Issue
BSGF - Earth Sci. Bull.
Volume 193, 2022
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
Article Number 19
Number of page(s) 41
DOI https://doi.org/10.1051/bsgf/2022018
Published online 14 December 2022
  • Airaghi L, Bellahsen N, Dubacq B, Rosenberg C, Janots E, Waldner M, et al. 2019. Pre-orogenic upper crustal softening by lower greenschist facies metamorphic reactions in granites of the central Pyrenees. Journal of Metamorphic Geology 38(2): 1–22. https://doi.org/10.1111/jmg.12520. [Google Scholar]
  • Al Reda S, Jocelyn B, Gautheron C, Eric L, Loget N, Pinna-Jamme R, et al. 2021. Thermal record of the building of an orogen in the retro-foreland basin: insight from basement and detrital thermochronology in the eastern Pyrenees and the north Pyrenean basin (France). Basin Res. 33: 2763–2791. https://doi.org/10.1111/bre.12583. [CrossRef] [Google Scholar]
  • Allen PA, Allen JR. 2013. Basin analysis: Principles and application to petroleum play assessment. John Wiley & Sons, 451 pp. [Google Scholar]
  • Allen PA, Heller PL. 2012. Dispersal and preservation of tectonically generated alluvial gravels in sedimentary basins. In: Busby CJ, Azor A, (Eds.). Tectonics of sedimentary basins. Wiley-Blackwell, pp. 111–130. https://doi.org/10.1002/9781444347166.ch6. [Google Scholar]
  • Allen PA, Armitage JJ, Carter A, Duller RA, Michael NA, Sinclair HD, et al. 2013. The Qs problem: Sediment volumetric balance of proximal foreland basin systems. Sedimentology 60: 102–130. https://doi.org/10.1111/sed.12015. [CrossRef] [Google Scholar]
  • Alonso-Zarza AM, Sánchez-Moya Y, Bustillo MA, Sopeña A, Delgado A. 2002. Silicification and dolomitization of anhydrite nodules in argillaceous terrestrial deposits: An example of meteoric-dominated diagenesis from the Triassic of central Spain. Sedimentology 49: 303–317. [CrossRef] [Google Scholar]
  • Andrieu S, Saspiturry N, Lartigau M, Issautier B, Angrand P, Lasseur E. 2021. Large-scale vertical movements in Cenomanian to Santonian carbonate platform in Iberia: indicators of a Coniacian pre-orogenic compressive stress. https://doi.org/10.1051/bsgf/2021011/5278319/bsgf. [Google Scholar]
  • Angrand P, Mouthereau F. 2021. Evolution of the Alpine orogenic belts in the Western Mediterranean region as resolved by the kinematics of the Europe-Africa diffuse plate boundary. BSGF 192: 1–44. https://doi.org/10.1051/bsgf/2021031. [Google Scholar]
  • Angrand P, Ford M, Watts AB. 2018. Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine Basin (SW France). Tectonics 37. https://doi.org/10.1002/2017TC004670. [Google Scholar]
  • Angrand P, Mouthereau F, Masini E, Asti R. 2020. A reconstruction of Iberia accounting for W-Tethys/N-Atlantic kinematics since the late Permian-Triassic. Solid Earth Discuss.: 1–24. https://doi.org/10.5194/se-2020-24. [Google Scholar]
  • Angrand P, Ford M, Ducoux M, de Saint Blanquat M. 2022. Extension and early orogenic inversion along the basal detachment of a hyper-extended rifted margin: an example from the Central Pyrenees (France). Journal of the Geological Society 179. https://doi.org/10.1144/jgs2020-003. [CrossRef] [Google Scholar]
  • Asti R, Saspiturry N, Angrand P. 2022. The Mesozoic Iberia-Eurasia diffuse plate boundary: A wide domain of distributed transtensional deformation progressively focusing along the North Pyrenean Zone. Earth-Science Rev. 230: 104040. https://doi.org/10.1016/j.earscirev.2022.104040. [CrossRef] [Google Scholar]
