Issue
BSGF - Earth Sci. Bull.
Volume 193, 2022
Special Issue Minéralisations périgranitiques, ed. E. Marcoux
Article Number 7
Number of page(s) 28
DOI https://doi.org/10.1051/bsgf/2022004
Published online 25 July 2022
  • Ábalos B, Carreras J, Druguet E, et al. 2002. Variscan and Pre-Variscan Tectonics. In: Gibbons W, Moreno MT, eds. The Geology of Spain. Geological Society of London, pp. 155–183. [CrossRef] [Google Scholar]
  • Almeida A, Martins HC, Noronha F. 2002. Hercynian acid magmatism and related mineralizations in Northern Portugal. Gondwana Research 5: 423–434. [CrossRef] [Google Scholar]
  • Antunes IMHR, Silva MMVG, Corfu F. 2008. Geochemistry of S-type granitic rocks from the reversely zoned Castelo Branco pluton (Central Portugal). Lithos 103: 445–465. [CrossRef] [Google Scholar]
  • Antunes IMHR, Neiva AMR, Ramos JMF, Silva PB, Silva MMVG, Corfu F. 2013. Petrogenetic links between lepidolite-subtype aplite-pegmatite, aplite veins and associated granites at Segura (central Portugal). Chemie Der Erdre-Geochemistry 73: 323–341. [CrossRef] [Google Scholar]
  • Azevedo MR, Nolan J. 1998. Hercynian late-post-tectonic granitic rocks from the Fornos de Algodres area (northern Central Portugal). Lithos 44: 1–20. [CrossRef] [Google Scholar]
  • Ballouard C, Elburg MA, Tappe S, Reinke C, Ueckermann H, Doggart S. 2020. Magmatic-hydrothermal evolution of rare metal pegmatites from the Mesoproterozoic Orange River pegmatite belt (Namaqualand, South Africa). Ore Geology Reviews 116: 103252. https://doi.org/10.1016/j.oregeorev.2019.103252 [CrossRef] [Google Scholar]
  • Bartoli O, Cesare B, Poli S, Bodnar RJ, Acosta-Vigil A, Frezzotti ML, et al. 2013. Recovering the composition of melt and the fluid regime at the onset of crustal anatexis and S-type granite formation. Geology 41: 115–118. [CrossRef] [Google Scholar]
  • Bea F, Montero P, González-Lodeiro F, et al. 2006. Zircon thermometry and U-Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo Anatectic Complex, Central Iberia. Journal of the Geological Society 163: 847–855. [CrossRef] [Google Scholar]
  • Bea F, Montero P, González-Lodeiro F, Talavera C. 2007. Zircon inheritance reveals exceptionally fast crustal magma generation processes in Central Iberia during the Cambro-Ordovician. Journal of Petrology 48: 2327–2339. [CrossRef] [Google Scholar]
  • Bea F, Pesquera A, Montero P, Torres-Ruiz J, Gil-Crespo PP. 2009. Tourmaline 40Ar/39Ar chronology of tourmaline-rich rocks from Central Iberia dates the main Variscan deformation phases. Geologica Acta 7: 399–412. [Google Scholar]
  • Beetsma JJ. 1995. The late Proterozoic/Paleozoic and Hercynian crustal evolution of the Iberian Massif, N. Portugal. PhD Thesis, Vrije Universiteit Amsterdam, pp. 223. [Google Scholar]
  • Carracedo M, Paquette JL, Alonso Olazabal A, et al. 2009. U-Pb dating of granodiorite and granite units of the Los Pedroches batholith. Implications for geodynamic models of the southern Central Iberian Zone (Iberian Massif). International Journal of Earth Sciences 98: 1609–1624. [CrossRef] [Google Scholar]
  • Carvalho PCS, Neiva AMR, Silva MMVG, Corfu F. 2012. A unique sequential melting mechanism for the generation of anatectic granitic rocks from the Penafiel area, northern Portugal. Lithos 155: 110–124. https://doi.org/10.1016/j.lithos.2012.08.019 [CrossRef] [Google Scholar]
  • Castro A, Corretgé LG, De La Rosa J, et al. 2002. Palaeozoic magmatism. In: Gibbons W, Moreno MT, eds. The Geology of Spain. Geological Society of London, pp. 117–153. [CrossRef] [Google Scholar]
  • Castro A, Patiño Douce AE, Corretgé LG, De La Rosa JD, El-Biad M, El-Hmidi H. 1999. Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis. Contribution to Mineralogy and Petrology 135: 255–276. [CrossRef] [Google Scholar]
  • Černý P. 1982. Petrogenesis of granitic pegmatites. In: Černý P, ed. Granitic pegmatites in Science and Industry, Mineralogist Association of Canada, Short Course Handbook 8: 405–461. [Google Scholar]
  • Černý P. 1989. Characteristics of Pegmatite deposits of Tantalum. In: Möller P, Černý P, Saupé F, eds. Lanthanides, Tantalum and Niobium. Springer, Berlin, Heidelberg, pp. 195–239. [Google Scholar]
  • Černý P, Ercit ST. 2005. The classification of granitic pegmatites revisited. Canadian Mineralogist 43: 2005–2026. [CrossRef] [Google Scholar]
  • Černý P, Ercit TS, Smeds S-A, Groat LA, Chapman R. 2007. Zirconium and hafnium in minerals of the columbite and wodginite groups from granitic pegmatites. Can. Mineral. 45: 185–202. https://doi.org/10.2113/gscanmin.45.2.185 [CrossRef] [Google Scholar]
  • Cerny P, Ercit TS, Wise MA. 1992. The tantalite-tapiolite gap; natural assemblages versus experimental data. Can. Mineral. 30: 587–596. [Google Scholar]
  • Černý P, Blevin PL, Cuney M, London D. 2005. Granite-related ore deposits. Economic Geology (100th anniversary): 337–370. [Google Scholar]
