Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
Article Number 45
Number of page(s) 13
DOI https://doi.org/10.1051/bsgf/2021036
Published online 18 October 2021
  • Alonso-Zarza AM, Armenteros I, Braga JC, Munoz A, Pujalte V, Ramos E, et al. 2002. Tertiary. In: Gibbons W, Moreno T, eds. The Geology of Spain. Geological Society, pp. 293–334. [CrossRef] [Google Scholar]
  • Antón L, Rodés A, de Vicente G, Pallàs R, García-Castellanos D, Stuart FM, et al. 2012. Quantification of fluvial incision in the Duero Basin (NW Iberia) from longitudinal profile analysis and terrestrial cosmogenic nuclide concentrations. Geomorphology 165–166: 50–61. https://doi.org/10.1016/j.geomorph.2011.12.036. [CrossRef] [Google Scholar]
  • Antón L, De Vicente G, Muñoz-Martín A, Stokes M. 2014. Using river long profiles and geomorphic indices to evaluate the geomorphological signature of continental scale drainage capture, Duero basin (NW Iberia). Geomorphology 206: 250–261. [CrossRef] [Google Scholar]
  • Antón L, Muñoz-Martín A, de Vicente G, Finnegan NJ. 2018. Deciphering fluvial-capture-indiced erosional patterns at the continental scale on the Iberian Peninsula. In: AGU Fall Meeting Abstracts, pp. EP33A–1905. [Google Scholar]
  • Arche A, Evans G, Clavell E. 2010. Some considerations on the initiation of the present SE Ebro river drainage system: Post- or pre-Messinian? Journal of Iberian Geology 36: 73–85. [Google Scholar]
  • Bartrina MT, Cabrera L, Jurado MJ, Guimerà JA, Roca E. 1992. Evolution of the central Catalan margin of the Valencia Trough (western Mediterranean). Tectonophysics 203: 219–247. [CrossRef] [Google Scholar]
  • Beamud E, Garcés M, Montes M, Nozal F, Calvo JP, López-Olmedio F, et al. 2006. Magnetoestratigrafía del Mioceno de las cuencas del Tajo y del Duero. In: Proceedings of the IV Simposio de Paleomagnetismo Ibérico (MAGIBER). 4. pp. 9–12. [Google Scholar]
  • Beaumont C, Kooi H, Willett S. 2000. Coupled tectonic-surface process models with applications to rifted margins and collisional orogens. In: Summerfield MA, ed. Geomorphology and Global Tectonics. Chirchester: John Wiley and Sons, pp. 28–55. [Google Scholar]
  • Beeson HW, McCoy SW, Keen-Zebert A. 2017. Geometric disequilibrium of river basins produces long-lived transient landscapes. Earth and Planetary Science Letters 475: 34–43. https://doi.org/10.1016/j.epsl.2017.07.010. [CrossRef] [Google Scholar]
  • Bishop P. 1995. Drainage rearrangement by river capture, beheading and diversion. Progress in Physical Geography 19: 449–473. [CrossRef] [Google Scholar]
  • Burbank DW, Anderson RS. 2001. Tectonic Geomorphology. Massachusetts: Blackwell Science, 274 p. [Google Scholar]
  • Carroll AR, Graham SA, Smith ME. 2010. Walled sedimentary basins of China. Basin Research 22: 17–32. [CrossRef] [Google Scholar]
  • Castelltort S, Van Den Driessche J. 2003. How plausible are high-frequency sediment supply-driven cycles in the stratigraphic record? Sedimentary Geology 157: 3–13. https://doi.org/10.1016/S0037-0738(03)00066-6. [CrossRef] [Google Scholar]
  • Chang C, Lijun L. 2019. Distinct responses of intraplate sedimentation to different subsidence mechanisms. Insights from forward landscape evolution simulations. Journal of Geophysical Reasearch: Earth Surface 124: 1139–1159. https://doi.org/10.1029/2018JF004905. [CrossRef] [Google Scholar]
  • Cunha PP, Martins AA, Gomes A, Stokes M, Cabral J, Lopes FC, et al. 2019a. Mechanisms and age estimates of continental scale endorheic to exorheic drainage transition: Douro River, western Iberia. Global and Planetary Change 181: 102985. https://doi.org/10.1016/j.gloplacha.2019.102985. [CrossRef] [Google Scholar]