  • Babault J, Van Den Driessche J. 2005. L’érosion des chaînes de montagnes: influence de la sédimentation de piedmont. Comptes Rendus Geosci. 337: 1431–1438. https://doi.org/10.1016/j.crte.2005.09.010. [CrossRef] [Google Scholar]
  • Babault J, Teixell A, Struth A, Driessche J van den, Arboleya ML, Teson E. 2013. Shortening, structural relief and drainage evolution in inverted rifts: insights from the Atlas Mountains, the Eastern Cordillera of Colombia and the Pyrenees. In: Nemock M, Mora A, Cosgrove JW, (Eds.). Thick-skin-dominated orogens from initial inversion to full acretion. Geological Society London Special Publication 377, pp. 141–158. [Google Scholar]
  • Bache F, Olivet JL, Gorini C, Aslanian D, Labails C, Rabineau M. 2010. Evolution of rifted continental margins: the case of the Gulf of Lions (Western Mediterranean Basin). Earth and Planetary Science Letters 292: 345–356. [CrossRef] [Google Scholar]
  • Barbarand J, Lucazeau F, Pagel M, Séranne M. 2001. Burial and exhumation history of the south-eastern Massif Central (France) constrained by apatite fission-track thermochronology. Tectonophysics 335: 275–290. https://doi.org/10.1016/S0040-1951(01)00069-5. [CrossRef] [Google Scholar]
  • Barnett-Moore N, Hosseinpour M, Maus S. 2016. Assessing discrepancies between previous plate kinematic models of Mesozoic Iberia and their constraints. Tectonics 35: 1843–1862. https://doi.org/10.1002/2015TC004019. [CrossRef] [Google Scholar]
  • Barnolas A, Courbouleix S. 2001. Synthèse géologique et géophysique des Pyrénées – Volume 3: Cycle alpin: Phénomènes alpins. Édition BRGM – ITGE. [Google Scholar]
  • Barré G, Fillon C, Ducoux M, Mouthereau F, Gaucher EC, Calassou S. 2021. The North Pyrenean Frontal Thrust: structure, timing and late fl uid circulation inferred from seismic and thermal-geochemical analyses of well data. BSGF – Earth Sci. Bull. 192: 1–95. https://doi.org/10.1051/bsgf/2021046/5451728/bsgf. [CrossRef] [EDP Sciences] [Google Scholar]
  • Beamud E, Muñoz JA, Fitzgerald PG, Baldwin SL, Garcés M, Cabrera L, et al. 2011. Magnetostratigraphy and detrital apatite fission track thermochronology in syntectonic conglomerates: constraints on the exhumation of the South-Central Pyrenees. Basin Res. 23: 309–331. https://doi.org/10.1111/j.1365-2117.2010.00492.x. [CrossRef] [Google Scholar]
  • Beaumont C, Muñoz JA, Hamilton J, Fullsack P. 2000. Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. J. Geophys. Res. 105: 8121–8145. https://doi.org/10.1029/1999JB900390. [CrossRef] [Google Scholar]
  • Bellahsen N, Jolivet L, Lacombe O, Bellanger M, Boutoux A, Garcia S, et al. 2012. Mechanisms of margin inversion in the external Western Alps: Implications for crustal rheology. Tectonophysics 560-561: 62–83. https://doi.org/10.1016/j.tecto.2012.06.022. [CrossRef] [Google Scholar]
  • Bellahsen N, Mouthereau F, Boutoux A, Bellanger M, Lacombe O, Jolivet L, et al. 2014. Collision kinematics in the western external Alps. Tectonics 33: 1055–1088. https://doi.org/10.1002/2013TC003453. [CrossRef] [Google Scholar]
  • Bellahsen N, Bayet L, Denèle Y, Waldner M, Airaghi L, Rosenberg C, et al. 2019. Shortening of the Axial Zone, Pyrenees: Shortening sequence, upper crustal mylonites and crustal strength. Tectonophysics 766: 433–452. [CrossRef] [Google Scholar]
  • Beltrando M, Frasca G, Compagnoni R, Vitale-Brovarone A. 2012. The Valaisan controversy revisited: Multi-stage folding of a Mesozoic hyper-extended margin in the Petit St. Bernard pass area (Western Alps). Tectonophysics 579: 17–36. https://doi.org/10.1016/j.tecto.2012.02.010. [CrossRef] [Google Scholar]