  • Charoy B, Lothe F, Dusausoy Y, Noronha F. 1992. The crystal chemistry of spodumene in some granitic aplite-pegmatite from Northern Portugal. Canadian Mineralogist 30: 639–651. [Google Scholar]
  • Charoy B, Noronha F. 1991. The Argemela granite-porphyry (Central Portugal): the subvolcanic expression of a high-fluorine, rare-element pegmatite magma. In: Pagel & Leroy, eds. Source, Transport and deposition of metals. Balkema, Rotterdam, pp. 741–744. [Google Scholar]
  • Charoy B, Noronha F. 1996. Multistage growth of a rare-element, volatile-rich microgranite at Argemela (Portugal). Journal of Petrology 37: 73–94. [Google Scholar]
  • Charoy B, Noronha F, Lima AMC. 2001. Spodumene-Petalite-Eucryptite: mutual relationships and alteration style in pegmatite-aplite dykes from Northern Portugal. Canadian Mineralogist 39: 729–746. [CrossRef] [Google Scholar]
  • Che X-D, Wang R-C, Wu F-Y, et al. 2019. Episodic Nb–Ta mineralisation in South China: Constraints from in situ LA–ICP–MS columbite-tantalite U–Pb dating. Ore Geology Reviews 105: 71–85. https://doi.org/10.1016/j.oregeorev.2018.11.023 [CrossRef] [Google Scholar]
  • Che X-D, Wu F-Y, Wang R-C, et al. 2015. In situ U–Pb isotopic dating of columbite-tantalite by LA-ICP-MS. Ore Geology Reviews 65: 979–989. https://doi.org/10.1016/j.oregeorev.2014.07.008 [CrossRef] [Google Scholar]
  • Cheilletz A, Archibald DA, Cuney M, Charoy B. 1992. 40Ar/39Ar age of topaze-lepidolite leucogranite of Beauvoir and of sodolithic pegmatites of Chédeville (North French Massif Central). Petrologic and geodynamic meaning. Comptes Rendus Académie des Sciences, Paris, 315: 329–336. [Google Scholar]
  • Christiansen EH, Sheridan MF, Burt DM. 1986. The geology and geochemistry of Cenozoic topaz rhyolites from the Western United States. Geological Society of America Special Paper 205: 82. [Google Scholar]
  • Coleman DS, Gray W, Glazner AF. 2004. Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolomne Intrusive Suite, California. Geology 32: 433–436. [CrossRef] [Google Scholar]
  • Correia Neves JM. 1964. Genese des zonar gebauten beryllpegmatits von Venturinha (Viseu, Portugal) in geochemischer sicht. Beiträge zur Mineralogie und Petrographie 10: 357–373. [Google Scholar]
  • Costa MM, Neiva AMR, Azevedo MR, Corfu F. 2014. Distinct sources for syntectonic Variscan granitoids: Insights from the Aguiar da Beira region, Central Portugal. Lithos 196-197: 83–98. https://doi.org/10.1016/j.lithos.2014.02.023 [CrossRef] [Google Scholar]
  • Cotelo Neiva JM. 1944. Tin and wolfram Portuguese deposits. Comunicações dos Serviços Geológicos de Portugal, XXV, pp. 251. (In Portuguese). [Google Scholar]
  • Cotelo Neiva JM. 1992. The pegmatite deposit of Vieiros (Amarante) with cassiterite, columbotantalite and Li-bearing minerals. Unpubl. Report written for the mining company Nortenha, S.A.R.L, Minas de Vieiros, Amarante, Portugal, pp. 63. [Google Scholar]
  • Cuney M, Alexandrov P, Le Carlier De Veslud, et al. 2002. The timing of W-Sn rare-metal mineral deposit formation in the Western Variscan chain in their orogenic setting: the case of the Limousin area (Massif Central, France). In: Blundell DJ, Neubauer F, Von Quadt A, eds. The timing and location of major ore deposits in an evolving orogen. Geological Society of London Special Publication 204: 213–228. [Google Scholar]
  • Cuney M, Barbey P. 2014. Uranium, rare-metals, and granulite-facies metamorphism. Geosciences Frontiers 5: 729–745. [CrossRef] [Google Scholar]
  • Cuney M, Marignac C, Weisbrod A. 1992. The Beauvoir topaz-lepidolite-albite granite (Massif Central, France): a highly specialized granite with disseminated Sn-Li-Ta-Nb-Be mineralisation of magmatic origin. Economic Geology 87: 1766–1794. [CrossRef] [Google Scholar]
  • Dallmeyer RD, Martinez Catalan JR, Arenas R, et al. 1997. Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 277: 307–337. [CrossRef] [Google Scholar]
  • Demartis M, Pinotti LP, Coniglio JE, et al. 2011. Ascent and emplacement of pegmatitic melts in a major reverse shear zone (Sierras de Córdoba, Argentina). Journal of Structural Geology 33: 1334–1346. [CrossRef] [Google Scholar]
  • Deng XD, Li JW, Zhao XF, et al. 2013. U-Pb isotope and trace element analysis of columbite-(Mn) and zircon by laser ablation ICP-MS: Implications for geochronology of pegmatite and associated ore deposits. Chemical Geology. https://doi.org/10.1016/j.chem.geo.2013.02.014 [Google Scholar]
  • Deveaud S, Gumiaux C, Gloaguen E, Branquet Y. 2013. Spatial statistical analysis applied to rare-elements LCT-type pegmatite fields: an original approach to constrain faults-pegmatites-granites relationships. Journal of GEOsciences 58: 163–182. [CrossRef] [Google Scholar]
  • Deveaud S, Millot R, Villaros A. 2015. The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas. Chemical Geology 411: 97–111. https://doi.org/10.1016/j.chemgeo.2015.06.029 [CrossRef] [Google Scholar]