  • Cunha PP, de Vicente G, Martín-González F. 2019b. Cenozoic sedimentation Along the piedmonts of thrust related basement ranges and Strike-slip deformation belts of the Iberian Variscan Massif. In: Quesada C, Oliveira JT, eds. The Geology of Iberia: a Geodynamic Approach. Regional Geology Review Series 4. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-11190-8_5 (chapter 5, book ID: 473223. ISBN: 978-3-030-11189-2). [Google Scholar]
  • de Vicente G, Cunha PP, Muñoz-Martín A, Cloetingh SAPL, Olaiz A, Vegas R. 2018. The Spanish-Portuguese Central System: an example of intense intraplate deformation and strain partitioning. Tectonics 37: 4444–4469. [CrossRef] [Google Scholar]
  • DiBiase RA, Whipple KX. 2011. The influence of erosion thresholds and runoff variability on the relationships among topography, climate and erosion rate. Journal of Geophysical Reasearch 116: F04036. https://doi.org/10.1028/2011JF002095. [Google Scholar]
  • Evans G, Arche A. 2002. The flux of siliciclastic sediment from the Iberian Peninsula, with particular reference to the Ebro. In: Jones SJ, Frostick LE, eds. Sediment Flux to Basins: Causes, Controls and Consequences. Geological Society, London, Special Publication 191: 199–208. [CrossRef] [Google Scholar]
  • Gaspar-Escribano JM, García-Castellanos D, Roca E, Cloetingh S. 2004. Cenozoic vertical motions of the Catalan Coastal Ranges (NE Spain): the role of tectonics, isostasy, and surface transport. Tectonics 23. https://doi.org/10.1029/2003TC001511 (pdf). [Google Scholar]
  • García-Castellanos D. 2002. Interplay between lithospheric flexure and river transport in foreland basins. Basin Research 14: 89–104. [CrossRef] [Google Scholar]
  • García-Castellanos D. 2006. Long-term evolution of tectonic lakes: climatic controls on the development of internally drained basins. In: Willett SD, Hovius N, Brandon MT, Fisher DM, eds. Tectonics, climate, and landscape evolution. GSA Special Paper 398: 283–294. https://doi.org/10.1130/2006.2398(17). [Google Scholar]
  • García-Castellanos D, Jiménez-Munt I. 2015. Topographic evolution and climate aridification during continental collision: insights from computer simulations. PLoS One. https://doi.org/10.1371/journal.pone.0132252. [Google Scholar]
  • García-Castellanos D, Larrasoaña JC. 2015. Quantifying the post-tectonic topographic evolution of closed basins: the Ebro basin (northeast Iberia). Geology 43: 663–666. https://doi.org/10.1130/G36673.1. [CrossRef] [Google Scholar]
  • García-Castellanos D, Vergés J, Gaspar-Escribano J, Cloetingh S. 2003. Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). Journal of Geophysical Research: Solid Earth 108(B7): 2347. https://doi.org/10.1029/2002JB002073. [Google Scholar]
  • García-Castellanos D, O’Connor J. 2018. Outburst floods provide erodability estimates consistent with long-term landscape evolution. Scientific Reports (Nature Pub) 8: 10573. https://doi.org/10.1038/s41598-018-28981-y. [CrossRef] [Google Scholar]
  • Goren L. 2016. A theoretical model for fluvial channel response time during time-dependent climatic and tectonic forcing and its inverse applications. Geophysical Research Letters 43(20): 10,753–10,763. https://doi.org/10.1002/2016GL070451. [CrossRef] [Google Scholar]
  • Han Z, Sinclair HD, Li Y, Wang C, Tao Z, Qian X, et al. 2019. Internal drainage has sustained low-relief Tibetan landscapes since the early Miocene. Geophysical Research Letters 46: 8741–8752. https://doi.org/10.1029/2019GL083019. [CrossRef] [Google Scholar]
