Corre B, Lagabrielle Y, Labaume P, Fourcade S, Clerc C, Ballèvre M. 2016. Deformation associated with mantle exhumation in a distal, hot passive margin environment: New constraints from the Saraillé Massif (Chaînons Béarnais, North-Pyrenean Zone). From Rifting to Mountain Building: The Pyrenean Belt. Comptes Rendus Géoscience 348(3): 279–289. https://doi.org/10.1016/j.crte.2015.11.007. [Google Scholar]
  • Cuevas J, Tubía JM. 1999. The discovery of scapolite marbles in the Biscay Synclinorium (Basque Cantabrian basin, Western Pyrenees): geodynamic implications. Terra Nova 11(6): 259–265. https://doi.org/10.1046/j.1365-3121.1999.00255. [Google Scholar]
  • Daignières M, Séguret M, Specht M, ECORS Team. 1994. The Arzacq-Western Pyrenees ECORS deep seismic profile. In: Hydrocarbon and Petroleum Geology of France, Spec. Publ. Eur. Assoc. Petrol. Geosci., vol. 4. Berlin, Heidelberg: Springer, pp. 199–208. [Google Scholar]
  • De Charpal O, Guennoc P, Montadert L, Roberts DG. 1978. Rifting, crustal attenuation and subsidence in the Bay of Biscay. Nature 275: 706–711. https://doi.org/10.1038/275706a0. [Google Scholar]
  • DeFelipe I, Pulgar JA, Pedreira D. 2018. Crustal structure of the eastern Basque-Cantabrian Zone-Western Pyrenees: from the Cretaceous hyperexension to the Cenozoic inversion. Rev Soc Geol España 21(2): 69–82. [Google Scholar]
  • DeFelipe I, Pedreira D, Pulgar JA, Iriarte E, Mendia M. 2017. Mantle exhumation and metamorphism in the Basque-Cantabrian Basin (N Spain): Stable and clumped isotope analysis in carbonates and comparison with ophicalcites in the North-Pyrenean Zone (Urdach and Lherz). Geochem Geophys Geosyst 18. https://doi.org/10.1002/2016GC006690. [Google Scholar]
  • Denèle Y, Laumonier B, Paquette J-L, Olivier P, Gleizes G, Barbey P. 2014. Timing of granite emplacement, crustal flow and gneiss dome formation in the Variscan segment of the Pyrenees. Geological Society, London, Special Publications 405(1): 265–287. https://doi.org/10.1144/SP405.5. [Google Scholar]
  • de Saint Blanquat M, Brunel M, Mattauer M. 1986. Les zones de cisaillements du massif nord Pyrénéen du Saint Barthélémy, témoins probables de l’extension crustale d’âge crétacé. C R Acad Sci Ser II 303: 1139–1344. [Google Scholar]
  • Ducoux M, Jolivet L, Callot J-P, Aubourg C, Masini E, LahfidA, et al. 2019. The Nappe des Marbres Unit of the Basque-Cantabrian Basin: The Tectono-thermal Evolution of a Fossil Hyperextended Rift Basin. Tectonics 38(11): 3881–3915. https://doi.org/10.1029/2018TC005348. [Google Scholar]
  • Duretz T, Petri B, Mohn G, Schmalholz SM, Schenker FL, Müntener O. 2016. The importance of structural softening for the evolution and architecture of passive margins. Scientific Reports 6(1). https://doi.org/10.1038/srep38704. [Google Scholar]
  • Epin ME, Manatschal G. 2018. Three-dimensional architecture, structural evolution, and role of inheritance controlling detachment faulting at a hyperextended distal margin: The example of the Err detachment system (SE Switzerland). Tectonics 37. https://doi.org/10.1029/2018TC005125. [Google Scholar]
  • Epin ME, Manatschal G, Amann M. 2017. Defining diagnostic criteria to descrie the role of rift inheritance in collisional orogens: the case of the Err-Plata nappes (Switzerland). Swiss Journal of Geosciences 110(2): 419–438. https://doi.org/10.1007/s00015-017-0271-6. [Google Scholar]
  • Fabriès J, Lorand JP, Bodinier JL. 1998. Petrogenetic evolution of orogenic lherzolite massifs in the central and western Pyrenees. Tectonophysics 292: 145–167. https://doi.org/10.1016/S0040-1951(98)00055-9. [Google Scholar]