  • Dias G, Leterrier J, Mendes A, Simões PP, Bertrand JM. 1998. U-Pb zircon and monazite geochronology of post-collisional Hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos 45: 349–369. [CrossRef] [Google Scholar]
  • Dias G, Simões PP, Ferreira N, Leterrier J. 2002. Mantle and crustal sources in the genesis of late-Hercynian Granitoids (NW Portugal): Geochemical and Sr-Nd isotopic constraints. Gondwana Research 5: 287–305. [CrossRef] [Google Scholar]
  • Diaz-Alvarado J, Castro A, Fernandez C, Moreno-Ventas I. 2011. Assessing bulk assimilation in cordierite-bearing granitoids from the Central System Batholith, Spain: Experimental, geochemical and geochronological constraints. Journal of Petrology 52: 223–256. [CrossRef] [Google Scholar]
  • Ercit TS. 1994. The geochemistry and crystal chemistry of columbite-group minerals from granitic pegmatites, southwestern Grenville Province, Canadian Shield. Can. Mineral. 32: 421–438. [Google Scholar]
  • Farias P, Gallastegui G, Lodeiro FG, et al. 1987. Insights on the lithostratigraphy and struture of the Central Galicia. IX Reunião de Geologia do Oeste Peninsular. Publicação do Museu e Laboratório Mineralógico e Geológico da Faculdade de Ciências, Universidade do Porto, Program Abstr.1, pp. 411–431. (in Portuguese). [Google Scholar]
  • Farinha J, Lima A. 2000. Study of the Lithium rich aplite pegmatite bodies from the Barroso-Alvão región, Northern Portugal. Estudos, Notas e Trabalhos 42: 48 (in Portuguese). [Google Scholar]
  • Feng Y, Liang T, Linnen R, et al. 2020. LA-ICP-MS dating of high-uranium columbite from no. 1 pegmatite at Dakalasu, the Chinese Altay orogen: Assessing effect of metamictization on age concordance. Lithos 362-363: 105461. https://doi.org/10.1016/j.lithos.2020.105461 [CrossRef] [Google Scholar]
  • Fernández-Suárez J, Arenas R, Jeffries TE, Whitehouse MJ, Villaseca C. 2006. A U-Pb study of zircons from a Lower Crustal Granulite Xenolith of the Spanish Central System: A record of Iberian lithospheric evolution from the Neoproterozoic to the Triassic. Journal of Geology 114: 471–483. [CrossRef] [Google Scholar]
  • Fernández-Suárez J, Dunning G.R, Jenner G.A, Gutiérez-Alonso G. 2000. Variscan collisionnal magmatism and deformation in NW Iberia: Constraints from U-Pb geochronology of granitoids. Journal of the Geological Society 157: 565–576. [CrossRef] [Google Scholar]
  • Ferreira N, Iglesias M, Noronha F, Pereira E, Ribeiro A, Ribeiro ML. 1987. Granitoids from the Central Iberian Zone and their geodynamical setting. In: Geologia de los Granitoides y Rocas Asociadas del Macizo (Bea F, et al., eds.), pp. 37–51 (in Spanish). [Google Scholar]
  • Frei D, Gerdes A. 2009. Precise and accurate in situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chemical Geology 261: 261–270. [CrossRef] [Google Scholar]
  • Fuertes-Fuente M. 1996. The pegmatites from the area of Lalín-Forcarei (Galicia) and their mineralizations of rare-elements. PhD Thesis, Oviedo University, Oviedo, Spain, pp. 283. (in spanish). [Google Scholar]
  • Fuertes-Fuente M, Martín-Izard A. 1998. The Forcarei Sur rare-element granitic pegmatite field and associated mineralization, Galicia, Spain. Canadian Mineralogist 36: 303–325. [Google Scholar]
  • Fuertes-Fuente M, Martín-Izard A, Boiron MC, Mangas J. 2000. Fluid evolution of rare-element and muscovite granitic pegmatites from central Galica, NW Spain. Mineralium Deposita 35: 332–345. [CrossRef] [Google Scholar]
  • Garate-Olave I, Roda-Robles E, Gil-Crespo P-P, Pesquera A, Errandonea-Martin J. 2020. The Tres Arroyos granitic Aplite-Pegmatite field (Central Iberian Zone, Spain): Petrogenetic constraints from evolution of Nb-Ta-Sn oxides, whole-rock geochemistry and U-Pb geochronology. Minerals 10: 1008. https://doi.org/10.3390/min10111008 [CrossRef] [Google Scholar]
  • García Iglesias J, Loredo Perez J, Martín Izard A. 1991. Mineralogy, geochemistry and thermometry of late hydrothermal veins within the Vilatuxe spodumene-bearing pegmatites, Pontevedra, NW Spain. In Pagel & Leroy, eds. Source, transport and deposition of metals. Balkema, Rotterdam, pp. 173–17 6. [Google Scholar]
  • García Moreno O, Corretgé LG. 2007. Processes of assimilation in the genesis of cordierite leucogranites from the Iberian Massif: A short review. Canadian Mineralogist 45: 71–85. [CrossRef] [Google Scholar]
  • Gerdes A, Zeh A. 2006. Combined U-Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Sciences Letters 249: 47–61. [CrossRef] [Google Scholar]
  • Gloaguen E. 2006. Constraints from an integrated study on relationships between granites and veins mineralization (Au and Sn-W) in a late-orogenic context (Variscan belt, Central Galicia, Spain). PhD thesis, Orleans University, pp. 493. (in French). [Google Scholar]