  • Heller PL, McMillan ME, Humphrey N. 2011. Climate-induced formation of a closed basin: Grat Divide Basin, Wyoming. Geological Society of America Bulletin 123(1–2): 150–157. https://doi.org/10.1130/B30113.1. [CrossRef] [Google Scholar]
  • Howard AD, Dietrich WE, Seidl MA. 1994. Modeling fluvial erosion on regional to continental scales. Journal of Geophysical Research: Solid Earth 99(B7): 13971–13986. [CrossRef] [Google Scholar]
  • Kaban MK, Chen B, Tesauro M, Petrunin AG, El Khrepy S, Al-Arifi N. 2018. Reconsidering effective elastic thickness estimates by incorporating the effect of sediments: a case study for Europe. Geophysical Research Letters 45(18): 9523–9532. https://doi.org/10.1029/2018GL079732. [CrossRef] [Google Scholar]
  • Krijgsman W, Garcés M, Langereis CG, Daams R, van Dam J, van der Meulen AJ, et al. 1996. A new chronology for the middle to late Miocene continental record in Spain. Earth and Planetary Science Letters 142: 367–380. [CrossRef] [Google Scholar]
  • Lewis CJ, Vergés J, Marzo M. 2000. High mountains in a zone of extended crust: insights into the Neogene-Quaternary topographic development of northeastern Iberia. Tectonics 19: 86–102. [CrossRef] [Google Scholar]
  • Loget N, Van Den Driessche J. 2009. Wave train model for knickpoint migration. Geomorphology 106: 376–382. [CrossRef] [Google Scholar]
  • Maillard A, Mauffret A, Watts AB, Torné M, Pascal G, Buhl P, et al. 1992. Tertiary sedimentary history and structure of the Valencia Trough, (Western Mediterranean). Tectonophysics 204: 57–75. [CrossRef] [Google Scholar]
  • Mikeš D. 2009. Forward modelling of the Bureba escarpment (Rioja Trough, N-Spain). Central European Journal of Geosciences 1: 463–471. https://doi.org/10.2478/v10085-009-0037-0. [Google Scholar]
  • Nelson CH, Maldonado A. 1990. Factors controlling late Cenozoic continental margin growth from the Ebro Delta to the western Mediterranean Deep Sea. Marine Geology 95: 419–440. [CrossRef] [Google Scholar]
  • Paola C, Heller PL, Angevine CL. 1992. The large-scale dynamics of grain size variation in alluvial basins. 1, Theory. Basin Research 4: 73–90. [CrossRef] [Google Scholar]
  • Pazzaglia FK. 2003. Landscape evolution models. Developments in Quaternary Science 1: 247–274. https://doi.org/10.1016/S1571-0866(03)01012-1. [CrossRef] [Google Scholar]
  • Regard V, Vacherat A, Bonnet S, Mouthereau F, Nørgaard J, Knudsen MF. 2021. Late Pliocene-Pleistocene incision in the Ebro Basin (North Spain). Bulletin de la Société Géologique de France 192: 30. https://doi.org/10.1051/bsgf/2021020. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rodríguez-Rodríguez L, Antón L, Pallàs R, García-Castellanos D, Jiménez-Munt I, Pastor-Martín C. 2020a. A GIS method to identify flat surfaces and restore relict fluvial long-profiles from terrace remnants gives new clues on how large basins respond to endorheic-exorheic transitions (Duero basin, sIberian Peninsula). Earth Surface Processes and Landforms 45(4): 1013–1027. https://doi.org/10.1002/esp.4795. [CrossRef] [Google Scholar]
  • Rodríguez-Rodríguez L, Antón L, Rodes Á, Pallàs R, García-Castellanos D, Jiménez-Munt I, et al. 2020b. Dates and rates of endo-exorheic drainage development: insights from fluvial terraces (Duero River, Iberian Peninsula). Global and Planetary Change 193: 103271. https://doi.org/10.1016/j.gloplacha.2020.103271. [CrossRef] [Google Scholar]
