Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
Article Number 49
Number of page(s) 33
DOI https://doi.org/10.1051/bsgf/2021044
Published online 20 October 2021
  • Alhamawi M. 1992. Sédimentologie, pétrographie sédimentaire et diagenèse des calcaires du Cretacé supérieur de la Marge Ibérique. Bordeaux 1. [Google Scholar]
  • Alves TM, Cunha TA. 2018. A phase of transient subsidence, sediment bypass and deposition of regressive-transgressive cycles during the breakup of Iberia and Newfoundland. Earth Planet. Sci. Lett. 484: 168–183. https://doi.org/10.1016/j.epsl.2017.11.054. [Google Scholar]
  • Alves TM, Gawthorpe RL, Hunt DH, Monteiro JH. 2002. Jurassic tectono-sedimentary evolution of the Northern Lusitanian Basin (offshore Portugal). Mar. Pet. Geol. 19: 727–754. https://doi.org/10.1016/S0264-8172(02)00036-3. [Google Scholar]
  • Alves TM, Moita C, Sandnes F, Cunha T, Monteiro JH, Pinheiro LM. 2006. Mesozoic-Cenozoic evolution of North Atlantic continental slope basins: The Peniche Basin, Western Iberian margin. AAPG Bull. 90: 31–60. https://doi.org/10.1306/08110504138. [Google Scholar]
  • Alves TM, Moita C, Cunha T, Ullnaess M, Myklebust R, Monteiro JH, et al. 2009. Diachronous evolution of Late Jurassic-Cretaceous continental rifting in the northeast Atlantic (West Iberian margin). Tectonics 28. https://doi.org/10.1029/2008TC002337. [Google Scholar]
  • Alves TM, Fetter M, Busby C, Gontijo R, Cunha T, Mattos NH. 2020. A tectono-stratigraphic review of continental breakup on intraplate continental margins and its impact on resultant hydrocarbon systems. Marine and Petroleum Geology 117. https://doi.org/10.1016/j.marpetgeo.2020.104341. [Google Scholar]
  • Andrieu S, Saspiturry N, Lartigau M, Issautier B, Angrand P, Lasseur E. 2021. Large-scale vertical movements in Cenomanian to Santonian carbonate platform in Iberia: Indicators of a Coniacian pre-orogenic compressive stress. Bulletin de la Société Géologique de France, Special Volume. https://doi.org/10.1051/bsgf/2021011. [Google Scholar]
  • Aslanian D, Moulin M, Olivet J-L, Unternehr P, Matias L, Bache F, et al. 2009. Brazilian and African passive margins of the Central Segment of the South Atlantic Ocean: Kinematic constraints. Tectonophysics 468: 98–112. https://doi.org/10.1016/j.tecto.2008.12.016. [Google Scholar]
  • Asti R, Lagabrielle Y, Fourcade S, Corre B, Monié P. 2019. How do continents deform during mantle exhumation? Insights from the Northern Iberia inverted paleopassive margin, Western Pyrenees (France). Tectonics 38: 1666–1693. https://doi.org/10.1029/2018TC005428. [Google Scholar]
  • Beltrando M, Manatschal G, Mohn G, Dal Piaz GV, Brovarone AV, Masini E. 2014. Recognizing remnants of magma-poor rifted margins in high-pressure orogenic belts: The Alpine case study. Earth-Sci. Rev. 131: 88–115. [Google Scholar]
  • Boillot G, Recq M, Winterer EL, Meyer AW, Applegate J, Baltuck M, et al. 1987. Tectonic denudation of the upper mantle along passive margins: A model based on drilling results (ODP leg 103, Western Galicia margin, Spain). Tectonophysics 132: 335–342. [Google Scholar]
  • Boillot G, Féraud G, Recq M, Girardeau J. 1989. Undercrusting by serpentinite beneath rifted margins: The example of the west Galicia margin (Spain). Nature 341: 523–525. [Google Scholar]
  • Boirie J-M. 1981. Étude sédimentologique des poudingues de Mendibelza (Pyrénées Atlantiques). Toulouse : Université Paul Sabatier de Toulouse (Sciences). [Google Scholar]
  • Boirie J-M, Souquet P. 1982. Les poudingues de Mendibelza : dépôts de cônes sous-marins du rift Albien des Pyrénées. Bull. Cent. Rech. Explor. – Prod. Elf-Aquitaine 6: 405–435. [Google Scholar]
  • Boissonnas J, Le Pochat G, Thibault C, Bernatzk M. 1974. Carte géologique de la France au 1/50 000 ; Feuille d’Iholdy, Orléans, France. [Google Scholar]
  • Bouma AH. 1962. Sedimentology of some flysch deposits. Elsevier, ed. Amsterdam: Elsevier Scientific Publishing Company. [Google Scholar]
  • Bouquet B. 1986. La bordure mésozoïque orientale du massif du Labourd (Pyrénées occidentales) : stratigraphie-sédimentologie-structure-implications géodynamiques. Pau : Université de Pau et des Pays de l’Adour. [Google Scholar]