  • Gloaguen E, Branquet Y, Chauvet A, Bouchot V, Barbanson L, Vigneresse JL. 2014. Tracing the magmatic/hydrothermal transition in regional low-strain zones: The role of magma dynamics in strain localization at pluton roof, implications for intrusion-related gold deposits. Journal of Structural Geology 58: 108–121. [CrossRef] [Google Scholar]
  • Glodny J, Grauert B, Fiala J, Vejnar Z, Krohe A. 1998. Metapegmatites in the western Bohemian massif: ages of crystallisation and metamorphic overprint, as constrained by U-Pb zircon, monazite, garnet, columbite and Rb-Sr muscovite data. Geologische Rundschau 87: 124–134. [CrossRef] [Google Scholar]
  • Glover AS, Rorgers WZ, Barton JE. 2012. Granitic Pegmatites: Storehouses of industrial minerals. Elements 8: 269–273. [CrossRef] [Google Scholar]
  • Gomes CL. 1995. Discrimination of the spectre of resources related to the evolution of granites of the field of Arga-Minho (North of Portugal). Estudos, Notas e Trabalhos, I.G.M. 37: 59–86. (in Portuguese). [Google Scholar]
  • Gomes CL, Nunes JEL. 1990. The paragenes corresponding to Li-mineralization of field of aplo-pegmatite of Arga-Minho (North Portugal). Memórias e Noticias, Publ. Mus. Lab. Mineral. Geol, University of Coimbra 109: 131–166. (in Portuguese). [Google Scholar]
  • Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries T, et al. 2011. Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics 30: 1–17. [Google Scholar]
  • Helal B, Bilal E, Pereir E. 1993. Nigerite in rare-element pegmatites and associated granites of Seixoso área (Northern Portugal). In: Fenoll Hach-Ali, Torres- Ruiz, Gervilla, eds. Current research in geology applied to ore deposits, pp. 253–257. [Google Scholar]
  • Henzen BJ. 1967. Mineralogy and petrography of some tin-lithium and beryllium bearing albite pegmatites near Doade, Galicia (Orense). Leidse Geol. Medred. 36: 249–259. [Google Scholar]
  • Julivert M, Fontboté JM, Ribeiro A, Conde L. 1974. Mapa Tectónico de la Península Ibérica y Baleares. Escala 1: 1 000 000. Madrid: Instituto Geológico y Minero de España, Memoria Explicativa, pp. 113 (in Spanish). [Google Scholar]
  • Kontak DJ, Creaser RA, Heaman LM, Archibald DA. 2005. U-Pb tantalite, Re-Os molybdenite, and 40Ar/39Ar muscovite dating of the Brazil Lake pegmatite, Nova Scotia: a possible shear-zone related origin for an LCT-type pegmatite. Atlantic Geology 41: 17–29. [CrossRef] [Google Scholar]
  • Konzett J, Hauzenberger C, Ludwig T, Stalder R. 2018a. Anatectic granitic pegmatites from the Eastern Alps: a case of variable rare metal enrichment during high-grade regional metamorphism. II: Pegmatite staurolite as an indicator of anatectic pegmatite parent melt Formation – a field and experimental study. The Canadian Mineralogist 56: 603–624. https://doi.org/10.3749/canmin.1800011 [CrossRef] [Google Scholar]
  • Konzett J, Schneider T, Nedyalkova L, et al. 2018b. Anatectic granitic pegmatites from the Eastern Alps: A case of variable rare-metal enrichment during high-grade regional metamorphism – I: Mineral assemblages, geochemical characteristics, and emplacement ages. The Canadian Mineralogist 56: 555–602. https://doi.org/10.3749/canmin.1800008 [CrossRef] [Google Scholar]
  • Legros H, Mercadier J, Villeneuve J, et al. 2019. U-Pb isotopic dating of columbite-tantalite minerals: Development of reference materials and in situ applications by ion microprobe. Chemical Geology 512: 69–84. https://doi.org/10.1016/j.chemgeo.2019.03.001 [CrossRef] [Google Scholar]
  • Lerouge C, Deschamps Y, Piantone P, Gilles C, Breton J. 2007. Metal-carrier accessory minerals associated with W ± Sn mineralization, La Châtaigneraie tungsten ore district, Massif Central, France. Canadian Mineralogist 45: 875–889. [CrossRef] [Google Scholar]
  • Lima A. 2000. Structure, mineralogy and genesis of the spodumene-rich aplite pegmatite bodies from Barroso-Alvão, Northern Portugal. PhD Thesis, Univ. Porto, Portugal and INPL, Nancy, France, pp. 270. (in Portuguese). [Google Scholar]
  • Lima A, Rodrigues R, Guede A, Novák M. 2009. The rare elements-rich granite of Seixoso area (Outeiro mine, Northern Portugal). Preliminary results. Estudios Geológicos 19: 182–187. [Google Scholar]
  • Lima SF, Corfu F, Neiva AMR, Ramos JMF. 2012. Dissecting complex magmatic processes: an in depth U-Pb study of the Pavia Pluton, Ossa-Morena Zone, Portugal. Journal of Petrology 53: 1887–1911. [CrossRef] [Google Scholar]
  • Lima SM, Neiva AMR, Ramos JMF, Cuesta A. 2014. Long-lived magmatic systems and implications on the recognition of granite-pegmatite genetic relations: Characterization of the Pavia granitic pegmatites (Ossa-Morena Zone, Portugal). Chemie der erdre 74: 625–639. [CrossRef] [Google Scholar]
  • Linnen RL, Cuney M. 2005. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen RL, Samson IM, eds. Rare-element geochemistry and mineral deposits. Geological Association Canada Short Course Notes 17: 45–6 8. [Google Scholar]
