Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 193, 2022
Article Number 5
Number of page(s) 16
DOI https://doi.org/10.1051/bsgf/2022005
Published online 21 June 2022
  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C. 2007. Itrf2005: A new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. Journal of Geophysical Research: Solid Earth 112(B9). [Google Scholar]
  • Altamimi Z, Métivier L, Rebischung P, Rouby H, Collilieux X. 2017. Itrf2014 plate motion model. Geophysical Journal International 209(3): 1906–1912. [CrossRef] [Google Scholar]
  • Angermann D, Klotz J, Reigber C. 1999. Space-geodetic estimation of the Nazca-South America euler vector. Earth and Planetary Science Letters 171(3): 329–334. [CrossRef] [Google Scholar]
  • Báez J, Leyton F, Troncoso C, del Campo F, Bevis M, Vigny C, et al. 2018. The Chilean GNSS network: Current status and progress toward early warning applications. Seismological Research Letters. [Google Scholar]
  • Barrientos SE, Plafker G, Lorca E. 1992. Postseismic coastal uplift in southern Chile. Geophysical Research Letters 19(7): 701–704. [CrossRef] [Google Scholar]
  • Beck S, Barrientos S, Kausel E, Reyes M. 1998. Source characteristics of historic earthquakes along the central Chile subduction zone. Journal of South American Earth Sciences 11: 115–129. [CrossRef] [Google Scholar]
  • Blewitt G, Hammond WC, Kreemer C. 2018. Harnessing the gps data explosion for interdisciplinary science. Eos 99(10.1029). [CrossRef] [Google Scholar]
  • Boehm J, Werl B, Schuh H. 2006. Troposphere mapping functions for gps and very long baseline interferometry from european centre for medium-range weather forecasts operational analysis data. Journal of Geophysical Research: Solid Earth 111(B2). [Google Scholar]
  • Boudin F, Bernard P, Meneses G, Vigny C, Olcay M, Tassara C, et al. 2021. Slow slip events precursory to the 2014 iquique earthquake, revisited with long-base tilt and gps records. Geophysical Journal International. [Google Scholar]
  • Brooks BA, Bevis M, Smalley R, Kendrick E, Manceda R, Lauría E, et al. 2003. Crustal motion in the southern Andes (26°–36°S): Do the Andes behave like a microplate? Geochemistry, Geophysics, Geosystems 4(10). [CrossRef] [Google Scholar]
  • Cembrano J, Hervé F, Lavenu A. 1996. The liquiñe ofqui fault zone: a long-lived intra-arc fault system in southern chile. Tectonophysics 259(1-3): 55–66. [CrossRef] [Google Scholar]
  • Chanard K, Fleitout L, Calais E, Rebischung P, Avouac J-P. 2018. Toward a global horizontal and vertical elastic load deformation model derived from grace and gnss station position time series. Journal of Geophysical Research: Solid Earth 123(4): 3225–3237. [CrossRef] [Google Scholar]
  • Cifuentes IL. 1989. The 1960 Chilean earthquakes. Journal of Geophysical Research: Solid Earth 94(B1): 665–680. [CrossRef] [Google Scholar]
  • Comte D, Eisenberg A, Lorca E, Pardo M, Ponce L, Saragoni R, et al. 1986. The 1985 central chile earthquake: A repeat of previous great earthquakes in the region? Science 233(4762): 449–453. [CrossRef] [Google Scholar]
  • Comte D, Pardo M. 1991. Reappraisal of great historical earthquakes in the northern chile and southern peru seismic gaps. Natural Hazards 4(1): 23–44. [CrossRef] [Google Scholar]
  • Dow J, Neilan R, Rizos C. 2009. The international GNSS service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy 83(3-4): 191–198. [CrossRef] [Google Scholar]
  • Dziewonski A, Chou T-A, Woodhouse JH. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth 86(B4): 2825–2852. [CrossRef] [Google Scholar]
  • Ekström G, Nettles M, Dziewon’ski, A. 2012. The global cmt project 2004–2010: Centroid-moment tensors for 13 017 earthquakes. Physics of the Earth and Planetary Interiors 200: 1–9. [CrossRef] [Google Scholar]
  • Fu Y, Argus DF, Freymueller JT, Heflin MB. 2013. Horizontal motion in elastic response to seasonal loading of rain water in the amazon basin and monsoon water in southeast asia observed by gps and inferred from grace. Geophysical Research Letters 40(23): 6048–6053. [CrossRef] [Google Scholar]