  • Bernard T, Sinclair HD, Gailleton B, Mudd SM, Ford M. 2019. Lithological control on the post-orogenic topography and erosion history of the Pyrenees. Earth Planet. Sci. Lett. 518: 53–66. https://doi.org/10.1016/j.epsl.2019.04.034. [CrossRef] [Google Scholar]
  • Bernard T, Sinclair HD, Naylor M, Christophoul F, Ford M. 2020. Post-orogenic sediment drape in the Northern Pyrenees explained using a box model. Basin Res. https://doi.org/10.1111/bre.12457. [Google Scholar]
  • Berné S, Gorini C. 2005. The Gulf of Lion: An overview of recent studies within the French “Margins” programme. Mar. Pet. Geol. 22: 691–693. https://doi.org/10.1016/j.marpetgeo.2005.04.004. [CrossRef] [Google Scholar]
  • Bestani L, Espurt N, Lamarche J, Bellier O, Hollender F. 2016. Reconstruction of the Provence Chain evolution, southeastern France. Tectonics 35: 1506–1525. https://doi.org/10.1002/2016TC004115. [CrossRef] [Google Scholar]
  • Bilotte M. 1985. Le Crétace supérieur des plates-formes est-pyrénéennes. PhD thesis, Paul Sabatier University, Toulouse, Strata, 5, 438 pp. [Google Scholar]
  • Biteau J-J, Le Marrec A, Le Vot M, Masset J-M. 2006. The Aquitaine Basin. Pet. Geosci. 12: 247–273. https://doi.org/10.1144/1354-079305-674. [CrossRef] [Google Scholar]
  • Bodego A, Iriarte E, López-Horgue MA, Álvarez I. 2018. Rift-margin extensional forced folds and salt tectonics in the eastern Basque-Cantabrian rift basin (western Pyrenees). Mar. Pet. Geol. 91: 667–682. [CrossRef] [Google Scholar]
  • Bond CE. 2015. Uncertainty in structural interpretation: Lessons to be learnt. Journal of Structural Geology. https://doi.org/10.1016/j.jsg.2015.03.003. [Google Scholar]
  • Bond RMG, McClay KR. 1995. Inversion of a Lower Cretaceous extensional basin, south central Pyrenees, Spain. Geol. Soc. London, Spec. Publ. 88: 415 LP-431. https://doi.org/10.1144/GSL.SP1995.088.01.22. [Google Scholar]
  • Bosch G, Teixell A, Jolivet M, Labaume P, Stockli D, Domènech M, et al. 2016. Timing of Eocene-Miocene thrust activity in the Western Axial Zone and Chaînons Béarnais (west-central Pyrenees) revealed by multi-method thermochronology. Comptes Rendus Geosci. 348: 246–256. https://doi.org/10.1016/j.crte.2016.01.001. [CrossRef] [Google Scholar]
  • Bourgeois O, Ford M, Diraison M, Le Carlier de Veslud C, Gerbault M, Pik R, et al. 2007. Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland. Int. J. Earth Sci. 96: 1003–1031. https://doi.org/10.1007/s00531-007-0202-2. [CrossRef] [Google Scholar]
  • Boyce JW, Hodges KV, Olszewski WJ, Jercinovic MJ, Carpenter BD, Reiners PW. 2006. Laser microprobe (U-Th)/He geochronology. Geochim. Cosmochim. Acta 70: 3031–3039. https://doi.org/10.1016/j.gca.2006.03.019. [CrossRef] [Google Scholar]
  • Burbank DW. 1992. Magnetostratigraphic chronology, mammalian faunas, and stratigraphic evolution of the Lower Freshwater Molasse, Haute-Savoie, France. Eclogae Geol. Helv. 85: 399–431. [Google Scholar]
  • Burrel L, Teixell A. 2021. Contractional salt tectonics and role of pre-existing diapiric structures in the Southern Pyrenean foreland fold thrust belt (Montsec and Serres Marginals. J. Geol. Soc. London 178: jgs2020 -085. [CrossRef] [Google Scholar]
  • Burrel L, Teixell A, Gómez-gras D, Coll X. 2021. Basement-involved thrusting, salt migration and intramontane conglomerates: a case from the Southern Pyrenees. BSGF – Earth Sci. Bull. 192: 24. https://doi.org/10.1051/bsgf/2021013/5292189/bsgf. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cadenas P, Fernandez-Viejo G, Pulgar JA, Tugand J, Manatschal G, Minshull TA. 2018. Constraints Imposed by Rift Inheritance on the Compressional Reactivation of a Hyperextended Margin: Mapping Rift Domains in the North Iberian Margin and in the Cantabrian Mountains. Tectonics 37: 758–785. https://doi.org/10.1002/2016TC004454. [CrossRef] [Google Scholar]