  • Linnen RL, Van Lichtervelde M, Černy P. 2012. Granitic pegmatites as Sources of Strategic Metals. Elements 8: 275–280. [CrossRef] [Google Scholar]
  • London D. 2008. Pegmatites. Canadian Mineralogist Special Publications 10: 347. [Google Scholar]
  • London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews 101: 349–383. https://doi.org/10.1016/j.oregeorev.2018.04.020 [CrossRef] [Google Scholar]
  • Ludwig K. 2003. Isoplot/Ex version 3: a Geochronological toolkit for Microsoft Excel. Geochronology Center, Berkeley. [Google Scholar]
  • Lv Z-H, Chen J, Zhang H, Tang Y. 2021a. Petrogenesis of Neoproterozoic rare metal granite-pegmatite suite in Jiangnan Orogen and its implications for rare metal mineralization of peraluminous rock in South China. Ore Geology Reviews 128: 103923. https://doi.org/10.1016/j.oregeorev.2020.103923 [CrossRef] [Google Scholar]
  • Lv Z-H, Zhang H, Tang Y. 2021b. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Altai. Lithos 380-381: 105865. https://doi.org/10.1016/j.lithos.2020.105865 [CrossRef] [Google Scholar]
  • Maijer C. 1965. Geological investigations in the Amarante region (Northern Portugal) with special reference to the mineralogy of the cassiterite-bearing albite pegmatites. Grafisch Centrum, Deltro. [Google Scholar]
  • Manning DAC, Hill PI. 1990. The petrogenetic and metallogenic significance of topaz granite from the southwest England ore field. Geological Society of America Special Paper 246: 51–69. [CrossRef] [Google Scholar]
  • Marcoux E, Barré B, Pichavant M, Poujol M. 2021. Âge et genèse de la coupole granitique à métaux rares (Sn, Li, Nb-Ta, W) de Montebras (Creuse, Massif central français). BSGF – Earth Sciences Bulletin 192: 16. http://doi.org/10.1051/bsgf/2020042 [Google Scholar]
  • Marignac C, Cuney M. 1999. Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt. Mineralium Deposita 34: 472–504. [CrossRef] [Google Scholar]
  • Martín-Izard A, Fuertes-Fuentes M, Cepedal A, et al. 2000. The Rio Narcea gold belt intrusions: geology, petrology, geochemistry and timing. Journal of Geochemical Exploration 71: 103–117. [CrossRef] [Google Scholar]
  • Martín-Izard A, Reguilón R, Palero F. 1992. Las mineralizaciones litiniferas del oeste de Salamanca y Zamora. Estudios Geológicos 48: 19–30. [Google Scholar]
  • Martínez Catalán JR, Schulmann K, Ghienne J-F. 2021. The Mid-Variscan Allochthon: Keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth-Science Reviews 220: 103700. [CrossRef] [Google Scholar]
  • Martins T. 2009. Multidisciplinary study of pegmatites and associated Li and Sn-Nb-Ta mineralisation from the Barroso-Alvão region. PhD thesis, University of Porto, Portugal, pp. 196. [Google Scholar]
  • Martins T, Lima A. 2011. Pegmatites from Barroso-Alvão, Northern Portugal: anatomy, mineralogy and mineral geochemistry. Cadernos Lab. Xeolóxico de Laxe, Coruña 36: 177–206. [Google Scholar]
  • Martins T, Lima A, Simmons WB, Falster A, Noronha F. 2011. Geochemical fractionation of Nb–Ta oxides in li-bearing pegmatites from the Barroso–Alvão pegmatite field, northern Portugal. The Canadian Mineralogist 49: 777–791. [CrossRef] [Google Scholar]
  • Martins HCB, Sant’Ovaia H, Noronha F. 2009. Genesis and emplacement of felsic Variscan plutons within a deep crustal lineation, the Penacova-Régua-Verín fault: An integrated geophysics and geochemical study (NW Iberian Peninsula). Lithos 111: 142–155. [CrossRef] [Google Scholar]
  • Martins HCB, Sant’Ovaia H, Noronha F. 2013. Late-Variscan emplacement and genesis of the Vieira do Minho composite pluton, Central Iberian Zone: Constraints from U-Pb zircon geochronology, AMS data and Sr-Nd-O isotope geochemistry. Lithos 162-163: 221–235. [CrossRef] [Google Scholar]
  • Matte P. 1986. The Variscan belt among the circum-Atlantic Paleozoic belts, model of evolution and position of the main crustal blocks during Permian and Carboniferous. Bulletin de la Société Géologique de France II: 9–24. (in French). [Google Scholar]
  • Matte P. 1991. Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196: 309–339. [CrossRef] [Google Scholar]
  • Melcher F, Sitnikova MA, Graupner T, Martin N, Oberthür T, Henjes-Kunst F, et al. 2008. Fingerprinting of conflict minerals: columbite-tantalite (“coltan”) ores. SGA News 23: 1–14. [Google Scholar]
  • Melleton J, Gloaguen E, Frei D. 2015. Rare-elements (Li-Be-Ta-SnNb) magmatism in the European Variscan Belt – A review. Mineral resources in a sustainable world. In: 13th SGA Biennial Meeting 2015 Proceedings, Vol. 2, pp. 807–810. [Google Scholar]
  • Melleton J, Gloaguen E, Frei D, Novák M, Breiter K. 2012. How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian massif, Czech Republic? The Canadian Mineralogist 50: 1751–1773. [CrossRef] [Google Scholar]