  • Canérot J. 1988. Manifestations de l’halocinèse dans les chaînons béarnais (zone Nord-Pyrénéenne) au Crétacé inférieur. C. R. Acad. Sci. Sér. 2 Mec. Phys. Chim. Sci. Univers Sci. Terre 306: 1099–1102. [Google Scholar]
  • Canérot J. 1989. Rifting éocrétacé et halocinèse sur la marge ibérique des Pyrénées Occidentales (France). Conséquences structurales. Bull. Cent. Rech. Explor. – Prod. Elf-Aquitaine 13: 87–99. [Google Scholar]
  • Canérot J. 2008. Les Pyrénées : histoire géologique. Atlantica ed. [Google Scholar]
  • Canérot J. 2017. The pull apart-type Tardets-Mauléon Basin: A key to understand the formation of the Pyrenees. Bull. Soc. geol. Fr. 188: 35. https://doi.org/10.1051/bsgf/2017198. [Google Scholar]
  • Canérot J, Delavaux F. 1986. Tectonique et sédimentation sur la marge nord-ibérique des Chaînons Béarnais (Pyrénées-béarnaises). Remise en question de la signification des lherzolites du sommet de Saraillé. C. R. Acad. Sci. Sér. 2 Mec. Phys. Chim. Sci. Univers Sci. Terre 302: 951–956. [Google Scholar]
  • Canérot J, Lenoble J-L. 1993. Diapirisme crétacé sur la marge ibérique des Pyrénées occidentales ; exemple du pic de Lauriolle ; comparaisons avec l’Aquitaine, les Pyrénées centrales et orientales. Bull. Soc. geol. Fr. 164: 719–726. [Google Scholar]
  • Canérot J, Majesté-Menjoulas C, Ternet Y. 1999. Le cadre stratigraphique et géodynamique des altérites et des bauxites sur la marge ibérique des Pyrénées occidentales (France). C. R. Acad. Sci. – Ser. IIA-Earth Planet. Sci. 328: 451–456. [Google Scholar]
  • Canérot J, Hudec MR, Rockenbauch K. 2005. Mesozoic diapirism in the Pyrenean orogen: Salt tectonics on a transform plate boundary. AAPG Bull. 89: 211–229. https://doi.org/10.1306/09170404007. [Google Scholar]
  • Casteras M, Souquet P, Culot G, Galharague J. 1970. Carte géologique de la France au 1/50 000 ; Feuille de Larrau, Orléans, France. [Google Scholar]
  • Casteras M, Gottis M, Clin M, Guignard JD, Paris J, Galharague J. 1971. Carte géologique de la France au 1/50 000 ; Feuille de Tardets–Sorholus, Orléans, France. [Google Scholar]
  • Chevrot S, Sylvander M, Diaz J, Martin R, Mouthereau F, Manatschal G, et al. 2018. The non-cylindrical crustal architecture of the Pyrenees. Sci. Rep. 8: 9591. https://doi.org/10.1038/s41598-018-27889-x. [Google Scholar]
  • Claude D. 1990. Étude stratigraphique, sédimentologique et structurale des dépôts mésozoïques au nord du massif du Labourd : rôle de la faille de Pamplona (Pays Basque). Université de Bordeaux III. [Google Scholar]
  • Cochelin B, Chardon D, Denèle Y, Gumiaux C, Le Bayon B. 2017. Vertical strain partitioning in hot Variscan crust: Syn-convergence escape of the Pyrenees in the Iberian-Armorican syntax. Bulletin de la Société Géologique de France 188(6): 39. https://doi.org/10.1051/bsgf/2017206. [Google Scholar]
  • Contrucci I, Matias L, Moulin M, Géli L, Klingelhofer F, Nouzé H, et al. 2004. Deep structure of the West African continental margin (Congo, Zaïre, Angola), between 5 S and 8 S, from reflection/refraction seismics and gravity data. Geophys. J. Int. 158: 529–553. [Google Scholar]
  • Corre B, Lagabrielle Y, Labaume P, Fourcade S, Clerc C, Ballèvre M. 2016. Deformation associated with mantle exhumation in a distal, hot passive margin environment: New constraints from the Saraillé Massif (Chaînons Béarnais, North Pyrenean Zone). Comptes Rendus Geosci. 348: 279–289. https://doi.org/10.1016/j.crte.2015.11.007. [Google Scholar]
  • Curnelle R. 1983. Évolution structuro-sédimentaire du Trias et de l’Infra-Lias d’Aquitaine. Bull. Cent. Rech. Explor. Prod. Elf-Aquitaine 7: 69–99. [Google Scholar]
  • Daignières M, Séguret M, Specht M, Team ECORS. 1994. The Arzacq-Western Pyrenees ECORS deep seismic profile. In: Hydrocarbon and Petroleum Geology of France. Springer, pp. 199–208. [Google Scholar]
  • de Saint Blanquat M. 1993. La faille normale du massif du Saint-Barthélémy. Évolution hercynienne des massifs nord-pyrénéens catazonaux considérée du point de vue de leur histoire thermique. Geodin Acta 6: 59–77. [Google Scholar]