  • Fernández-Viejo G, Pulgar JA, Gallastegui J, Quintana L. 2012. The fossil accretionary wedge of the Bay of Biscay: Critical wedge analysis on depth-migrated seismic sections and geodynamical implications. Journal of Geology 120(3): 315–331. https://doi.org/10.1086/664789. [Google Scholar]
  • Fernández-Viejo G, Gallart J, Pulgar JA, Gallastegui J, Dañobeitia JJ, Córdoba D. 1998. Crustal transition between continental and oceanic domains along the North Iberian margin from wide angle seismic and gravity data. Geophysical Research Letters 25: 4249–4252. https://doi.org/10.1029/1998GL900149. [Google Scholar]
  • Froitzheim N, Eberli GP. 1990. Extensional detachment faulting in the evolution of a Tethys passive continental margin, Eastern Alps, Switzerland. Geological Society of America Bulletin 102: 1297–1308. [Google Scholar]
  • Fügenschuh B, Froitzheim N, Capdevila R, Boillot G. 2003. Offshore granulites from the Bay of Biscay margins: fission tracks constrain a Proterozoic to Tertiary thermal history. Terra Nova 15 (5): 337–343. [Google Scholar]
  • Gallastegui J, Pulgar JA, Gallart J. 2002. Initiation of an active margin at the North Iberian continent-ocean transition. Tectonics 21(4): 1033. https://doi.org/10.1029/2001TC901046. [Google Scholar]
  • Genna A. 2007. Carte géologique harmonisée au 1/50 000 du département des Pyrénées-Atlantiques. BRGM/RP-55408-FR. [Google Scholar]
  • Gillard M, Autin J, Manatschal G. 2016. Fault systems at hyper-extended rifted margins and embryonic oceanic crust: Structural style, evolution and relation to magma. Marine and Petroleum Geology 76: 51–67. https://doi.org/10.1016/j.marpetgeo.2016.05.013. [Google Scholar]
  • Golberg JM, Leyreloup AF. 1990. High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contributions to Mineralogy and Petrology 104(2): 194–207. https://doi.org/10.1007/BF00306443. [Google Scholar]
  • Hart NR, Stockli DF, Hayman W. 2016. Provenance evolution during progressive rifting and hyperextension using bedrock and detrital zircon U-Pb geochronology, Mauléon Basin, western Pyrenees. Geosphere 12(4). https://doi.org/10.1130/GES01273.1. [Google Scholar]
  • Hart NR, Stockli DF, Lavier LL, Hayman NW. 2017. Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees. Tectonics 36(6): 1103–1128. https://doi.org/10.1002/2016TC004365. [Google Scholar]
  • Heddebaut C. 1973. Études géologiques dans les massifs paléozoïques basques. PhD Thesis. France: University of Lille. [Google Scholar]
  • Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics 28(4): TC4012. https://doi.org/10.1029/2008TC002406. [Google Scholar]
  • Jammes S, Tiberi C, Manatschal G. 2010. 3D architecture of a complex transcurrent rift system: The example of the Bay of Biscay-Western Pyrenees. Tectonophysics 489(1–4): 210–226. https://doi.org/10.1016/j.tecto.2010.04.023. [Google Scholar]
  • Lagabrielle Y, Bodinier JL. 2008. Submarine reworking of exhumed subcontinental mantle rocks: Field evidence from the Lherz peridotites, French Pyrenees, Terra Nova 20: 11–21. https://doi.org/10.1111/j.1365-3121.2007.00781.x. [Google Scholar]
  • Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the Iherzolite bodies. Tectonics 29: TC4012. https://doi.org/10.1029/2009TC002588. [Google Scholar]
  • Lagabrielle Y, Asti R, Duretz T, Clerc, C, Fourcade S, Teixell A, et al. 2020. A review of cretaceous Smooth-slopes extensional basins along the Iberia-Eurasia plate boundary: How pre-rift salt controls the modes of continental rifting and mantle exhumation. Earth Sciences Review 201. https://doi.org/10.1016/j.earscirev.2019.103071. [Google Scholar]
  • Le Danois E. 1948. Les profondeurs de la mer : trente ans de recherches sur la faune sous-marine au large des côtes de France. Paris: Payot. [Google Scholar]