  • Michaud JA-S, Gumiaux C, Pichavant M, Gloaguen E, Marcoux E. 2020. From magmatic to hydrothermal Sn-Li-(Nb-Ta-W) mineralization: The Argemela area (central Portugal). Ore Geology Reviews 116: 103215. https://doi.org/10.1016/j.oregeorev.2019.103215 [Google Scholar]
  • Michaud JA-S, Pichavant M. 2020. Magmatic fractionation and the magmatic-hydrothermal transition in rare metal granites: Evidence from Argemela (Central Portugal). Geochimica et Cosmochimica Acta 289: 130–157. https://doi.org/10.1016/j.gca.2020.08.022 [CrossRef] [Google Scholar]
  • Michel J, Baumgartner L, Putlitz B, Schaltegger U, Ovtcharova M. 2008. Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y. Geology 36: 459–462. [CrossRef] [Google Scholar]
  • Miller FK, Morton DM. 1980. Potassium-argon geochronology of the eastern Transverse Ranges and southern Mojave Desert, southern California. USGS Professional Paper 1152. https://doi.org/10.3133/pp1152 [Google Scholar]
  • Montero P, Bea F, Zinger TF, Scarrow JH, Molina JF, Whitehouse M. 2004. 55 million years of continuous anatexis in Central Iberia: single-zircon dating of the Peña Negra Complex. Journal of the Geological Society 161: 255–263. [CrossRef] [Google Scholar]
  • Müller A, Romer RL, Pedersen R-B. 2017. The Sveconorwegian Pegmatite Province – Thousands of pegmatites without parental granites. Canadian Mineralogist 55: 283–315. [CrossRef] [Google Scholar]
  • Nasdala L, Hofmeister W, Norberg N, et al. 2008. Zircon M257–a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research 32: 247–265. [CrossRef] [Google Scholar]
  • Neiva AMR. 1975. Geochemistry of coexisting aplites and pegmatites and of their minerals from Central Northern Portugal. Chemical Geology 16: 153–177. [CrossRef] [Google Scholar]
  • Neiva AMR. 1977. Geochemistry of the pegmatites and their minerals from central northern Portugal. Anais da Faculdade de Ciências do Porto, LX, pp. 1–28. [Google Scholar]
  • Neiva AMR, Gomes CL, Silva PB, Gomes MEP, dos Santos ACT. 2019. Geochemistry of granitic aplite-pegmatite dykes and sills and their minerals from the Gravanho-Gouveia area in Central Portugal. Geochemistry 79: 221–234. [CrossRef] [Google Scholar]
  • Neiva AMR, Ramos JMF. 2010. Geochemistry of granitic aplite-pegmatite sills and petrogenetic links with granites, Guarda-Belmonte área, central Portugal. European Journal of Mineralogy 22: 837–854. [CrossRef] [Google Scholar]
  • Neiva AMR, Gomes MEP, Ramos JMF, Silva PB. 2008. Geochemistry of granitic aplite-pegmatite sills and their minerals from Arcozelo da Serra area (Gouveia, central Portugal). European Journal Mineralogy 20: 465–485. [CrossRef] [Google Scholar]
  • Neiva AMR, Silva PB, Corfu F, Ramos JMF. 2011. Sequential melting and fractional crystallization: Granites from Guarda-Sabugal area, central Portugal. Chemie der Erdre-Geochemistry 71: 227–245. [CrossRef] [Google Scholar]
  • Neiva AMR, Williams IS, Lima SM, Teixeira RJS. 2012. U-Pb and 39Ar-40Ar data constraining the ages of the sources, emplacement and recrystallization/cooling events from late- to post-D3 Variscan granites of the Gouveia area, central Portugal. Lithos 153: 72–83. [CrossRef] [Google Scholar]
  • Neiva AMR, Williams IS, Ramos JMF, Gomes MEP, Silva MMVG, Antunes IMHR. 2009. Geochemical and isotopic constraints on the petrogenesis of Early Ordovician granodiorite and Variscan two-micas granite from the Gouveia area, Central Portugal. Lithos 111: 186–202. [CrossRef] [Google Scholar]
  • Noronha F. 1987. Occurrence of pegmatite bodies with spodumene in the Dornelas geological map. Unpublished Portuguese Geological Survey Internal report. (in Portuguese). [Google Scholar]
  • Noronha F, Ramos JMF, Rebelo J, Ribeiro A, Ribeiro ML. 1981. Test of correlation of the phases of Hercynian deformation in the NW of the Iberian Peninsula. Leid. Geol. Meded. 52: 87–91. [Google Scholar]
  • Novák M, Tomáš K, Gadas P. 2013. Geological position, mineral assemblages and contamination of granitic pegmatites in the Moldanubian Zone, Czech Republic; examples from the Vlastějovice region. Journal of Geosciences 58: 21–47. http://doi.org/10.3190/jgeosci.132 [CrossRef] [Google Scholar]
  • Nunes JEL, Gomes CL. 1994. The crystal chemistry of spodumene in some granitic aplite-pegmatite bodies of Northern Portugal: A comparative review: Discussion. The Canadian Mineralogist 32: 223–226. [Google Scholar]
  • Ordóñez-Casado B. 1998. Geochronological studies of the Pre-Mesozoic basement of the Iberian Massif: the Ossa-Morena Zone and the Allochthonous Complexes within the Central Iberian Zone. PhD dissertation, ETH, Switzerland 12940, 235 p. [Google Scholar]
  • Orejama D, Villaseca C, Valverde-Vaquero P, Belousova EA, Armstrong RA. 2012. U-Pb geochronology and zircón composition of late Variscan S- and I-type granitoids from the Spanish Central System batholith. International Journal of Earth Sciences 101: 1789–1815. [CrossRef] [Google Scholar]