  • de Saint Blanquat M, Lardeaux JM, Brunel M. 1990, Petrological arguments for high temperature extensional deformation in the Pyrenean Variscan crust (Saint-Barthélémy Massif, Ariège, France).Tectonophysics 177: 245–262. [Google Scholar]
  • Debroas EJ. 1987. Modèle de bassin triangulaire à l’intersection de décrochements divergents pour le fossé albo-cénomanien de la Ballongue (Zone nord-pyrénéenne, France). Bulletin de la Société géologique de France 8(5): 887–898. [Google Scholar]
  • Debroas EJ. 1990. Le flysch noir albo-cénomanien témoin de la structuration albienne à sénonienne de la Zone nord-pyrénéenne en Bigorre (Hautes Pyrénées, Fr.). Bulletin de la Société géologique de France 8(6): 273–285. [Google Scholar]
  • Debroas EJ, Canérot J, Bilotte M. 2010. Les brèches d’Urdach, témoins de l’exhumation du manteau pyrénéen dans un escarpement de faille vraconnien-cénomanien inférieur (Zone nord-pyrénéenne, Pyrénées-Atlantiques, France). Geol. Fr. 2: 53–63. [Google Scholar]
  • Decarlis A, Manatschal G, Haupert I, Masini E. 2015. The tectono-stratigraphic evolution of distal, hyperextended magma-poor conjugate rifted margins: Examples from the Alpine Tethys and Newfoundland-Iberia. Mar. Pet. Geol. 68: 54–72. https://doi.org/10.1016/j.marpetgeo.2015.08.005. [Google Scholar]
  • DeFelipe I, Pedreira D, Pulgar JA, Iriarte E, Mendia M. 2017. Mantle exhumation and metamorphism in the Basque-Cantabrian Basin (NSpain): Stable and clumped isotope analysis in carbonates and comparison with ophicalcites in the North Pyrenean Zone (Urdach and Lherz). Geochem. Geophys. Geosyst. 18: 631–652. https://doi.org/10.1002/2016GC006690. [Google Scholar]
  • Delaperrière E, de Saint Blanquat M, Brunel M, Lancelot J. 1994. Géochronologie U-Pb sur les zircons et monazites dans le massif du Saint-Barthélémy. Bull. Soc. geol. Fr. 2: 101–112. [Google Scholar]
  • Denèle Y, Laumonier B, Paquette JL, Olivier P, Gleizes G, Barbey P. 2014. Timing of granite emplacement, crustal flow and gneiss dome formation in the Variscan segment of the Pyrenees. Geol. Soc. Spec. Publ. 405: 265–287. https://doi.org/10.1144/SP405.5. [Google Scholar]
  • Driscoll NW, Hogg JR, Christie-Blick N, Karner GD. 1995. Extensional tectonics in the Jeanne d’Arc Basin, offshore Newfoundland: Implications for the timing of break-up between Grand Banks and Iberia. Geol. Soc. Lond. Spec. Publ. 90: 1–28. https://doi.org/10.1144/GSL.SP.1995.090.01.01. [Google Scholar]
  • Ducasse L, Velasque P-C. 1988. Géotraverse dans la partie occidentale des Pyrénées, de l’avant-pays aquitain au bassin de l’Ebre : effet d’une inversion structurale sur l’édification d’une chaîne intracontinentale. Aix-Marseille : Université Paul Cézanne, Faculté des sciences et techniques de Saint-Jérôme. [Google Scholar]
  • Duée G, Lagabrielle Y, Coutelle A, Fortané A. 1984. Les lherzolites associées aux Chaînons Béarnais (Pyrénées Occidentales) : mise à l’affleurement anté-dogger et resédimentation albo-cénomanienne. C. R. Séances Acad. Sci. Sér. 2 Méc. Phys. Chim. Sci. Univers Sci. Terre 299: 1205–1210. [Google Scholar]
  • Durand-Wackenheim C, Souquet P, Thiébaut G. 1981. La brèche d’Errozaté (Pyrénées-Atlantiques) : faciès de résedimentation en milieu profond de matériaux d’une plateforme carbonatée crétacée à substratum hercynien. Bull. Soc. Hist. Nat. Toulouse 117: 87–94. [Google Scholar]
  • Duretz T, Asti R, Lagabrielle Y, Brun J, Jourdon A, Clerc C, et al. 2019. Numerical modelling of Cretaceous Pyrenean rifting: The interaction between mantle exhumation and syn-rift salt tectonics. Basin Res. 32: 652–667. https://doi.org/10.1111/bre.12389. [Google Scholar]
  • Fabriès J, Lorand J-P, Bodinier JL, Dupuy C. 1991. Evolution of the Upper Mantle beneath the Pyrenees: Evidence from Orogenic Spinel Lherzolite Massifs. Journal of Petrology, Special Volume 2: 55–76. https://doi.org/10.1093/petrology/Special_Volume.2.55. [Google Scholar]
  • Fabriès J, Lorand J-P, Bodinier JL. 1998. Petrogenetic evolution of orogenic lherzolite massifs in the Central and Western Pyrenees. Tectonophysics 292: 145–167. https://doi.org/doi:10.1016/S0040-1951(98)00055-9. [Google Scholar]