  • Le Pochat G. 1982. Reconnaissance des écailles de cristallin et de Paléozoïque dans les massifs paléozoïques basques. Progr Géol Prof Fr Bur Rech Géol Min 7: 285–287. [Google Scholar]
  • Lescoutre R. 2019. Formation and reactivation of the Pyrenean-Cantabrian rift system: inheritance, segmentation and thermal evolution. Doctoral dissertation. Université de Strasbourg. [Google Scholar]
  • Lescoutre R, Manatschal G. 2020. Role of rift-inheritance and segmentation for orogenic evolution: example from the Pyrenean-Cantabrian. BSGF-Earth Sci Bull 191: 18. https://doi.org/10.1051/bsgf/2020021. [Google Scholar]
  • Lescoutre R, Manatschal G, Muñoz JA. 2021. Nature, origin and evolution of the Pyrenean-Cantabrian junction. Tectonics 40(5): 2020TC006134. https://doi.org/10.1029/2020TC006134. [Google Scholar]
  • Lescoutre R, Tugend J, Brune S, Masini E, Manatschal G. 2019. Thermal evolution of asymmetric hyperextended magma-poor rift systems: results from numerical modelling and Pyrenean field observations. Geoch Geophys Geosyst. https://doi.org/10.1029/2019GC008600. [Google Scholar]
  • Lister G. 1986. Detachment faulting and the evolution of passive continental margins. Geology 14: 246–250. [Google Scholar]
  • Lister GS, Davies GA. 1989. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A. J Struct Geol 11(172): 65–94. [Google Scholar]
  • Longwell CR. 1945. Low-angle normal faults in the Basin and Range province. Am Geophys Union Trans 26: 107–118. [Google Scholar]
  • Lymer G, Cresswell DJF, Reston TJ, Bull JM, Sawyer DS, Morgan JK, et al. 2019. 3D development of detachment faulting during continental breakup. Earth and Planetary Science Letters 515: 90–99. https://doi.org/10.1016/j.epsl.2019.02.018. [Google Scholar]
  • Macchiavelli C, Vergés J, Schettino A, Fernàndez M, Turco E, Casciello E, et al. 2017. A New Southern North Atlantic Isochron Map: Insights Into the Drift of the Iberian Plate Since the Late Cretaceous. Journal of Geophysical Research: Solid Earth 122(12): 9603–9626. https://doi.org/10.1002/2017JB014769. [Google Scholar]
  • Malod JA, Boillot G. 1980. Campagne Cydanois. Résultats des campagnes à la mer, n° 20. Paris: CNEXO, 79 p. [Google Scholar]
  • Malod JA, Boillot G, Capdevila R, Dupeuble PA, Lepvrier C, Mascle G, et al. 1980. Plongées en submersible au Sud du golfe de Gascogne : stratigraphie et structure de la pente du banc Le Danois. C R Soc Géol Fr 3: 73–73. [Google Scholar]
  • Malod J, Boillot G, Capdevila R, Dupeuble PA, Lepvrier C, Mascle G, et al. 1982. Subduction and tectonics on the continental margin off northern Spain; observations with the submersible Cyana. In: Legett JK, ed. Trench-Fore Arc Geology. Geol Soc Lond Spec Publ 10: 309–315. [Google Scholar]
  • Manatschal G. 2004. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences 93(3). https://doi.org/10.1007/s00531-004-0394-7. [Google Scholar]
  • Martínez-Torres L. 1992. El Manto de los Mármoles (Pirineo Occidental): geología estructural y evolución geodinámica. Servicio Editorial de la Universidad del País Vasco = Argitarapen Zerbitzua, Euskal Herriko Unibertsitatea. [Google Scholar]
  • Masini E, Manatschal G, Mohn G. 2013. The Alpine Tethys rifted margins: Reconciling old and new ideas to understand the stratigraphic architecture of magma-poor rifted margins. Sedimentology 60: 174–196. [Google Scholar]
  • Masini E, Manatschal G, Tugend J, Mohn G, Flament JM. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq–Mauléon rift system (Western Pyrenees, SW France). Int J Earth Sci 103(6): 1569–1596. https://doi.org/10.1007/s00531-014-1023-8. [Google Scholar]