  • Gobron K, Rebischung P, Van Camp M, Demoulin A, de Viron O. 2021. Influence of aperiodic non-tidal atmospheric and oceanic loading deformations on the stochastic properties of global gnss vertical land motion time series. Journal of Geophysical Research: Solid Earth 126(9): e2021JB022370. [CrossRef] [Google Scholar]
  • Herring T, King R, McClusky SC. 2010a. GAMIT: GPS Analysis at MIT, release 10.4. [Google Scholar]
  • Herring T, King R, McClusky SC. 2010b. GLOBK: Global Kalman filter VLBI and GPS analysis program release 10.4. [Google Scholar]
  • Hu Y, Bürgmann R, Uchida N, Banerjee P, Freymueller JT. 2016. Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 tohoku earthquake. Journal of Geophysical Research: Solid Earth 121(1): 385–411. [CrossRef] [Google Scholar]
  • Kendrick E, Bevis M, Smalley R, Brooks B. 2001. An integrated crustal velocity field for the central Andes. Geochemistry, Geophysics, Geosystems 2(11): n/a–n/a. [CrossRef] [Google Scholar]
  • Kendrick E, Bevis M, Smalley R, Brooks B, Vargas RB, Laura E, et al. 2003. The nazca-south america euler vector and its rate of change. Journal of South American Earth Sciences 16(2): 125–131. [CrossRef] [Google Scholar]
  • Khazaradze G, Wang K, Klotz J, Hu Y, He J. 2002. Prolonged post-seismic deformation of the 1960 great Chile earthquake and implications for mantle rheology. Geophysical Research Letters 29(22). [Google Scholar]
  • Klein E, Duputel Z, Zigone D, Vigny C, Boy J-P, Doubre C, et al. 2018. Deep transient slow slip detected by survey gps in the region of atacama, chile. Geophysical research letters 45(22): 12–263. [Google Scholar]
  • Klein E, Fleitout L, Vigny C, Garaud J. 2016. Afterslip and viscoelastic relaxation model inferred from the large scale postseismic deformation following the 2010 Mw 8.8 Maule earthquake (Chile). Geophysical Journal International 205(3): 1455–1472. [CrossRef] [Google Scholar]
  • Klein E, Potin B, Pasten-Araya F, Tissandier R, Azua K, Duputel Z, et al. 2021. Interplay of seismic and a-seismic deformation during the 2020 sequence of atacama, chile. Earth and Planetary Science Letters 570: 117081. [CrossRef] [Google Scholar]
  • Klein E, Vigny C, Fleitout L, Grandin R, Jolivet R, Rivera E, et al. 2017. A comprehensive analysis of the 2015 Mw 8.3 Illapel Earthquake from GPS and InSAR data. Earth and Planetary Science Letters 469: 123–134. [CrossRef] [Google Scholar]
  • Klotz J, Khazaradze G, Angermann D, Reigber C, Perdomo R, Cifuentes O. 2001. Earthquake cycle dominates contemporary crustal deformation in central and southern Andes. Earth and Planetary Science Letters 193(3): 437–446. [CrossRef] [Google Scholar]
  • Larson K, Freymuller J, Philipsen S. 1997. Global consistent rigid plate velocities from GPS. J. Geophys. Res. 102: 9961–9981. [CrossRef] [Google Scholar]
  • Lomnitz C. 2004. Major earthquakes of Chile: A historical survey, 1535–1960. Seismological Research Letters 75: 368–378. [CrossRef] [Google Scholar]
  • McCann W, Nishenko S, Sykes L, Krause J. 1979. Seismic gaps and plate tectonics: Seismic potential for major boundaries. Pure and Applied Geophysics 117: 1082–1147. [CrossRef] [Google Scholar]
  • Métois M, Vigny C, Socquet A. 2012. Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone. Journal of Geophysical Research 662: 120–131. [Google Scholar]
  • Métois M, Vigny C, Socquet A. 2016. Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38°S–18°S). Pure and Applied Geophysics 173(5): 1431–1449. [CrossRef] [Google Scholar]
  • Moreno M, Melnick D, Rosenau M, Bolte J, Klotz J, Echtler H, et al. 2011. Heterogeneous plate locking in the south-central Chile subduction zone: Building up the next great earthquake. Earth and Planetary Science Letters 305. [Google Scholar]
  • Moreno M, Rosenau M, Oncken O. 2010. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature 467(7312): 198–202. [CrossRef] [Google Scholar]
  • Nikolaidis R. 2002. Observation of geodetic and seismic deformation with the Global Positioning System. PhD thesis, University of California San Diego, La Jolla, CA. [Google Scholar]
  • Norabuena EO, Dixon TH, Stein S, Harrison CG. 1999. Decelerating nazca-south america and nazca-pacific plate motions. Geophysical Research Letters 26(22): 3405–3408. [CrossRef] [Google Scholar]