  • Fixari G. 1984. Stratigraphie, faciès et dynamique tecto-sédimentaire du flysch albien (flysch noir et poudingues de mendibelza) dans la région de Mauléon-Tardets (Pyrénées Atlantiques). Université Paul Sabatier de Toulouse (Sciences). [Google Scholar]
  • Fortané A, Duée G, Lagabrielle Y, Coutelle A. 1986. Lherzolites and the western « Chaînons Béarnais » (French Pyrenees): Structural and paleogeographical pattern. Tectonophysics 129: 81–98. https://doi.org/10.1016/0040-1951(86)90247-7. [Google Scholar]
  • Frey M. 1968. Étude géologique de la partie occidentale et centrale du massif de Mendibelza (Basses Pyrénées). Toulouse. [Google Scholar]
  • Froitzheim N, Manatschal G. 1996. Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (Eastern Switzerland). Geol. Soc. Am. Bull. 108: 1120–1133. https://doi.org/10.1130/0016-7606(1996)108<1120:KOJRME>2.3.CO;2. [Google Scholar]
  • Garcia-Senz J, Pedrera A, Ayala C, Ruiz-Constán A, Robador Moreno A, Rodríguez-Fernández R. 2019. Inversion of the North Iberian hyperextended margin: The role of exhumed mantle indentation during continental collision. Geological Society, London, Special Publications 490. https://doi.org/10.1144/SP490-2019-112. [Google Scholar]
  • Gómez-Romeu J, Masini E, Tugend J, Ducoux M, Kusznir N. 2019. Role of rift structural inheritance in orogeny highlighted by the Western Pyrenees case study. Tectonophysics 766: 131–150. https://doi.org/10.1016/j.tecto.2019.05.022. [Google Scholar]
  • Gubler Y, Casteras M, Ciry R, Lamare P. 1947. Sur l’âge des poudingues dits de Mendibelza dans le bassin du Laurhibar, au SE de Mendive (Basse Pyrénées). C. R. Soc. Geol. Fr. 17: 329–330. [Google Scholar]
  • Hart NR, Stockli DF, Hayman NW. 2016. Provenance evolution during progressive rifting and hyperextension using bedrock and detrital zircon U-Pb geochronology, Mauléon Basin, Western Pyrenees. Geosphere 12: 1166–1186. https://doi.org/10.1130/GES01273.1. [Google Scholar]
  • Hart NR, Stockli DF, Lavier LL, Hayman NW. 2017. Thermal evolution of a hyperextended rift basin, Mauléon Basin, Western Pyrenees: Thermal evolution of hyperextended rift. Tectonics. https://doi.org/10.1002/2016TC004365. [Google Scholar]
  • Haupert I, Manatschal G, Decarlis A, Unternehr P. 2016. Upper-plate magma-poor rifted margins: Stratigraphic architecture and structural evolution. Mar. Pet. Geol. 69: 241–261. https://doi.org/10.1016/j.marpetgeo.2015.10.020. [Google Scholar]
  • Issautier B, Saspiturry N, Serrano O. 2020. Role of structural inheritance and salt tectonics in the formation of pseudosymmetric continental rifts on the european margin of the hyperextended Mauléon Basin (Early Cretaceous Arzacq and Tartas Basins). Mar. Pet. Geol. 118: 104395. https://doi.org/10.1016/j.marpetgeo.2020.104395. [Google Scholar]
  • James V. 1998. La plate-forme carbonatée ouest-pyrénéenne au jurassique moyen et supérieur stratigraphie séquentielle, stades d’évolution, relations avec la subsurface en aquitaine méridionale. [Google Scholar]
  • James V, Canérot J. 1999. Diapirisme et structuration post-triasique des Pyrénées occidentales et de l’Aquitaine méridionale (France). Eclogae Geol. Helvetiae 92: 63–72. [Google Scholar]
  • Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectono-sedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the Western Pyrenees. Tectonics 28. https://doi.org/10.1029/2008TC002406. [Google Scholar]
  • Johnson JA, Hall CA. 1989. Tectono-stratigraphic model for the Massif D’Igountze-Mendibelza, Western Pyrenees. J. Geol. Soc. 146: 925–932. https://doi.org/10.1144/gsjgs.146.6.0925. [Google Scholar]
  • Karner GD, Gambôa LAP. 2007. Timing and origin of the South Atlantic pre-salt sag basins and their capping evaporites. Geol. Soc. Lond. Spec. Publ. 285: 15–35. https://doi.org/10.1144/SP285.2. [Google Scholar]
  • Karner GD, Driscoll NW, Barker DHN. 2003. Syn-rift regional subsidence across the West African continental margin: The role of lower plate ductile extension. Geol. Soc. Lond. Spec. Publ. 207: 105–129. https://doi.org/10.1144/GSL.SP2003.207.6. [Google Scholar]
