Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 193, 2022
Article Number 14
Number of page(s) 30
DOI https://doi.org/10.1051/bsgf/2022013
Published online 30 August 2022
  • Albarède F, Michard-Vitrac A. 1978a. Age and significance of the North Pyrenean metamorphism. Earth and Planetary Science Letters 104: 327–332. [CrossRef] [Google Scholar]
  • Albarède F, Michard-Vitrac A. 1978b. Datation du métamorphisme des terrains secondaires des Pyrénées par les méthodes 39Ar-40Ar et 87Rb-87Sr. Ses relations avec les péridotites associées. Bulletins de la société géologique de France 20: 681–688. [CrossRef] [Google Scholar]
  • Al Reda SM, Barbarand J, Gautheron C, Lasseur E, Loget N, Pinna-Jamme R, Briais J. 2021. Thermal record of the building of an orogen in the retro-foreland basin: Insight from basement and detrital thermochronology in the eastern Pyrenees and the North Pyrenean Basin (France). Basin Research 33(5): 2763–2791. [CrossRef] [Google Scholar]
  • Althoff F, Barbey P, Pons J. 1994. La charnockite d’Ansignan et le granite de Saint-Arnac, témoins d’une extension crustale d’âge hercynien dans le massif de l’Agly (Pyrénées-Orientales, France). Comptes rendus de l’Académie des sciences, série 2, sciences de la terre et des planètes 319(2): 239–246. [Google Scholar]
  • Angrand P, Mouthereau F, Masini E, Asti R. 2020. A reconstruction of Iberia accounting for Western Tethys-North Atlantic kinematics since the late-Permian-Triassic. Solid Earth 11: 1313–1332. [CrossRef] [Google Scholar]
  • Angrand P, Mouthereau F. 2021. Evolution of the Alpine orogenic belts in the Western Mediterranean region as resolved by the kinematics of the Europe-Africa diffuse plate boundary. BSGF − Earth Sci Bull 192(1): 42. [CrossRef] [EDP Sciences] [Google Scholar]
  • Asti R, Lagabrielle Y, Fourcade S, Corre B, Monié P. 2019. How do continents deform during mantle exhumation? Insights from the Northern Iberia inverted paleopassive margin, Western Pyrenees (France). Tectonics 38: 1666–1693. [CrossRef] [Google Scholar]
  • Asti R, Rosseti F, Lucci F, Poujol M, Lagabrielle Y. 2021. Polyphase post-Variscan thinning of the North Pyrenean crust: Constraints from the P-T-t-deformation history of the exhumed Variscan lower crust (Saleix Massif, France). Tectonophysics 820: 229122. [CrossRef] [Google Scholar]
  • Aumar C, Merle O, Bosse V, Monié P. 2022. Syn-rift Cretaceous deformation in the Variscan Agly Massif (Eastern Pyrenees, France). BSGF - Earth Sci Bull 193(6). [CrossRef] [EDP Sciences] [Google Scholar]
  • Azambre B, Rossy M. 1976. Le magmatisme alcalin d’âge crétacé, dans les Pyrénées occidentales et l’Arc basque; ses relations avec le métamorphisme et la tectonique. Bulletin de la Société Géologique de France S7(18): 1725–1728. [CrossRef] [Google Scholar]
  • Barré G, Fillon C, Ducoux M, Mouthereau F, Gaucher EC, Calassou S. 2021. The North Pyrenean Frontal Thrust: structure, timing and late fluid circulation inferred from seismic and thermal-geochemical analyses of well data. BSGF − Earth Sci. Bull. 192(1): 52. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bates RL, Jackson JA. 1980. Glossary of geology: falls church. Virginia: American Geological Institute, p. 167. [Google Scholar]
  • Beaumont C, Muñoz JA, Hamilton J, Fullsack P. 2000. Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. Journal of Geophysical Research: Solid Earth 105: 8121–8145. [CrossRef] [Google Scholar]
  • Berger GM, Alabouvette B, Bessière G, Bilotte M, Crochet B, Dubar M, Marchal JP, Tambareau Y, Villatte J, Viallard P. 1997. Carte géologique de la France à 1/50 000. 1078. [Google Scholar]
  • Berger GM, Fonteilles M, Leblanc D, Clauzon G, Marchal JP, Vautrelle C. 1993. Carte géologique de la France à 1/50 000. 1090. [Google Scholar]
  • Bernus-Maury C. 1984. Étude des paragéneses caractéristiques du métamorphime mésozoïque dans la partie orientale des Pyrénées. Thèse. [Google Scholar]
  • Bessière G, Bilotte M, Crochet B, Peybernès B, Tambareau Y, Villate J. 1989. Carte géologique de la France à 1/50 000. 1077. [Google Scholar]
  • Bilotte M, Bruxelles L, Canérot J, Laumonier B, Coinçon RS. 2007. Comment to “Latest-Cretaceous/Paleocene karsts with marine infillings from Languedoc (South of France): paleogeographic, hydrogeologic and geodynamic implications by P.J. Combes et al.”. Geodinamica Acta 20: 403–413. [CrossRef] [Google Scholar]
  • Blount DN, Moore CH. 1969. Depositional and non-depositional carbonate breccias, Chiantla Quadrangle, Guatemala. GSA Bulletin 80: 429–442. [CrossRef] [Google Scholar]