  • Piñón DA, Gómez DD, Smalley Jr R, Cimbaro SR, Laura EA, Bevis MG. 2018. The history, state, and future of the Argentine continuous satellite monitoring network and its contributions to geodesy in Latin America. Seismological Research Letters 89(2A): 475–482. [CrossRef] [Google Scholar]
  • Pritchard ME, Simons M. 2006. An aseismic slip pulse in northern Chile and along-strike variations in seismogenic behavior. Journal of Geophysical Research 1–14. [Google Scholar]
  • Rebischung P. 2021. Terrestrial frame solutions from the igs third reprocessing. In: EGU General Assembly Conference Abstracts, pp. EGU21–2144. [Google Scholar]
  • Rebischung P, Villiger A, Herring T, Moore M. 2019. Preliminary results from the third igs reprocessing campaign. In: AGU Fall Meeting Abstracts, vol. 2019, pp. G11A–03. [Google Scholar]
  • Ruegg J, Campos J, Madariaga R, Kausel E, De Chabalier J, Armijo R, et al. 2002. Interseismic strain accumulation in south central chile from gps measurements, 1996–1999. Geophysical Research Letters 29(11): 12–1. [CrossRef] [Google Scholar]
  • Ruiz S, Aden-Antoniow F, Baez J, Otarola C, Potin B, Campo F, et al. 2017. Nucleation phase and dynamic inversion of the Mw 6.9 Valparaso 2017 earthquake in Central Chile. Geophysical Research Letters 44(20). [Google Scholar]
  • Ruiz S, Madariaga R. 2018. Historical and recent large megathrust earthquakes in chile. Tectonophysics. [Google Scholar]
  • Ruiz S, Metois M, Fuenzalida A, Ruiz J, Leyton F, Grandin R, et al. 2014. Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science 345(6201): 1165–1169. [CrossRef] [Google Scholar]
  • Schurr B, Asch G, Hainzl S, Bedford J, Hoechner A, Palo M, et al. 2014. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature. [Google Scholar]
  • Silverii F, D’Agostino N, Métois M, Fiorillo F, Ventafridda G. 2016. Transient deformation of karst aquifers due to seasonal and multiyear groundwater variations observed by GPS in southern Apennines (Italy). Journal of Geophysical Research: Solid Earth 121(11): 8315–8337. [CrossRef] [Google Scholar]
  • Socquet A, Valdes JP, Jara J, Cotton F, Walpersdorf A, Cotte N, et al. 2017. An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophysical Research Letters 44(9): 4046–4053. [CrossRef] [Google Scholar]
  • Suito H, Freymueller JT. 2009. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. Journal of Geophysical Research: Solid Earth 114(B11): n/a–n/a. [Google Scholar]
  • Tilmann F, Zhang Y, Moreno M, Saul J, Eckelmann F, Palo M, et al. 2016. The 2015 illapel earthquake, central chile: A type case for a characteristic earthquake? Geophysical Research Letters 43(2): 574–583. [CrossRef] [Google Scholar]
  • Trubienko O, Fleitout L, Garaud J-D, Vigny C. 2013. Interpretation of interseismic deformations and the seismic cycle associated with large subduction earthquakes. Tectonophysics 589(0): 126–141. [CrossRef] [Google Scholar]
  • Trubienko O, Garaud J-D, Fleitout L. 2014. Models of postseismic deformation after megaearthquakes: the role of various rheological and geometrical parameters of the subduction zone. Solid Earth Discussions 6(1): 427–466. [Google Scholar]
  • Vigny C, Socquet A, Peyrat S, Ruegg J-C, Metois M, Madariaga R, et al. 2011. The 2010 Mw 8.8 Maule megathrust earthquake of central Chile, monitored by GPS. Science 332(6036): 1417–1421. [CrossRef] [Google Scholar]
  • Williams SD, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo L, et al. 2004. Error analysis of continuous gps position time series. Journal of Geophysical Research: Solid Earth 109(B3). [Google Scholar]
  • Willis B. 1929. Studies in Comparative Seismology: Earthquake Conditions in Chile. Number 382. Carnegie Institution of Washington. [Google Scholar]
  • Yuzariyadi M, Heki K. 2021. Enhancement of interplate coupling in adjacent segments after recent megathrust earthquakes. Tectonophysics 801: 228719. [CrossRef] [Google Scholar]
  • Zumberge J, Heflin M, Jefferson D, Watkins M, Webb F. 1997. Precise point positioning for the efficient and robust analysis of gps data from large networks. Journal of Geophysical Research: Solid Earth 102(B3): 5005–5017. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.