  • Labaume P, Teixell A. 2020. Evolution of salt structures of the Pyrenean Rift (Chaînons Béarnais, France): From hyperextension to tectonic inversion. Tectonophysics 785: 228451. https://doi.org/10.1016/j.tecto.2020.228451. [Google Scholar]
  • Lagabrielle Y, Bodinier J-L. 2008. Submarine reworking of exhumed sub-continental mantle rocks: Field evidence from the Lherz peridotites, French Pyrenees: Cretaceous exhumation of pyrenean mantle. Terra Nova 20: 11–21. https://doi.org/10.1111/j.1365-3121.2007.00781.x. [Google Scholar]
  • Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 29. https://doi.org/10.1029/2009TC002588. [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, Corre B, Poujol M, Uzel J, et al. 2019. Mantle exhumation at magma-poor passive continental margins. Part I. 3D architecture and metasomatic evolution of a fossil exhumed mantle domain (Urdach lherzolite, northwestern Pyrenees, France). BSGF – Earth Sci. Bull. 190: 8. https://doi.org/10.1051/bsgf/2019007. [Google Scholar]
  • Lagabrielle Y, Asti R, Duretz T, Clerc C, Fourcade S, Teixell A, et al. 2020. A review of cretaceous smooth-slopes extensional basins along the Iberia-Eurasia plate boundary: How pre-rift salt controls the modes of continental rifting and mantle exhumation. Earth-Sci. Rev. 201: 103071. https://doi.org/10.1016/j.earscirev.2019.103071. [Google Scholar]
  • Lamare P. 1946. Les formations détritiques crétacées du massif de Mendibelza. Bull. Soc. geol. Fr. 16: 265–312. [Google Scholar]
  • Lamare P. 1948. Sur le passage latéral des faciès détritiques grossiers du Crétacé du massif de Mendibelza aux faciès schisto-gréseux classiques de l’Albien des Pyrénées. C. R. Acad. Sci. 226: 683–685. [Google Scholar]
  • Lowe DR. 1982. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology 52(I): 279–297. [Google Scholar]
  • Le Pochat G, Bolthenhagen C, Lenguin M, Lorsignol S, Thibault C. 1976. Carte géologique de France au 1/50 000 : Mauléon-licharre, Orléans, France. [Google Scholar]
  • Le Pochat G, Heddebaut C, Lenguin M, Lorsignol S, Souquet P, Muller J, et al. 1978. Carte géologique de France au 1/50 000 : St Jean Pied de Port, Orléans, France. [Google Scholar]
  • Leleu S, Hartley AJ, van Oosterhout C, Kennan L, Ruckwied K, Gerdes K. 2016. Structural, stratigraphic and sedimentological characterisation of a wide rift system: The Triassic Rift system of the Central Atlantic Domain. Earth-Sci. Rev. 158: 89–124. [Google Scholar]
  • Lemirre B. 2018. Origine et développement de la thermicité dans les Pyrénées varisques. PhD Thesis, Univ. Paul Sabatier, Toulouse, France, 299 p. [Google Scholar]
  • Lemoine M, Tricart P, Boillot G. 1987. Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): In search of a genetic imodel. Geology 15: 622–625. https://doi.org/10.1130/0091-7613(1987)15<622:UAGOFO>2.0.CO;2. [Google Scholar]
  • Lenoble J-L. 1992. Les plates-formes carbonatées ouest-pyrénéennes du dogger à l’Albien, stratigraphie séquentielle et évolution géodynamique. Université Paul Sabatier de Toulouse (Sciences). [Google Scholar]
  • Lescoutre R, Manatschal G. 2020. Role of rift-inheritance and segmentation for orogenic evolution: Example from the Pyrenean-Cantabrian system. BSGF – Earth Sci. Bull. 191: 18. https://doi.org/10.1051/bsgf/2020021. [Google Scholar]
  • Lescoutre R, Tugend J, Brune S, Masini E, Manatschal G. 2019. Thermal evolution of asymmetric hyperextended magma-poor rift systems: Results from numerical modeling and Pyrenean field observations. Geochem. Geophys. Geosyst. 20: 4567–4587. https://doi.org/10.1029/2019GC008600. [Google Scholar]
  • Lescoutre R, Manatschal G, Muñoz J-A. 2021. Nature, origin and evolution of the Pyrenean-Cantabrian junction. Tectonics. https://doi.org/10.1029/2020TC006134. [Google Scholar]
  • Lucas C. 1985. Le grès rouge du versant nord des Pyrénées : essai sur la géodynamique de dépôts continentaux du permien et du trias. [Google Scholar]
  • Magné. 1948. Nouvelles observations relatives à l’âge des poudingues du pic Errozaté (massif de Mendibelza). C. R. Soc. Geol. Fr. 163–165. [Google Scholar]
  • Manatschal G, Nievergelt P. 1997. A continent-ocean transition recorded in the Err and Platta nappes (Eastern Switzerland). Eclogae Geol. Helvetiae 90: 3–28. [Google Scholar]