  • Bosák P, Bruthans J, Filippi M, Svoboda T, Šmíd J. 1999. Karst and caves in salt diapirs, SE Zagros Mts. (Iran). Acta Carsologica 28. [Google Scholar]
  • Bosák P, Jaroš J, Spudil J, Sulovský P, Václavek V. 1998. Salt plugs in the Eastern Zagros, Iran: results of regional geological reconnaissance. Geolines 7. [Google Scholar]
  • Bouhallier H, Choukroune P, Ballèvre M. 1991. Structural evolution of the deep Hercynian crust: the example of the Agly Massif, eastern Pyrenees, France. Comptes Rendus de l’Académie des Sciences 312: 647–654. [Google Scholar]
  • Bouhlel S, Leach DL, Johnson CA, Marsh E, Salmi-Laouar S, Banks DA. 2016. A salt diapir-related Mississippi Valley-type deposit: the Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: fluid inclusion and isotope study. Miner Deposita 51: 749–780. [CrossRef] [Google Scholar]
  • Boulvais P. 2016. Fluid generation in the Boucheville Basin as a consequence of the North Pyrenean metamorphism. Comptes Rendus Geoscience 348: 301–311. [CrossRef] [Google Scholar]
  • Boulvais P, Ruffet, G, Cornichet J, Mermet M, 2007. Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrénées). Lithos 93: 89–106. [CrossRef] [Google Scholar]
  • Broughton PL. 2013. Devonian salt dissolution-collapse breccias flooring the Cretaceous Athabasca oil sands deposit and development of lower McMurray Formation sinkholes, northern Alberta Basin, Western Canada. Sedimentary Geology 283: 57–82. [CrossRef] [Google Scholar]
  • Cadenas P, Lescoutre R, Manatschal G, Fernández-Viejo G. 2021. The role of extensional detachment systems in thinning the crust and exhuming granulites: analogies between the offshore Le Danois High and the onshore Labourd Massif in the Biscay/Pyrenean rifts. BSGF − Earth Sci. Bull. 192(1). [Google Scholar]
  • Canérot J. 2006. Réflexions sur la « révolution danienne » dans les Pyrénées. Comptes Rendus Geoscience 338: 658–665. [CrossRef] [Google Scholar]
  • Canérot J, Bauer J, Bilotte M, Bourdillon C, Colin JP, Debroas EJ, Magniez F, Mediavilla F, Ternet Y. 2004. Sur la structure, l’âge et l’origine des « brèches de Bosmendiette » (Pyrénées-Atlantiques). Comptes Rendus Geoscience 336: 951–958. [CrossRef] [Google Scholar]
  • Canérot J, Hudec M, Rockenbauch K., 2005. Mesozoic diapirism in the Pyrenean orogen: Salt tectonics on a transform plate boundary. AAPG Bulletin 89: 211–229. [CrossRef] [Google Scholar]
  • Canérot J, James V. 1999. Diapirism and post-Triassic structural development of the western Pyrenees and southern Aquitaine. Eclogae Geol. Helv. 92: 63–72. [Google Scholar]
  • Canérot J, Lenoble JL. 1993. Diapirisme crétacé sur la marge ibérique des Pyrénées occidentales ; exemple du pic de Lauriolle ; comparaisons avec l’Aquitaine, les Pyrénées centrales et orientales. Bulletin de la Société Géologique de France 164: 719–726. [Google Scholar]
  • Cathelineau M, Boiron MC, Jakomulski H. 2021. Triassic evaporites: a vast reservoir of brines mobilized successively during rifting and thrusting in the Pyrenees. Journal of the Geological Society . [Google Scholar]
  • Chelalou R. 2015. Formation et évolution du bassin de Boucheville, implication sur l’évolution tectonique, métamorphique et sédimentaires des bassins sédimentaires mésozoïques du Nord-Est des Pyrénées. Thèse. [Google Scholar]
  • Chelalou R, Nalpas T, Bousquet R, Prevost M, Lahfid A, Poujol M, Ringenbach JC, Ballard JF. 2016. New sedimentological, structural and paleo-thermicity data in the Boucheville Basin (eastern North Pyrenean Zone, France). Comptes Rendus Geoscience, From rifting to mountain building: the Pyrenean Belt 348: 312–321. [CrossRef] [Google Scholar]
  • Choukroune P. 1989. The Ecors Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics 8: 23–39. [CrossRef] [Google Scholar]
  • Choukroune P, Roure F, Pinet B. 1990. Main results of the ECORS Pyrenees profile. Tectonophysics, Siesmic Probing of Continents and their Margins 173: 411–423. [Google Scholar]
  • Clarke KR. 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18: 117–143. [CrossRef] [Google Scholar]
  • Clerc C. 2012. Évolution du domaine nord-pyrénéen au Crétacé : amincissement crustal extrême et thermicité élevée : un analogue pour les marges passives. Thèse. [Google Scholar]
  • Clerc C, Lagabrielle Y. 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the Cretaceous Pyrenean hot paleomargins. Tectonics 33: 1340–1359. [CrossRef] [Google Scholar]