  • Mendia MS, Ibarguchi JIG. 1991. High-grade metamorphic rocks and peridotites along the Leiza Fault (Western Pyrenees, Spain). Geologische Rundschau 80(1): 93–107. https://doi.org/10.1007/BF01828769. [Google Scholar]
  • Merle JM. 1974. Recherches sur les relations paléogéographiques et structurales entre les massifs basques au sud de Saint-Jean-Pied-de-Port (Pyrénées occidentales). Doctoral dissertation. [Google Scholar]
  • Miró J, Cadenas P, Manatschal G, Muñoz JA. 2021. Reactivation of a hyperextended rift system: the Basque-Cantabrian Pyrenees case. Basin Research: 1–25. https://doi.org/10.1111/bre.1295. [Google Scholar]
  • Mohn G, Manatschal G, Beltrando M, Masini E, Kusznir N. 2012. Necking of continental crust in magma-poor rifted margins: Evidence from the fossil Alpine Tethys margins. Tectonics 31: TC2012. https://doi.org/10.1029/2011TC002961. [Google Scholar]
  • Muñoz JA. 1992. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced section. In: MacClay KR, ed. Thrust tectonics. London: Chapman and Hall, pp. 235–246. [Google Scholar]
  • Odlum ML, Stockli DF. 2019. Thermotectonic Evolution of the North Pyrenean Agly Massif During Early Cretaceous Hyperextension Using Multi-mineral U-Pb Thermochronometry. Tectonics 38(5). https://doi.org/10.1029/2018TC005298. [Google Scholar]
  • Olivier P. 2013. Comment on “Preorogenic exhumation of the North Pyrenean Agly massif (Eastern Pyrenees-France)” by A. Vauchez, et al. Tectonics 32: 821–822. https://doi.org/10.1002/tect.20049. [Google Scholar]
  • Osmundsen PT, Ebbing J. 2008. Styles of extension offshore mid-Norway and implications for mechanisms of crustal thinning at passive margins. Tectonics 27: 1–25. 780. https://doi.org/10.1029/2007TC002242. [Google Scholar]
  • Osmundsen PT, Redfield TF. 2011. Crustal taper and topography at passive continental margins. Terra Nova 23: 349–361. [Google Scholar]
  • Osmundsen PT, Péron-Pinvidic G. 2018. Crustal-Scale Fault Interaction at Rifted Margins and the Formation of Domain-Bounding Breakaway Complexes: Insights From Offshore Norway. Tectonics 37. https://doi.org/10.1002/2017TC004792. [Google Scholar]
  • Pedreira D, Alfonso JC, Pulgar JA, Gallastegui J, Carballo A, Fernández M, et al. 2015. Geophysical-petrophysical modeling of the lithosphere beneath the Cantabrian Mountains and the North Iberian margin: geodynamic implications. Lithos 230: 46–68. https://doi.org/10.1016/j.lithos.2015.04.018. [Google Scholar]
  • Pedreira D, Pulgar JA, Gallart J, Diaz J. 2003. Seismic evidence of Alpine crustal thickening and wedging from the western Pyrenees to the Cantabrian Mountains (north Iberia). Journal of Geophysical Research 108: B42204. https://doi.org/10.1029/2001JB001667. [Google Scholar]
  • Pedrera A, García-Senz J, Ayala C, Ruiz-Constán A, Rodríguez-Fernández LR, Robador A et al. 2017. Reconstruction of the Exhumed Mantle across the North Iberian Margin by Crustal-Scale 3-D Gravity Inversion and Geological Cross Section: Mantle Along the Basque-Cantabrian Basin. Tectonics 36(12): 3155–3177. https://doi.org/10.1002/2017TC004716. [Google Scholar]
  • Pérez-Gussinyé M, Reston TJ. 2001. Rheological evolution during extension at passive non-volcanic margins: onset of serpentinization and development of detachments to continental break-up. J Geophys Res 106: 3691–3975. [Google Scholar]
  • Petri B, Lescoutre R, Manatschal G, Masini E, Müntener, O. 2018. A crustal view on the pyrenean rift system: the Arzacq-Mauléon basins (W Pyrenees). EGUGA, 10068. [Google Scholar]
  • Petri B, Duretz T, Mohn G, Schmalholz SM, Karner GD, Müntener O. 2019. Thinning mechanisms of heterogeneous continental lithosphere. Earth and Planetary Science Letters 512: 147–162. https://doi.org/10.1016/j.epsl.2019.02.007. [Google Scholar]