  • Pagés Valcarlos JL. 1998. The pegmato-aplitic field of Doade (Ourense, Spain) and associated Sn and Ta mineralizations. Cadernos Lab. Xeolóxico de Laxe, Coruña, 23, 27–41. (in Spanish). [Google Scholar]
  • Pamplona J, Guttiérrez-Alonso G, Ribeiro A. 2006. Superposition of shear zones during orogenic development: an example from the NW Variscan Belt (Viana do Castelo, NW Portugal). J. Struct. Geol. 28: 1327–1337. [CrossRef] [Google Scholar]
  • Parfenoff A, Pomerol C, Tourenq J. 1970. Les minéraux en grains. Méthodes d’étude et détermination. Masson et Cie, 575 pp. [Google Scholar]
  • Parga Pondal I, Martínez Cardoso G. 1948. Die Lithium-pegmatite von Lalín, Prov. Pontevedra, Galizien. Schweizerische Mineralogische und Petrographische Mitteilungen 28: 324–334. (In German). [Google Scholar]
  • Pereira MF, Silva JB, Drost K, Chichorro M, Apraiz A. 2010. Relative timing of transcurrent displacements in northern Gondwana: U–Pb laser ablation ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the western Iberian Massif (Portugal). Gondwana Research 17: 461–481. https://doi.org/10.1016/j.gr.2009.08.006 [CrossRef] [Google Scholar]
  • Pouchou JL, Pichoir F 1984. A new model for quantitative X-ray-microanalysis: Application to the analysis of homogeneous samples. Rech. Aerosp. 167–192. [Google Scholar]
  • Puga M, Leal Gomes C, Vide R. 2003. Mode of occurrence and testing of industrial application of petalite from the deposit of the pegmatite of Queiriga – Sátão (Viseu). Resumos, IV Congresso Ibérico de Geoquímica, Coimbra, pp. 196–198. (in Portuguese). [Google Scholar]
  • Raimbault L. 1998. Composition of complex lepidolite-type granitic pegmatites and of constituent columbite-tantalite, Chèdeville, Massif Central, France. The Canadian Mineralogist 36: 563–583. [Google Scholar]
  • Ramos JMF. 1998. Rare metals mineralization from the Seixo Amarelo – Gonçalo field. Contributions for their knowledge. PhD Thesis, University of Lisbon, vol. 1 and 2, pp. 659 (in Portuguese). [Google Scholar]
  • Ramos JMF. 2007. Seixo Amarelo-Gonçalo rare-element aplite-pegmatite field. In: Pegmatites: the State of the Art. Internacional Symposium. Field Trip Guide Book, Memórias No.9, Universidade do Porto-Faculdade de Ciencias, Departamento de Geología, pp. 73–87. [Google Scholar]
  • Roda E. 1993. Characteristics, distribution and petrogenesis of the pegmatites from La Fregeneda (Salamanca, Spain). Ph.D thesis, University del Pais Vasco, Spain, pp. 200 (in Spanish). [Google Scholar]
  • Roda E, Pesquera A, Velasco F, Fontan F. 1999. The granitic pegmatites of the Fregeneda área (Salamanca, Spain): characteristics and petrogenesis. Mineralogical Magazine 63: 535–558. [CrossRef] [Google Scholar]
  • Roda E, Vieira R, Lima A, Pesquera-Pérez A. 2009. Petrogenetic links between granites and pegmatites in the Almendra-Fregeneda area (Salamanca, Spain and Guarda, Portugal): New insights from 40Ar/39Ar dating in micas. Estudios Geológicos 19: 305–310. [Google Scholar]
  • Roda-Robles E, Pesquera A, Gil-Crespo PP, Vieira R, Lima A, Garate-Olave I, et al. 2016. Geology and mineralogy of Li mineralization in the Central Iberian Zone (Spain and Portugal). Mineralogical Magazine 80: 103–126. https://doi.org/10.1180/minmag.2016.080.049 [CrossRef] [Google Scholar]
  • Roda-Robles E, Villaseca C, Pesquera A, Gil-Crespo PP, Vieira R, Lima A, et al. 2018. Petrogenetic relationships between Variscan granitoids and Li-(F-P)-rich aplite-pegmatites in the Central Iberian Zone: Geological and geochemical constraints and implications for other regions from the European Variscides. Ore Geology Reviews 95: 408–430. [CrossRef] [Google Scholar]
  • Romer RL, Lehmann B. 1995. U-Pb columbite age of Neoproterozoic Ta-Nb mineralization in Burundi. Economic Geology 90: 2303–2309. [CrossRef] [Google Scholar]
  • Romer RL, Smeds SA. 1994. Implications of U-Pb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90–1.85 Ga magmatic arcs to the Baltic Shield. Precambrian Research 67: 141–158. [CrossRef] [Google Scholar]
  • Romer RL, Smeds SA. 1996. U-Pb columbite ages of pegmatites from Sveconorwegian terranes in southwestern Sweden. Precambrian Research 76: 15–30. [CrossRef] [Google Scholar]
  • Romer RL, Smeds SA. 1997. U-Pb columbite chronology of post-kinematic Palaeoproterozoic pegmatites in Sweden. Precambrian Research 82: 85–99. [CrossRef] [Google Scholar]
  • Romer RL, Wright JE. 1992. U-Pb dating of columbites: A geochronological tool to date magmatism and ore deposits. Geochimica and Cosmochimica Acta 56: 2137–2142. [CrossRef] [Google Scholar]
  • Ruiz C, Fernandez-Leyva C, Locutura J. 2008. Geochemistry, geochronology and mineralisation potential of the granites in the Central Iberian Zone: The Jalama batholith. Chemie der Erde-Geochemistry 68: 413–429. [Google Scholar]