  • Clerc C, Lagabrielle Y, Labaume P, Ringenbach JC, Vauchez A, Nalpas T, Bousquet R, Ballard JF, Lahfid A, Fourcade S. 2016. Basement - Cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the northeastern Pyrenean analog. Tectonophysics 686: 82–97. [CrossRef] [Google Scholar]
  • Clerc C, Lagabrielle Y, Neumaier M, Reynaud JY, de Saint Blanquat M. 2012. Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bulletin de la Société Géologique de France 183: 443–459. [CrossRef] [Google Scholar]
  • Clerc C, Lahfid A, Monié P, Lagabrielle Y, Chopin C, Poujol M, Boulvais P, Ringenbach JC, Masini E, de Saint Blanquat M. 2015. High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the North Pyrenean passive paleomargin. Solid Earth 6: 643–668. [CrossRef] [Google Scholar]
  • Cohen KM, Finney SC, Gibbard PL, Fan JX, 2013. The ICS International Chronostratigraphic Chart. Episodes 36: 199–204. [CrossRef] [Google Scholar]
  • Combes PJ. 1990. Typology, geodynamic context and genesis of french bauxites. Geodinamica Acta 4: 91–109. [CrossRef] [Google Scholar]
  • Corre B, Boulvais P, Boiron MC, Lagabrielle Y, Marasi L, Clerc C. 2018. Fluid circulations in response to mantle exhumation at the passive margin setting in the north Pyrenean zone, France. Mineralogy and Petrology 112: 1–24. [Google Scholar]
  • Corre B, Lagabrielle Y, Labaume P, Fourcade S, Clerc C, Ballèvre M. 2016. Deformation associated with mantle exhumation in a distal, hot passive margin environment: New constraints from the Saraillé Massif (Chaînons Béarnais, North-Pyrenean Zone). Comptes Rendus Geoscience, From rifting to mountain building: the Pyrenean Belt 348: 279–289. [CrossRef] [Google Scholar]
  • Dauteuil O, Ricou LE. 1989. Hot-fluid circulation as an origin for the North Pyrenean cretaceous metamorphism. Geodinamica Acta 3: 237–249. [CrossRef] [Google Scholar]
  • Davis JC. 1986. Statistics and data analysis in geology. New York: John Wiley & Sons, 646 p. [Google Scholar]
  • de Saint Blanquat M, Bajolet F, Grand’Homme A, Proietti A, Zanti M, Boutin A, Clerc C, Lagabrielle Y, Labaume P. 2016. Cretaceous mantle exhumation in the central Pyrenees: New constraints from the peridotites in eastern Ariège (North Pyrenean zone, France). Comptes Rendus Geoscience, From rifting to mountain building: the Pyrenean Belt 348: 268–278. [CrossRef] [Google Scholar]
  • Debroas EJ. 1990. Le flysch noir albo-cénomanien témoin de la structuration albienne a senonienne de la Zone nord-pyrénéenne en Bigorre (Hautes-Pyrénées, France). Bulletin de la Société Géologique de France 6: 273–285. [CrossRef] [Google Scholar]
  • Debroas EJ. 1987. Modèle de bassin triangulaire a l’intersection de décrochements divergents pour le fosse albo-cenomanien de la Ballongue (zone nord-pyrénéenne, France). Bulletin de la Société Géologique de France 3: 887–898. [CrossRef] [Google Scholar]
  • Debroas EJ. 1985. Géométrie et position structurale des fossés albiens nord-pyrénéens : l’exemple des Pyrénées centrales. Strata 1 (2): 99–106. [Google Scholar]
  • Delay F. 1989. Le massif nord-pyrénéen de l’Agly (Pyrénées orientales) : évolution tectono-métamorphique et exemple d’un amincissement crustal polyphasé. Thèse. [Google Scholar]
  • Desreumaux C, Clément B, Fabre R, Martins-Campina B. 2002. Découverte de turbidites du Crétacé supérieur métamorphisées au contact d’intrusions d’ophites dans les Pyrénées occidentales (vallée d’Aspe, France). Vers une révision de l’âge des ophites pyrénéennes. Comptes Rendus Geoscience 334: 197–203. [CrossRef] [Google Scholar]
  • Ducoux M, Jolivet L, Callot JP, Aubourg C, Masini E, Lahfid A, Homonnay E, Cagnard F, Gumiaux C, Baudin T. 2019. The nappe des marbres unit of the Basque-Cantabrian Basin: The tectono-thermal evolution of a fossil hyperextended rift basin. Tectonics 38: 3881–3915. [CrossRef] [Google Scholar]
  • Ducoux M, Jolivet L, Masini E, Augier R, Lahfid A, Bernet M, Calassou S. 2021. Distribution and intensity of high-temperature low-pressure metamorphism across the Pyrenean-Cantabrian belt: constraints on the thermal record of the pre-orogenic hyperextension rifting. BSGF − Earth Sci Bull. 192: 43. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ducoux M, Jolivet L, Cagnard F, Baudin T. 2021. Basement-cover decoupling during the inversion of a hyperextended basin: insights from the eastern Pyrenees. Tectonics 40(5). [CrossRef] [Google Scholar]
  • Duretz T, Asti R, Lagabrielle Y, Brun JP, Jourdon A, Clerc C, Corre B. 2019. Numerical modelling of Cretaceous Pyrenean Rifting: The interaction between mantle exhumation and syn-rift salt tectonics. Basin Research 32: 652–667. [Google Scholar]