  • Manatschal G, Froitzheim N, Rubenach M, Turrin BD. 2001. The role of detachment faulting in the formation of an ocean-continent transition: Insights from the Iberia Abyssal Plain. Geol. Soc. Lond. Spec. Publ. 187: 405–428. https://doi.org/10.1144/GSL.SP2001.187.01.20. [Google Scholar]
  • Manatschal G, Engström A, Desmurs L, Schaltegger U, Cosca M, Müntener O, et al. 2006. What is the tectono-metamorphic evolution of continental break-up: The example of the Tasna Ocean-Continent Transition. J. Struct. Geol. 28: 1849–1869. https://doi.org/10.1016/j.jsg.2006.07.014. [Google Scholar]
  • Manatschal G, Sauter D, Karpoff AM, Masini E, Mohn G, Lagabrielle Y. 2011. The Chenaillet Ophiolite in the French/Italian Alps: An ancient analogue for an oceanic core complex? Lithos 124: 169–184. https://doi.org/10.1016/j.lithos.2010.10.017. [Google Scholar]
  • Martín-Chivelet J, Berástegui X, Rosales I, Vilas L, Vera JA, Caus E, et al. 2002. Cretaceous. In: Gibbons W, Moreno T, ed. The Geology of Spain, pp. 255–292. [Google Scholar]
  • Masini E, Manatschal G, Mohn G, Ghienne J-F, Lafont F. 2011. The tectono-sedimentary evolution of a supra-detachment rift basin at a deep-water magma-poor rifted margin: The example of the Samedan Basin preserved in the Err nappe in SE Switzerland: Tectono-sedimentary evolution of a supra-detachment rift basin. Basin Res. 23: 652–677. https://doi.org/10.1111/j.1365-2117.2011.00509.x. [Google Scholar]
  • Masini E, Manatschal G, Mohn G, Unternehr P. 2012. Anatomy and tectono-sedimentary evolution of a rift-related detachment system: The example of the Err detachment (Central Alps, SE Switzerland). Geol. Soc. Am. Bull. 124: 1535–1551. https://doi.org/10.1130/B30557.1. [Google Scholar]
  • Masini E, Manatschal G, Tugend J, Mohn G, Flament J-M. 2014. The tectono-sedimentary evolution of a hyperextended rift basin: The example of the Arzacq-Mauléon Rift system (Western Pyrenees, SW France). Int. J. Earth Sci. 103: 1569–1596. https://doi.org/10.1007/s00531-014-1023-8. [Google Scholar]
  • Merle J-M. 1974. Recherches sur les relations paléogéographiques et structurales entre les massifs basques au sud de Saint-Jean-Pied-de-Port (Pyrénées occidentales). Université Paul Sabatier de Toulouse (Sciences). [Google Scholar]
  • Mirouse R. 1967. Le Dévonien des Pyrénées occidentales et centrales (France). Int. Symp. Devonian Syst. I: 153–170. [Google Scholar]
  • Moulin M, Aslanian D, Unternehr P. 2010. A new starting point for the South and Equatorial Atlantic Ocean. Earth-Sci. Rev. 98: 1–37. https://doi.org/10.1016/j.earscirev.2009.08.001. [Google Scholar]
  • Muller J, Roger P. 1977. L’évolution structurale des Pyrénées (Domaine central et occidental) Le segment hercynien, la chaîne de fond alpine. Geol. Alp. 53: 149–191. [Google Scholar]
  • Mutti E. 1977. Distinctive thin-bedded turbidite facies and related depositional environments in the Eocene Hecho Group (South-central Pyrenees, Spain). Sedimentology 24: 107–131. [Google Scholar]
  • Mutti E. 1992. Turbidite sandstones. AGIP, Istituto di geologia, Università di Parma. [Google Scholar]
  • Olivet JL. 1996. La cinématique de la plaque ibérique. Bull. Cent. Rech. Explor. Prod. Elf Aquitaine 20: 131–195. [Google Scholar]
  • Pedrera A, García-Senz J, Ayala C, Ruiz-Constán A, Rodríguez-Fernández LR, Robador A et al. 2017. Reconstruction of the exhumed mantle across the North Iberian Margin by crustal-scale 3-D gravity inversion and geological cross section. Tectonics 36: 3155–3177. [Google Scholar]
  • Pedrera A, García-Senz J, Peropadre C, Robador A, Lopez Mir B, Diaz Alvarado J, et al. 2020. The Getxo crustal-scale cross-section: Testing tectonic models in the Bay of Biscay-Pyrenean Rift system. Earth-Sciences Review. https://doi.org/10.1016/j.earscirev.2020.103429. [Google Scholar]
  • Pérez-Gussinyé M. 2013. A tectonic model for hyperextension at magma-poor rifted margins: An example from the West Iberia-Newfoundland conjugate margins. Geol. Soc. Lond. Spec. Publ. 369: 403–427. https://doi.org/10.1144/SP369.19. [Google Scholar]