  • Ruiz J, Gomez-Ortiz D, Tejero R. 2006. Effective elastic thicknesses of the lithosphere in the Central Iberian Peninsula from heat flow: Implications for the rheology of the continental lithospheric mantle. Journal of Geodynamics 41(5): 500–509. ISSN: 0264-3707. https://doi.org/10.1016/j.jog.2006.01.005. [CrossRef] [Google Scholar]
  • Santisteban JI, Alcalá L, Mediavilla RM, Alberdi MT, Luque L, Mazo A, et al. 1997. El yacimiento de Tariego de Cerrato: El inicio de la red fluvial actual en el sector central de la Cuenca del Duero. Cuadernos de geología ibérica (22): 431–446. ISSN 0378-102X. [Google Scholar]
  • Schumm SA. 1979. Geomorphic thresholds: the concept and its applications. Transactions of the Institute of British Geographers 4: 485–515. [CrossRef] [Google Scholar]
  • Schaller M, Ehlers TA, Stor T, Torrent J, Lobato L, Christl M, Vockenhuber C. 2016. Timing of European fluvial terrace formation and incision rates constrained by cosmogenic nuclide dating. Earth and Planetary Science Letters 451: 221–231. https://doi.org/10.1016/j.epsl.2016.0.022. [CrossRef] [Google Scholar]
  • Silva PG, Roquero E, López-Recio M, Huerta P, Martínez-Graña AM. 2016. Chronology of fluvial terrace sequences for large Atlantic rivers in the Iberian Peninsula (Upper Tagus and Duero drainage basins, Central Spain). Quaternary Science Reviews 166: 188–203. https://doi.org/10.1016/j.quascirev.2016.05.027. [Google Scholar]
  • Silva PG, Roquero E, López-Recio M, Huerta P, Martínez-Graña AM. 2017. Chronology of fluvial terrace sequences for large Atlantic rivers in the Iberian Peninsula (Upper Tagus and Duero drainage basins, Central Spain). Quaternary Science Reviews 166: 188–203. [CrossRef] [Google Scholar]
  • Struth L, García-Castellanos D, Viaplana-Muzas M, Vergés V. 2019. Drainage network dynamics and knickpoint evolution in the Ebro and Duero basins: from endorheism to exorheism. Geomorphology 327: 554–571. https://doi.org/10.1016/j.geomorph.2018.11.033. [CrossRef] [Google Scholar]
  • Vacherat A, Bonnet S, Mouthereau F. 2018. Drainage reorganization and divide migration induced by the excavation of the Ebro basin (NE Spain). Earth Surface Dynamics 6: 369–387. https://doi.org/10.5194/esurf-6-369-2018. [CrossRef] [Google Scholar]
  • Viaplana-Muzas M, Babault J, Dominguez S, Van Den Driessche J, Legrand X. 2018. Modeling of drainage dynamics influence on sediment routing system in a fold-and-thrust belt. Basin Research 31(2): 290–310. https://doi.org/1.1111/bre.12321. [Google Scholar]
  • Whipple KX. 2001. Fluvial landscape response time: how plausible is steady-state denudation? American Journal of Science 301 (4–5): 313–325. [CrossRef] [Google Scholar]
  • Whipple KX, Tucker GE. 1999. Dynamics of the stream power river incision model: implications for height limits of mountain ranges, landscape response time scales and research needs. Journal of Geophysical Research 104: 17661–17674. https://doi.org/10.1029/1999JB900120. [CrossRef] [Google Scholar]
  • Whittaker AC, Boulton SJ. 2012. Tectonic and climatic controls on knickpoint retreat rates and landscape response times. Journal of Geophysical Research 117: F02024. https://doi.org/10.1029/2011JF002157. [Google Scholar]
  • Willett SD, Brandon MT. 2002. On steady states in mountain belts. Geology 30: 175–178. [CrossRef] [Google Scholar]
  • Willett SD, McCoy SW, Perron JT, Goren L, Chen CY. 2014. Dynamic re-organization of river basins. Science 343: 1248765. https://doi.org/10.1126/science.1248765. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.