  • Eliassen A, Talbot MR. 2005. Solution-collapse breccias of the Minkinfjellet and Wordiekammen Formations, Central Spitsbergen, Svalbard: a large gypsum palaeokarst system. Sedimentology 52: 775–794. [CrossRef] [Google Scholar]
  • Esquevin J, Fournie D, Lestang J. 1971. L’Aptien et l’Albien nord-pyrénéens et sud-aquitains. Bull. Centre Rech. S.N.P.A. Pau 5: 87–151. [Google Scholar]
  • Festa A, Pini GA, Ogata K, Dilek Y. 2019. Diagnostic features and field-criteria in recognition of tectonic, sedimentary and diapiric mélanges in orogenic belts and exhumed subduction-accretion complexes. Gondwana Res 74: 7–30. [CrossRef] [Google Scholar]
  • Fillon C, Mouthereau F, Calassou S, Pik R, Bellahsen N, Gautheron C, Stockli D, Brichau S, Daril N, Mouchené M, van der Beek P. 2021. Post-orogenic exhumation in the western Pyrenees: evidence for extension driven by pre-orogenic inheritance. J Geol Soc London 178. [CrossRef] [Google Scholar]
  • Folk RL, Ward WC. 1957. Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research 27: 3–26. [CrossRef] [Google Scholar]
  • Fonteilles M, Leblanc D, Clauzon G, Vaudin JL, Berger GM. 1993. Carte géologique de la France (1/50 000), feuille Rivesaltes (1090). Orléans : BRGM. [Google Scholar]
  • Ford M, Vergés J. 2021. Evolution of a salt-rich transtensional rifted margin, eastern North Pyrenees, France. Journal of the Geological Society 178(1). [CrossRef] [Google Scholar]
  • Friedman GM. 1997. Dissolution-collapse breccias and paleokarst resulting from dissolution of evaporite rocks, especially sulfates. Carbonates Evaporites 12: 53–63. [CrossRef] [Google Scholar]
  • Friedmann SJ, Burbank DW. 1995. Rift basins and supradetachment basins: intracontinental extensional end-members. Basin Research 7: 109–127. [CrossRef] [Google Scholar]
  • Gale AS, Mutterlose J, Batenburg S, Gradstein FM, Arterberg FR, Ogg JG, Petrizzo MR. 2020. The Cretaceous Period. 1023–1086. In: Gradstein FM, Ogg J, Schmitz MD, Ogg GM, eds. Geological Time Scale, 2020, vol. 2. [Google Scholar]
  • Gawthorpe RL, Leeder MR. 2000. Tectono-sedimentary evolution of active extensional basins. Basin Research 12: 195–218. [CrossRef] [Google Scholar]
  • Golberg JM. 1987. Le métamorphisme mésozoïque dans la partie orientale des Pyrénées : relations avec l’évolution de la chaîne au Crétacé. Thèse. [Google Scholar]
  • Golberg JM, Leyreloup AF. 1990. High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contr. Mineral. Petrol. 104: 194–207. [CrossRef] [Google Scholar]
  • Golberg JM, Maluski H. 1988. Données nouvelles et mise au point sur l’âge du métamorphisme pyrénéen. C. R. Acad. Sci., Sér. 2, Méc. Phys. Chim. Sci. Univers Sci. Terre 306: 429–435. [Google Scholar]
  • Golberg JM, Maluski H, Leyreloup AF. 1986. Petrological and age relationship between emplacement of magmatic breccia, alkaline magmatism, and static metamorphism in the North Pyrenean Zone. Tectonophysics, The Geological Evolution of the Pyrenees 129: 275–290. [CrossRef] [Google Scholar]
  • Goldfinger C. 2011. Submarine paleoseismology based on turbidite records. Ann. Rev. Mar. Sci. 3: 35–66. [CrossRef] [Google Scholar]
  • Grool A, Huismans R, Ford M. 2019. Salt décollement and rift inheritance controls on crustal deformation in orogens. Terra Nova 31. [Google Scholar]
  • Gower JC. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53(3–4): 325–338. [CrossRef] [Google Scholar]
  • Hammer Ø, Harper DA, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9. [Google Scholar]
  • Haughton P, Davis C, McCaffrey W, Barker S. 2009. Hybrid sediment gravity flow deposits - classification, origin and significance. Marine and Petroleum Geology 26: 1900–1918. [CrossRef] [Google Scholar]
  • Incerpi N, Manatschal G, Martire L, Bernasconi SM, Gerdes A, Bertok C. 2020a. Characteristics and timing of hydrothermal fluid circulation in the fossil Pyrenean hyperextended rift system: new constraints from the Chaînons Béarnais (West Pyrenees). Int J Earth Sci (Geol Rundsch) 109: 1071–1093. [CrossRef] [Google Scholar]
  • Incerpi N, Martire L, Manatschal G, Bernasconi SM, Gerdes A, Czuppon G, Palcsu L, Karner G, Johnson CA, Figueredo PH. 2020b. Hydrothermal fluid flow associated to the extensional evolution of the Adriatic rifted margin: Insights from the pre- to post-rift sedimentary sequence (SE Switzerland, N ITALY). Basin Research 32: 91–115. [CrossRef] [Google Scholar]