  • Shaw RA, Goodenough KM, Roberts NMW, Horstwood MSA, Chenery SR, Gunn AG. 2016. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: A case study from the Lewisian Gneiss Complex of northwest Scotland. Precambrian Research 281: 338–362. https://doi.org/10.1016/j.precamres.2016.06.008 [CrossRef] [Google Scholar]
  • Silva D, Lima A, Gloaguen E, Gumiaux C, Noronha F, Deveaud S. 2018. Chapter 3 – Spatial geostatistical analysis applied to the Barroso-Alvão rare-elements pegmatite field (Northern Portugal). In: Teodoro AC, ed. Frontiers in Information Systems, GIS an overview of applications, Bentham Science Publishers, Sharjah, UAE, 1: 67–101. [CrossRef] [Google Scholar]
  • Simons B, Shail RK, Andersen JCӨ. 2016. The petrogenesis of the Early Permian Variscan granites of the Cornubian Batholith: Lower plate post-collisional peraluminous magmatism in the Rhenohercynian Zone of SW England. Lithos 260: 76–94. https://doi.org/10.1016/j.lithos.2016.05.010 [CrossRef] [Google Scholar]
  • Simmons W, Falster A, Webber K, Roda-Robles E, Boudreaux AP, Grassi LR, Freeman G. 2016. Bulk composition of Mt. Mica Pegmatite, Maine, USA: Implications For the origin of an LCT type pegmatite by Anatexis. The Canadian Mineralogist 54: 1053–1070. https://doi.org/10.3749/canmin.1600017 [CrossRef] [Google Scholar]
  • Sláma J, Košler J, Condon DJ, et al. 2008. Plešovice zircon – A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249: 1–35. [CrossRef] [Google Scholar]
  • Solá AR, Williams IS, Neiva AMR, Ribeiro ML. 2009. U-Th-Pb SHRIMP ages and oxygen isotope composition of zircon from two contrasting late Variscan granitoids, Nias-Albuquerque batholith, SW Iberian Massif: Petrologic and regional implications. Lithos 111: 156–167. [CrossRef] [Google Scholar]
  • Teixeira RJS, Neiva AMR, Silva PB, Gomes MEP, Andersen T, Ramos JMF. 2011. Combined U-Pb geochronology and Lu-Hf isotope systematics by LAM-ICPMS of zircons from granites and sedimentary rocks of Carrazeda de Ansiães and Sabugal areas, Portugal, to constrain granite sources. Lithos 125: 321–334. [CrossRef] [Google Scholar]
  • Teixeira RJS, Neiva AMR, Gomes MEP, Corfu F, Cuesta A, Croudace IW. 2012. The role of fractional crystallization in the genesis of early syn-D3, tin-mineralized Variscan two-mica granites from the Carrazeda de Ansiães area, northern Portugal. Lithos 153: 177–191. [CrossRef] [Google Scholar]
  • Valle Aguado B, Azevedo M.R, Schaltegger U, Martínez Catalán J.R, Nolan J. 2005. U-Pb zircon and monazite geochronology of Variscan magmatism related to syn-convergence extension in Central Northern Portugal. Lithos 82: 169–184. [CrossRef] [Google Scholar]
  • Valverde-Vaquero P, Cuesta Fernández A, Gallastegui G, Suárez O, Corretgé LG, Dunning GR. 1999. U-Pb dating of Late Variscan magmatism in the Cantabrian Zone (Northern Spain). EUG X meeting, 28th March–1st April, 1999, Strasbourg (France), pp. 101. [Google Scholar]
  • Van Lichtervelde M, Grand’Homme A, de Saint-Blanquat M, et al. 2017. U-Pb geochronology on zircon and columbite-group minerals of the Cap de Creus pegmatites, NE Spain. Mineralogy and Petrology 111: 1–21. [CrossRef] [Google Scholar]
  • Vieira R. 2010. Aplite-pegmatite bodies with rare-elements from Almendra (V.N. de Foz-Côa) & Barca D’Alva (Figueira de Castelo Rodrigo). Fregeneda-Almendra aplite-pegmatite field. Ph.D thesis, University of Porto, Portugal, pp. 1–275 (in Portuguese). [Google Scholar]
  • Von Knorring O, Vidal Romani JR. 1981. On the mineralogy of the O Casteliño spodumene pegmatite near Lalín, Galicia, Spain. Cuad Lab Xeol Laxe 2: 259–262. [Google Scholar]
  • Webber KL, Simmons WB, Falster AU, Hanson SL. 2019. Anatectic pegmatites of the Oxford County pegmatite field, Maine, USA. The Canadian Mineralogist 57: 811–815. https://doi.org/10.3749/canmin.AB00028 [CrossRef] [Google Scholar]
  • Yan Q-H, Qiu Z-W, Wang H, et al. 2018. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): Constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite. Ore Geology Reviews 100: 561–573. https://doi.org/10.1016/j.oregeorev.2016.11.010 [CrossRef] [Google Scholar]
  • Ypma PJM. 1966. Structural petrology of an area near Santiago de Compostela (NW Spain). Leidse Geol Medred 45: 1–71. [Google Scholar]
  • Zeck HP, Wingate MT, Pooley G. 2007. Ion microprobe U-Pb zircon geochronology of a late tectonic granitic-gabbroic rock complex within the Hercynian Iberian belt. Geological Magazine 144: 157–177. [CrossRef] [Google Scholar]
  • Zhou Q, Qin K, Tang D, Wang C, Sakyi PA. 2016. LA-ICP-MS U-Pb zircon, columbite-tantalite and 40Ar–39Ar muscovite age constraints for the rare-element pegmatite dykes in the Altai orogenic belt, NW China. Geological Magazine 155: 707–728. https://doi.org/10.1017/S0016756816001096 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.