  • Péron-Pinvidic G, Manatschal G. 2009. The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: A new point of view. Int. J. Earth Sci. 98: 1581–1597. https://doi.org/10.1007/s00531-008-0337-9. [Google Scholar]
  • Péron-Pinvidic G, Manatschal G, Minshull TA, Sawyer DS. 2007. Tectonosedimentary evolution of the deep Iberia-Newfoundland margins: Evidence for a complex breakup history. Tectonics 26: 1–19. https://doi.org/10.1029/2006TC001970. [Google Scholar]
  • Péron-Pinvidic G, Manatschal G, Osmundsen PT. 2013. Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Mar. Pet. Geol. 43: 21–47. https://doi.org/10.1016/j.marpetgeo.2013.02.002. [Google Scholar]
  • Péron-Pinvidic G, Manatschal G, Masini E, Sutra E, Flament JM, Haupert I, et al. 2015. Unravelling the along-strike variability of the Angola-Gabon rifted margin: A mapping approach. Geol. Soc. Lond. Spec. Publ. 438: 49–76. https://doi.org/10.1144/SP438.1. [Google Scholar]
  • Péron-Pinvidic G, Manatschal G, The “IMAGinING RIFTING” Workshop Participants. 2019. Rifted margins: State of the art and future challenges. Front. Earth Sci. 7: 218. https://doi.org/10.3389/feart.2019.00218. [Google Scholar]
  • Peybernès B. 1976. Le Jurassique et le Crétace inferieur des Pyrénées franco-espagnoles entre la Garonne et la Méditérranée. Toulouse. [Google Scholar]
  • Poprawski Y. 2012. La marge Nord du Fossé Basque à l’Albien : architecture sédimentaire et diapirisme dans un contexte décrochant (Pays Basque, Espagne). PhD Thesis, Grenoble University. [Google Scholar]
  • Puigdefàbregas C, Souquet P. 1986. Tecto-sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics 129: 173–203. [Google Scholar]
  • Razin P. 1989. Évolution tecto-sédimentaire alpine des Pyrénées basques à l’ouest de la transformante de Pamplona, Province du Labourd. Bordeaux 3. [Google Scholar]
  • Reston TJ. 2009. The structure, evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: A synthesis. Tectonophysics 468: 6–27. https://doi.org/10.1016/j.tecto.2008.09.002. [Google Scholar]
  • Ribes C, Ghienne J-F, Manatschal G, Decarlis A, Karner GD, Figueredo PH, et al. 2019. Long-lived mega fault-scarps and related breccias at distal rifted margins: Insights from present-day and fossil analogues. J. Geol. Soc. 176: 801–816. [Google Scholar]
  • Richard P. 1986. Structure et évolution alpine des massifs paléozoïques du Labourd (Pays Basque français). Éditions du Bureau de recherches géologiques et minières. [Google Scholar]
  • Rossi P, Cocherie A, Fanning CM, Ternet Y. 2003. Datation U-Pb sur zircons des dolérites tholéiitiques pyrénéennes (igneous rockss) à la limite Trias-Jurassique et relations avec les tufs volcaniques dits « infra-liasiques » nord-pyrénéens. Comptes Rendus Geosci. 335: 1071–1080. https://doi.org/10.1016/j.crte.2003.09.011. [Google Scholar]
  • Rossy M, Azambre B, Albarède F. 1992. REE and Sr/1bNd isotope geochemistry of the alkaline magmatism from the Cretaceous North Pyrenean Rift Zone (France-Spain). Chem. Geol. 97: 33–46. https://doi.org/10.1016/0009-2541(92)90134-Q. [Google Scholar]
  • Roux J-C. 1983. Recherches stratigraphiques et sédimentologiques sur les flyschs crétacés pyrénéens au sud d’Oloron (Pyrénées Atlantiques). Université Paul Sabatier de Toulouse (Sciences). [Google Scholar]
  • Saspiturry N. 2019. Évolution sédimentaire, structurale et thermique d’un rift hyper-aminci : de l’héritage post-hercynien à l’inversion alpine : exemple du bassin de Mauléon (Pyrénées). PhD Thesis, Bordeaux 3. [Google Scholar]
  • Saspiturry N, Cochelin B, Razin P, Leleu S, Lemirre B, Bouscary C, et al. 2019a. Tectono-sedimentary evolution of a rift system controlled by Permian post-orogenic extension and metamorphic core complex formation (Bidarray Basin and Ursuya dome, Western Pyrenees). Tectonophysics 768: 228180. https://doi.org/10.1016/j.tecto.2019.228180. [Google Scholar]
  • Saspiturry N, Razin P, Baudin T, Serrano O, Issautier B, Lasseur E, et al. 2019b. Symmetry vs. asymmetry of a hyper-thinned rift: Example of the Mauléon Basin (Western Pyrenees, France). Mar. Pet. Geol. 104: 86–105. https://doi.org/10.1016/j.marpetgeo.2019.03.031. [Google Scholar]