  • Jackson MPA, Hudec MR. 2017. Salt tectonics: principles and practice. Cambridge University Press. [CrossRef] [Google Scholar]
  • Jaffrezo M. 1980. Les formations carbonatées des Corbières (France) du Dogger à l’Aptien : micropaléontologie stratigraphique, biozonation, paléoécologie, extension des résultats à la Mésogée. Thèse. [Google Scholar]
  • Jammes S, Huismans RS. 2012. Structural styles of mountain building: Controls of lithospheric rheologic stratification and extensional inheritance. J. Geophys. Res. 117. [Google Scholar]
  • Jammes S, Manatschal G, Lavier L. 2010. Interaction between prerift salt and detachment faulting in hyperextended rift systems: The example of the Parentis and Mauléon basins (Bay of Biscay and western Pyrenees). AAPG Bulletin 94: 957–975. [CrossRef] [Google Scholar]
  • Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics 28(4). [Google Scholar]
  • Jébrak M. 1997. Hydrothermal breccias in vein-type ore deposits: A review of mechanisms, morphology and size distribution. Ore Geology Reviews 12: 111–134. [CrossRef] [Google Scholar]
  • Jourdon A, Le Pourhiet L, Mouthereau F, Masini E. 2019. Role of rift maturity on the architecture and shortening distribution in mountain belts. Earth and Planetary Science Letters 512: 89–99. [CrossRef] [Google Scholar]
  • Jourdon A, Mouthereau F, Pourhiet LL, Callot JP. 2020. Topographic and tectonic evolution of mountain belts controlled by salt thickness and rift architecture. Tectonics 39. [CrossRef] [Google Scholar]
  • Kastens KA, Spiess FN. 1984. Dissolution and collapse features on the eastern Mediterranean Ridge. Marine Geology 56: 181–193. [CrossRef] [Google Scholar]
  • Kernif T, Nalpas T, Bourquin S, Gautier P, Poujol M. 2021. Sedimentary breccias formed during extensional tectonics: facies organization and processes. In: EGU General Assembly Conference Abstracts. pp. EGU21–5681. [Google Scholar]
  • Kernif T, Nalpas T, Gautier P, Bourquin S, Poujol M. 2020. Formation and preservation of syntectonic sedimentary breccias in extensional environments (Crete and Pyrenees) and in situ U-Pb constraints for the age of breccias in the Bas-Agly Basin. In: EGU General Assembly Conference Abstracts. pp. 9024. [Google Scholar]
  • Krumbein WC, Sloss LL. 1964. Stratigraphy and Sedimentation. Bulletin de Minéralogie 87(124). [Google Scholar]
  • Labaume P, Teixell A. 2020. Evolution of salt structures of the Pyrenean rift (Chaînons Béarnais, France): From hyper-extension to tectonic inversion. Tectonophysics 785: 228451. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Asti R, Duretz T, Clerc C, Fourcade S, Teixell A, Labaume P, Corre B, Saspiturry N. 2020. A review of cretaceous smooth-slopes extensional basins along the Iberia-Eurasia plate boundary: How pre-rift salt controls the modes of continental rifting and mantle exhumation. Earth-Science Reviews 201. [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, Corre B, Labaume P, Uzel J, Clerc C, Lafay R, Picazo S. 2019a. Mantle exhumation at magma-poor passive continental margins. Part II: Tectonic and metasomatic evolution of large-displacement detachment faults preserved in a fossil distal margin domain (Saraillé lherzolites, northwestern Pyrenees, France). Bulletin de la Société Géologique de France 190. [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, Corre B, Poujol M, Uzel J, Labaume P, Clerc C, Lafay R, Picazo S, Maury R. 2019b. Mantle exhumation at magma-poor passive continental margins. Part I. 3D architecture and metasomatic evolution of a fossil exhumed mantle domain (Urdach lherzolite, north-western Pyrenees, France). Bulletin de la Société Géologique de France 190. [Google Scholar]
  • Lagabrielle Y, Bodinier JL. 2008. Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20: 11–21. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Clerc C, Vauchez A, Lahfid A, Labaume P, Azambre B, Fourcade S, Dautria JM. 2016. Very high geothermal gradient during mantle exhumation recorded in mylonitic marbles and carbonate breccias from a Mesozoic Pyrenean palaeomargin (Lherz area, North Pyrenean Zone, France). Comptes Rendus Geoscience , From rifting to mountain building: the Pyrenean Belt 348: 290–300. [Google Scholar]
  • Lagabrielle Y, Labaume P, de St. Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 29: 1–26. [Google Scholar]
  • Lavier LL, Manatschal G. 2006. A mechanism to thin the continental lithosphere at magma-poor margins. Nature 440: 324–328. [CrossRef] [Google Scholar]