  • Petri B, Mohn G, Stipska P, Schulmann K, Manatschal G. 2017. The Sondalo gabbro contact aureole (Campo unit, Eastern Apls): implications for mid-crustal mafic magma emplacement. Contributions to Mineralogy and Petrology 171(5). https://doi.org/10.1007/s00410-016-1263-7. [Google Scholar]
  • Pinet B, Montadert L, ECORS Scientific Party. 1987. Deep seismic reflection and refraction profiling along the Aquitaine shelf (Bay of Biscay). Geophys J R Astr Soc 89: 305–312. [Google Scholar]
  • Pulgar JA, Alonso JL, Espina RG, Marín JA. 1999. La deformación alpina en el basamento varisco de la Zona Cantábrica. Trabajos de Geología, Univ. Oviedo 21: 283–294. [Google Scholar]
  • Quintana L, Pulgar JA, Alonso JL. 2015. Displacement transfer from borders to interior of a plate: A crustal transect of Iberia. Tectonophysics 663: 378–398. https://doi.org/10.1016/j.tecto.2015.08.046. [Google Scholar]
  • Rat P. 1988. The Basque-Cantabrian basin between the Iberian and European plates: Some facts but still many problems. Revista de La Sociedad Geológica de España 1(3–4): 327–348. [Google Scholar]
  • Razin P. 1989. Évolution tecto-sédimentaire alpine des Pyrénées Basques à l’Ouest de la transformante de Pamplona (province du Labourd). PhD Thesis. Bordeaux, France: Univ. Bordeaux III, 464 p. [Google Scholar]
  • Richard P. 1986. Structure et évolution alpine des massifs paléozoïques du Labourd (Pays Basque francais). Éditions du Bureau de recherches géologiques et minières. [Google Scholar]
  • Roca E, Munoz JA, Ferrer O, Ellouz N. 2011. The role of the Bay of Biscay Mesozoic extensional structure in the configuration of the Pyrenean orogen: Constraints from the MARCONI deep seismic reflection survey. Tectonics 30: TC2001. https://doi.org/10.1029/2010TC002735. [Google Scholar]
  • Roest WR, Srivastava SP. 1991. Kinematics of the plate boundaries between Eurasia, Iberia and Africa in the North-Atlantic from the Late Cretaceous to the present. Geology 19: 613–616. https://doi.org/10.1130/0091-7613. [Google Scholar]
  • Rosenbaum G, Lister GS, Duboz C. 2002. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359: 117–129. [Google Scholar]
  • Ribes C, Ghienne JF, Manatschal G, Dall’asta N, Stockli DF, Galster F, et al. 2020. The Grès Singuliers of the Mont Blanc region (France and Switzerland): stratigraphic response to rifting and crustal necking in the Alpine Tethys. Int J Earth Sci. https://doi.org/10.1007/s00531-020-01902-z. [Google Scholar]
  • Ribes C, Petri B, Ghienne JF, Manatschal G, Galster F, Karner G, Figueredo PH, et al. (2019). Tectono-sedimentary evolution of a fossil ocean-continent transition: Tasna nappe, central Alps (SE Switzerland). Geological Society of America Bulletin 132. https://doi.org/10.1130/B35310.1. [Google Scholar]
  • Ruiz M, Díaz J, Pedreira D, Gallart J, Pulgar JA. 2017. Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles. Tectonophysics 717: 65–82. https://doi.org/10.1016/j.tecto.2017.07.008. [Google Scholar]
  • Saspiturry N, Cochelin B, Razin P, Leleu S, Lemirre B, Bouscary C, et al. 2019a. Tectono-sedimentary evolution of a rift system controlled by Permian post-orogenic extension and metamorphic core complex formation (Bidarray Basin and Ursuya dome, Western Pyrenees). Tectonophysics 768: 228180. https://doi.org/10.1016/j.tecto.2019.228180. [Google Scholar]
  • Saspiturry N, Razin P, Baudin T, Serrano O, Issautier B, Lasseur E, et al. 2019b. Symmetry vs. asymmetry of a hyper-thinned rift: Example of the Mauléon Basin (Western Pyrenees, France). Marine and Petroleum Geology 104: 86–105. https://doi.org/10.1016/j.marpetgeo.2019.03.031. [Google Scholar]