  • Saspiturry N, Allanic C, Razin P, Issautier B, Baudin T, Lasseur E, et al. 2020a. Closure of a hyperextended system in an orogenic lithospheric pop-up, Western Pyrenees: The role of mantle buttressing and rift structural inheritance. Terra Nova 32: 253–260. https://doi.org/10.1111/ter.12457. [Google Scholar]
  • Saspiturry N, Lahfid A, Baudin T, Guillou-Frottier L, Razin P, Issautier B, et al. 2020b. Paleogeothermal gradients across an inverted hyperextended rift system: Example of the Mauléon Fossil Rift (Western Pyrenees). Tectonics 39. https://doi.org/10.1029/2020TC006206. [Google Scholar]
  • Saspiturry N, Issautier B, Razin P, Baudin T, Asti R, Lagabrielle Y, et al. 2021. Review of Iberia-Eurasia plate-boundary basins: Role of sedimentary burial and salt tectonics during rifting and continental breakup. Basin Res. bre.12529. https://doi.org/10.1111/bre.12529. [Google Scholar]
  • Souquet P. 1967. Le Crétacé supérieur Sud-Pyrénéen, en Catalogne, Aragon et Navarre. E. Privat. [Google Scholar]
  • Souquet P, Bilotte M, Canérot J, Debroas E, Peybernés B, Rey J. 1975. Nouvelle interprétation de la structure des Pyrénées. C. R. Acad. Sci. Paris 281: 609–612. [Google Scholar]
  • Souquet P, Peybènes B, Bilotte M, Debroas E-J. 1977. La chaîne alpine des Pyrénées. Geol. Alp. 53: 193–216. [Google Scholar]
  • Souquet P, Debroas E-J, Boirie J-M, Pons P, Fixari G, Roux J-C, et al. 1985. Le groupe du Flysch noir (albo-cénomanien) dans les Pyrénées. Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine Pau 9: 183–252. [Google Scholar]
  • Teixell A. 1998. Crustal structure and orogenic material budget in the west Central Pyrenees. Tectonics 17: 395–406. https://doi.org/10.1029/98TC00561. [Google Scholar]
  • Teixell A, Labaume P, Lagabrielle Y. 2016. The crustal evolution of the west-central Pyrenees revisited: Inferences from a new kinematic scenario. C. R. Geosci. 348: 257–267. https://doi.org/10.1016/j.crte.2015.10.010. [Google Scholar]
  • Teixell A, Labaume P, Ayarza P, Espurt N, de Saint Blanquat M, Lagabrielle Y. 2018. Crustal structure and evolution of the Pyrenean-Cantabrian Belt: A review and new interpretations from recent concepts and data. Tectonophysics 724-725: 146–170. https://doi.org/10.1016/j.tecto.2018.01.009. [Google Scholar]
  • Ternet Y, Majesté-Menjoulas C, Canérot J, Baudin T, Cocherie A, Guerrot C, et al. 2004. Carte géologique de la France au 1/50 000 : Laruns-Somport, Orléans, France. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ. 2015. Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the Iberian-European plate boundary. Geology 43: 15–18. https://doi.org/10.1130/G36072.1. [Google Scholar]
  • Tugend J, Gillard M, Manatschal G, Nirrengarten M, Harkin C, Epin M-E, et al. 2018. Reappraisal of the magma-rich versus magma-poor rifted margin archetypes. Geol. Soc. Lond. Spec. Publ. SP476.9. https://doi.org/10.1144/SP476.9. [Google Scholar]
  • Unternehr P, Péron-Pinvidic G, Manatschal G, Sutra E. 2010. Hyperextended crust in the South Atlantic: in search of a model. Pet. Geosci. 16: 207–215. https://doi.org/10.1144/1354-079309-904. [Google Scholar]
  • Vacherat A, Mouthereau F, Pik R, Huyghe D, Paquette J-L, Christophoul F, et al. 2017. Rift-to-collision sediment routing in the Pyrenees: A synthesis from sedimentological, geochronological and kinematic constraints. Earth-Sci. Rev. 172: 43–74. [Google Scholar]
  • Vielzeuf D. 1984. Relations de phases dans le faciès granulite et implications géodynamiques: l’exemple des granulites des Pyrénées. Université Clermont-Ferrand II. [Google Scholar]
  • Vielzeuf D, Paquette J-L, Clemens J-D, Stevens G, Gannoun A, Suchorski K, et al. 2021. Age, duration and mineral markers of magma interactions in the deep crust: An example from the Pyrenees. Contrib. Miner. Pet. 176: 39. https://doi.org/10.1007/s00410-021-01789-2. [Google Scholar]
  • Wang Y, Chevrot S, Monteiller V, Komatitsch D, Mouthereau F, Manatschal G, et al. 2016. The deep roots of the Western Pyrenees revealed by full waveform inversion of teleseismic P-waves. Geology 44: 475–478. https://doi.org/10.1130/G37812.1. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.