  • Laznicka P. 1989. Breccias and ores. Part 1: History, organization and petrography of breccias. Ore Geology Reviews 4: 315–344. [CrossRef] [Google Scholar]
  • Leach DL, Song YC, Hou ZQ. 2017. The world-class Jinding Zn-Pb deposit: ore formation in an evaporite dome, Lanping Basin, Yunnan, China. Miner Deposita 52: 281–296. [CrossRef] [Google Scholar]
  • Leeder MR, Gawthorpe RL. 1987. Sedimentary models for extensional tilt-block/half-graben basins. Geological Society, London, Special Publications 28: 139–152. [CrossRef] [Google Scholar]
  • Lister GS, Davis GA. 1989. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A. Journal of Structural Geology 11: 65–94. [CrossRef] [Google Scholar]
  • Loucks RG, Mescher PK. 2002. Paleocave facies classification and associated pore types. AAPG Bulletin 1–18. [Google Scholar]
  • Loucks RG. 1999. Paleocave carbonate reservoirs: origins, burial-depth modifications, spatial complexity, and reservoir implications. AAPG Bulletin 83(11): 1795–1834. [Google Scholar]
  • Masini E, Manatschal G, Tugend J, Mohn G, Flament JM. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq-Mauléon rift system (Western Pyrenees, SW France). Int J Earth Sci 103: 1569–1596. [CrossRef] [Google Scholar]
  • Mattauer M, Proust F. 1962. Sur l’age post-Albien de quelques brèches réputées jurassiques ou néocomiennes des Pyrénées Orientales. Comptes Rendus de la Société Géologique de France 10: 304–305. [Google Scholar]
  • Montigny R, Azambre B, Rossy M, Thuizat R. 1986. K-Ar Study of cretaceous magmatism and metamorphism in the pyrenees: Age and length of rotation of the Iiberian Peninsula. Tectonophysics, The Geological Evolution of the Pyrenees 129: 257–273. [CrossRef] [Google Scholar]
  • Morrow DW. 1982. Descriptive field classification of sedimentary and diagenetic breccia fabrics in carbonate rocks. Bulletin of Canadian Petroleum Geology 30: 227–229. [Google Scholar]
  • Motte G, Hoareau G, Callot JP, Révillon S, Piccoli F. Calassou S, Gaucher EC. 2021. Rift and salt-related multi-phase dolomitization: example from the northwestern Pyrenees. Marine and Petroleum Geology 126: 104932. [CrossRef] [Google Scholar]
  • Mouthereau F, Filleaudeau PY, Vacherat A, Pik R, Lacombe O, Fellin MG, Castelltort S, Christophoul F, Masini E. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence: Plate convergence in the Pyrenees. Tectonics 33: 2283–2314. [CrossRef] [Google Scholar]
  • Mouthereau F, Angrand P, Jourdon A, Ternois S, Fillon C, Calassou S, Chevrot S, Ford M, Jolivet L, Manatschal G, Masini E, Thinon I, Vidal O, Baudin T. 2021. Cenozoic mountain building and topographic evolution in Western Europe: impact of billions of years of lithosphere evolution and plate kinematics. BSGF − Earth Sci Bulletin 192(56). [Google Scholar]
  • Mukonzo JN, Boiron MC, Lagabrielle Y, Cathelineau M, Quesnel B. 2020. Fluid-rock interactions along detachment faults during continental rifting and mantle exhumation: the case of the Urdach lherzolite body (North-Pyrenees). Journal of the Geological Society 172(2). [Google Scholar]
  • Muñoz JA. 1992. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In: McClay KR, ed. Thrust tectonics. Dordrecht: Springer Netherlands, pp. 235–246. [Google Scholar]
  • Odlum ML, Stockli DF. 2019. Thermotectonic evolution of the North Pyrenean Agly Massif during early cretaceous hyperextension using multi-mineral U-Pb thermochronometry. Tectonics 38: 1509–1531. [CrossRef] [Google Scholar]
  • Olivier P, Gleizes G, Paquette JL, Muñoz Sáez C. 2008. Structure and U-Pb dating of the Saint Arnac pluton and the Ansignan charnockite (Agly Massif): a cross-section from the upper to the middle crust of the Variscan Eastern Pyrenees. Journal of the Geological Society 165: 141–152. [CrossRef] [Google Scholar]
  • Olivier Ph, Gleizes G, Paquette JL. 2004. Gneiss domes and granite emplacement in an obliquely convergent regime: New interpretation of the Variscan Agly Massif (Eastern Pyrenees France ). In: Gneiss domes in Orogeny. Geological Society of America. [Google Scholar]
  • Ortí F, Pérez-López A, Salvany JM. 2017. Triassic evaporites of Iberia: Sedimentological and palaeogeographical implications for the western Neotethys evolution during the Middle Triassic-Earliest Jurassic. Palaeogeography, Palaeoclimatology, Palaeoecology 471: 157–180. [CrossRef] [Google Scholar]
  • Paquet J, Mansy JL. 1992. Evolution alpine du massif nord-pyrénéen de l’Agly (Pyrénées-Orientales). C. R. Acad. Sci., Sér. 2, Méc. Phys. Chim. Sci. Univers Sci. Terre 315: 487–494. [Google Scholar]