  • Saspiturry N, Allanic C, Razin P, Issautier B, Baudin T, Lasseur E, et al. 2020. Closure of a hyperextended system in an orogenic lithospheric pop-up, Western Pyrenees: The role of mantle buttressing and rift structural inheritance. Terra Nova. [Google Scholar]
  • Sibuet JC, Le Pichon X. 1971. Structure gravimétrique du Golfe de Gascogne et la fossé marginal nord-espagnol. In: Debysier X, Le Pichon X, Montadert L, eds. Histoire structurale du Golfe de Gascogne. Paris: Technip, pp. VI.9.1–VI.9.18. [Google Scholar]
  • Teixell A, Labaume P, Ayarza P, Espurt N, de Saint Blanquat M, Lagabrielle Y. 2018. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics 724–725: 146–170. https://doi.org/10.1016/j.tecto.2018.01.009. [Google Scholar]
  • Thinon I, Matias L, Réhault JP, Hirn A, Fidalgo-Gonzalez L, Avedik F. 2003. Deep structure of the Armorican Basin (Bay of Biscay): a review of Norgasis seismic reflection and refraction data. J Geol Soc 160: 99–116. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E, Mohn G, Thinon I. 2014. Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay Pyrenees. Tectonics 33: 1239–1276. https://doi.org/10.1002/2014TC003529. [Google Scholar]
  • Vacherat A, Mouthereau F, Pik R, Huyghe D, Paquette JL, Christophoul F, et al. 2017. Rift to collision sediment routing in the Pyrenees: a synthesis from sedimentological, geochronological and kinematic constraints. Earth Sci Rev 172: 43–74. https://doi.org/10.1016/j.earscirev.2017.07.004. [Google Scholar]
  • Vauchez A, Clerc C, Bestani L, Lagabrielle Y, Chauvet A, Lahfid A, et al. 2013. Preorogenic exhumation of the north Pyrenean Agly massif (Eastern Pyrenees-France). Tectonics 32: 1–12. https://doi.org/10.1002/tect.20015. [Google Scholar]
  • Viennot P. 1927. Recherches structurales dans les Pyrénées Occidentales Françaises. Bull Cartes Geol Fr 163: 267 p. [Google Scholar]
  • Vielzeuf D. 1984. Relations de phases dans le faciès granulite et implications géodynamiques: l’exemple des granulites des Pyrénées. PhD Thesis. Clemont-Ferrand, France: Univ. Blaise Pascal Clermont-Ferrand II, 360 p. [Google Scholar]
  • Vielzeuf D, Kornprobst J. 1984. Crustal splitting and the emplacement of Pyrenean lherzolites and granulites. Earth Planet Sci Lett 67: 87–96. https://doi.org/10.1016/0012-821X(84)90041-4. [Google Scholar]
  • Vissers RLM, Meijer PT. 2012. Mesozoic rotation of Iberia: Subduction in the Pyrenees? Earth-Science Reviews 110: 93–110. https://doi.org/10.1016/j.earscirev.2011.11.001. [Google Scholar]
  • Walgenwitz F. 1976. Étude pétrologique des roches intrusives triasiques, des écailles du socle profond et des gites de chlorite de la région d’Elizondo, Navarre espagnole. PhD Thesis. 3º cycle. Géol. Appl. Besançon. [Google Scholar]
  • Wang Y, Chevrot S, Monteiller V, Komatitsch D, Mouthereau F, Manatschal G, et al. 2016. The deep roots of the western Pyrenees revealed by full waveform inversion of teleseismic P waves. Geology 44(6): 475–478. https://doi.org/10.1130/G378912.1. [Google Scholar]
  • Weinberg RF, Rosenbaum G. 2007. Mantle detachment faults and the breakup of cold continental lithosphere. Geology 35(11): 1035–1038. https://doi.org/10.1130/G23918A.1. [Google Scholar]
  • Wernicke B. 1985. Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences 22: 108–125. [Google Scholar]
  • Wilson RCL, Manatschal G, Wise S. 2001. Rifting along non-volcanic passive margins: Stratigraphic and seismic evidence from the Mesozoic successions of the Alps and Western Iberia. Geol Soc Spec Publ Lond 187: 429–452. [Google Scholar]
  • Ziegler PA, Dèzes P. 2006. Crustal evolution of Western and Central Europe. In: Gee DG, Stephenson RA, eds. European Litosphere Dynamics. Geol Soc Mem Lond 32: 43–56. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.