  • Paquet J, Mansy JL. 1991. La structure de l’Est des Pyrénées (transversales du massif de l’Agly) : un exemple d’amincissement crustal. C. R. Acad. Sci., Sér. 2, Méc. Phys. Chim. Sci. Univers Sci. Terre 312: 913–919. [Google Scholar]
  • Peacock DCP, Rotevatn A, Sanderson DJ. 2019. Brecciation driven by changes in fluid column heights. Terra Nova 31: 76–81. [CrossRef] [Google Scholar]
  • Peron-Pinvidic G, Manatschal G, Osmundsen PT. 2013. Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology 43: 21–47. [CrossRef] [Google Scholar]
  • Peybernès, B. 1979. L’Urgonien des Pyrénées; Essai de synthèse. Geobios, Mémoire spécial 3: 79–87. [CrossRef] [Google Scholar]
  • Peybernès B. 1978a. Le Jurassique des Pyrénées navarro-languedociennes. [Google Scholar]
  • Peybernès B. 1978b. Le Complexe Urgonien dans les Pyrénées navarro-languedociennes et catalanes. [Google Scholar]
  • Peybernès B. 1976. Le Jurassique et le Crétacé inférieur des Pyrénées franco-espagnoles entre la Garonne et la Méditerranée. Thèse. [Google Scholar]
  • Peybernès B, Fondecave-Wallez MJ, Combes PJ. 2002. Découverte de Foraminifères planctoniques paléocènes dans les brèches, précédemment tenues pour aptiennes et d’origine diapirique, des Pyrénées basco-béarnaises. Comptes Rendus Palevol 1: 3–10. [CrossRef] [Google Scholar]
  • Peybernès B, Fondecave-Wallez MJ, Combes PJ, Eichène P. 2001a. Découverte d’hémipélagites à Foraminifères planctoniques paléocènes dans les « brèches de Baixas » (Pyrénées orientales). Comptes Rendus de l’Académie des Sciences − Series IIA − Earth and Planetary Science 332: 633–640. [Google Scholar]
  • Peybernès B, Fondecave-Wallez MJ, Combes PJ, Eichène P. 2001b. Mise en évidence d’un sillon marin à brèches paléocènes dans les Pyrénées centrales (Zone interne métamorphique et Zone nord-pyrénéenne). Comptes Rendus de l’Académie des Sciences − Series IIA − Earth and Planetary Science 332: 379–386. [Google Scholar]
  • Peybernès B, Souquet P. 1984. Basement blocks and tecto-sedimentary evolution in the Pyrenees during Mesozoic times. Geological Magazine 121: 397–405. [CrossRef] [Google Scholar]
  • Pomar L. 2001. Types of carbonate platforms: a genetic approach. Basin Research 13: 313–334. [CrossRef] [Google Scholar]
  • Poujol M, Boulvais P, Kosler J. 2010. Regional-scale Cretaceous albitization in the Pyrenees: evidence from in situ U-Th-Pb dating of monazite, titanite and zircon. Journal of the Geological Society 167: 751–767. [CrossRef] [Google Scholar]
  • Powers MC. 1953. A new roundness scale for sedimentary particles. Journal of Sedimentary Research 23: 117–119. [CrossRef] [Google Scholar]
  • Ravier J. 1959. Le métamorphisme des terrains secondaires des Pyrénées. Mem. Soc. Geol. Fr. 1: 250. [Google Scholar]
  • Ribes C, Ghienne J-F., Manatschal G, Decarlis A, Karner GD, Figueredo PH, Johnson CA. 2019. Long-lived mega fault-scarps and related breccias at distal rifted margins: insights from present-day and fossil analogues. Journal of the Geological Society 176: 801–816. https://doi.org/10.1144/jgs2018-181. [CrossRef] [Google Scholar]
  • Rokach L, Maimon O. 2005. Clustering methods. In: Maimon O, Rokach L, eds. Data Mining and Knowledge Discovery Handbook . Boston, MA: Springer, pp. 321–352. [CrossRef] [Google Scholar]
  • Rossi P. 2002. The Pyrenean “Danian revolution”. Comptes Rendus Geoscience 334: 583–584. https://doi.org/10.1016/S1631-0713(02)01790-X. [CrossRef] [Google Scholar]
  • Roure F, Choukroune P, Berastegui X, Munoz JA, Villien A, Matheron P, Bareyt M, Seguret M, Camara P, Deramond J. 1989. Ecors deep seismic data and balanced cross sections: Geometric constraints on the evolution of the Pyrenees. Tectonics 8: 41–50. [CrossRef] [Google Scholar]
  • Salardon R, Carpentier C, Bellahsen N, Pironon J, France-Lanord C. 2017. Interactions between tectonics and fluid circulations in an inverted hyper-extended basin: Example of mesozoic carbonate rocks of the western North Pyrenean Zone (Chaînons Béarnais, France). Marine and Petroleum Geology 80: 563–586. [CrossRef] [Google Scholar]
  • Sapin F, Ringenbach J-C., Clerc C. 2021. Rifted margins classification and forcing parameters. Sci Rep 11: 8199. https://doi.org/10.1038/s41598-021-87648-3. [CrossRef] [Google Scholar]
  • Shukla MK, Sharma A. 2018. A brief review on breccia: it’s contrasting origin and diagnostic signatures. Solid Earth Sciences 3: 50–59. [CrossRef] [Google Scholar]
  • Siron G, Goncalves P, Marquer D, Pierre T, Paquette J, Vanardois J. 2020. Contribution of magmatism, partial melting buffering and localized crustal thinning on the late Variscan thermal structure of the Agly massif (French Pyrenees). J. Metamorph. Geol. 38: 799–829. [CrossRef] [Google Scholar]
  • Souquet P, Debroas E-J., Peybernes B, Boirie J-M., Pons P, Fixari G, Roux J-C., Dol J, Thieuloy J-P., Bonnemaison M, Manivit H. 1985. Le groupe du flysch noir (Albo-Cebomanien) dans les Pyrénées. Bull. cent. rech. explor.- Prod. Elf-Aquitaine 9: 183–252. [Google Scholar]
  • Stanton RJ. 1966. The Solution Brecciation Process. Geol Soc America Bull 77: 843. [CrossRef] [Google Scholar]
  • Stewart IS, Hancock PL. 1990. Brecciation and fracturing within neotectonic normal fault zones in the Aegean region. Geological Society, London, Special Publications 54: 105–110. [CrossRef] [Google Scholar]
  • Stewart IS, Hancock PL. 1988. Normal fault zone evolution and fault scarp degradation in the Aegean region. Basin Research 1: 139–153. [Google Scholar]
  • Sutra E, Manatschal G. 2012. How does the continental crust thin in a hyperextended rifted margin? Insights from the Iberia margin. Geology 40: 139–142. [CrossRef] [Google Scholar]
  • Takahashi T. 1981. Debris Flow. Annual Review of Fluid Mechanics 13: 57–77. [CrossRef] [Google Scholar]
  • Teixell A. 1998. Crustal structure and orogenic material budget in the west central Pyrenees. Tectonics 17: 395–406. [CrossRef] [Google Scholar]
  • Teixell A, Labaume P, Lagabrielle Y. 2016. The crustal evolution of the west-central Pyrenees revisited: Inferences from a new kinematic scenario. Comptes Rendus Geoscience, From rifting to mountain building: the Pyrenean Belt 348: 257–267. [CrossRef] [Google Scholar]
  • Ternois S, Odlum M, Ford M, Pik R, Stockli D, Tibari B, Vacherat A, Bernard V. 2019. Thermochronological evidence of early orogenesis, eastern Pyrenees, France. Tectonics 38: 1308–1336. [CrossRef] [Google Scholar]
  • Ternois S, Mouthereau F, Jourdon A. 2021. Decoding low-temperature thermochronology signals in mountain belts: modelling the role of rift thermal imprint into continental collision. BSGF − Earth Sci Bulletin 192: 38. [CrossRef] [EDP Sciences] [Google Scholar]
  • Thiébaut J, Debeaux M, Durand-Wackenheim C, Souquet P, Gourinard Y, Bandet Y, Fondecave-Wallez M-J. 1988. Métamorphisme et halocinèse crétacés dans les évaporites de Betchat le long du Chevauchement Frontal Nord-Pyrénéen (Haute-Garonne et Ariège, France). C. R. Acad. Sci., Sér. 2, Méc. Phys. Chim. Sci. Univers Sci. Terre 307: 1535–1540. [Google Scholar]
  • Tournaire Guille B, Olivier Ph, Paquette J-L, Bosse V, Guillaume D. 2019. Evolution of the middle crust of the Pyrenees during the Paleozoic: new data on the plutonic rocks from the North Pyrenean Agly Massif. Int J Earth Sci (Geol Rundsch) 108: 245–265. [CrossRef] [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E. 2015. Characterizing and identifying structural domains at rifted continental margins: application to the Bay of Biscay margins and its Western Pyrenean fossil remnants. Geological Society, London, Special Publications 413: 171–203. [CrossRef] [Google Scholar]
  • Vacherat A, Mouthereau F, Pik R, Bernet M, Gautheron C, Masini E, Le Pourhiet L, Tibari B, Lahfid, A. 2014. Thermal imprint of rift-related processes in orogens as recorded in the Pyrenees. Earth and Planetary Science Letters 408: 296–306. [CrossRef] [Google Scholar]
  • Vacherat A, Mouthereau F, Pik R, Bellahsen N, Gautheron C, Bernet M, Daudet M, Balansa J, Tibari B, Jamme RP, Radal J. 2016. Rift-to-collision transition recorded by tectonothermal evolution of the northern Pyrenees. Tectonics 35: 907–933. [CrossRef] [Google Scholar]
  • Vanardois J, Trap P, Goncalves P, Marquer D, Gremmel J, Siron G, Baudin T. 2020. Kinematics, deformation partitioning and late Variscan magmatism in the Agly Massif, Eastern Pyrenees, France. BSGF − Earth Sci. Bull. 191: 15. [CrossRef] [EDP Sciences] [Google Scholar]
  • Vauchez A, Clerc C, Bestani L, Lagabrielle Y, Chauvet A, Lahfid A, Mainprice D. 2013. Preorogenic exhumation of the North Pyrenean Agly Massif (Eastern Pyrenees-France). Tectonics 32: 95–106. [CrossRef] [Google Scholar]
  • Warren J. 2006. Karst, breccia, nodules and cement: Pointers to vanished evaporites. In: Evaporites: sediments, resources and hydrocarbons . [CrossRef] [Google Scholar]
  • Woodcock NH, Mort K. 2008. Classification of fault breccias and related fault rocks. Geol. Mag. 145: 435–440. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.