  • Cadenas P, Lescoutre R, Manatschal G. 2021. The role of extensional detachment systems in thinning the crust and exhuming granulites: analogies between the offshore Le Danois High and the onshore Labourd Massif in the Biscay/Pyrenean rifts. BSGF – Earth Sci. Bull. 192. https://doi.org/10.1051/bsgf/2021045/5463953/bsgf. [Google Scholar]
  • Caldera N, Teixell A, Griera A, Labaume P, Lahfid A. 2021. Recumbent folding in the Upper Cretaceous Eaux-Chaudes Massif: A Helvetic-type nappe in the Pyrenees? Terra Nova 33: 320–331. [CrossRef] [Google Scholar]
  • Calvet M, Gunnell Y, Laumonier B. 2020. Denudation history and palaeogeography of the Pyrenees and their peripheral basins: an 84-million-year geomorphological perspective. Earth-Science Rev. 103436. https://doi.org/10.1016/j.earscirev.2020.103436. [Google Scholar]
  • Caméra P. 2017. Salt and strike-slip tectonics as main drivers in the structural evolution of the Basque-Cantabrian Basin, Spain. In: Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins, pp. 371–393. [Google Scholar]
  • Caméra JI, Flinch JF. 2017. The Southern Pyrenees: A salt-based fold-and -thrust belt. In: Caméra JI, Flinch JF, Tari G, (Eds.). Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins, pp. 395–415. [Google Scholar]
  • Caméra JI, Flinch JI, Tari G (Eds.), 2017. Permo-Triassic salt provinces of Europe, North Africa and the Atlantic Margins. Elsevier. [Google Scholar]
  • Canérot J. 1988. Manifestations de l’halocinèse dans les chaînons béarnais (Zone Nord-Pyrénéenne) au Crétacé inférieur. Comptes Rendus de l’Académie des Sciences, Paris 306 (2): 1099–1102. [Google Scholar]
  • Canérot J. 2017. The pull-apart-type Tardets-Mauléon Basin, a key to understand the formation of the Pyrenees. BSGF-Earth Sciences Bulletin 188: 35. https://doi.org/10.1051/bsgf/2017198. [Google Scholar]
  • Canérot J, Hudec MR, Rockenbauch K. 2005. Mesozoic diapirism in the Pyrenean orogen: Salt tectonics on a transform plate boundary. Am. Assoc. Pet. Geol. Bull. 89: 211–229. https://doi.org/10.1306/09170404007. [Google Scholar]
  • Carrapa B. 2010. Resolving tectonic problems by dating detrital minerals. Geology 38: 191–192. https://doi.org/10.1130/focus022010.1. [CrossRef] [Google Scholar]
  • Carrillo E, Guinea A, Casas A, Rivero L, Cox N, Vázquez-Taset YM. 2020. Tectono-sedimentary evolution of transverse extensional faults in a foreland basin: Response to changes in tectonic plate processes. Basin Research 32: 1388–1412. [CrossRef] [Google Scholar]
  • Casas-Sainz AM, Román-Berdiel T. 1999. Geologia De Los Alrededores De Calahorra Rioja Baja. Zubia 17: 165–194. [Google Scholar]
  • Casas A, Kearey P, River L, Adam CR. 1997. Gravity anomaly map of the Pyrenean region and a comparison of the deep geological structure of the western and eastern Pyrenees. Earth Planet. Ecience Lett. 150: 65–78. [CrossRef] [Google Scholar]
  • Cederbom CE, Sinclair HD, Schlunegger F, Rahn MK. 2004. Climate-induced rebound and exhumation of the European Alps. Geology 32: 709. https://doi.org/10.1130/G20491.1. [CrossRef] [Google Scholar]
  • Chelalou R, Nalpas T, Bousquet R, Prevost M, Lahfid A, Poujol M, et al. 2015. Tectonics, tectonophysics: New sedimentological, structural and paleo-thermicity data in the Boucheville Basin (eastern North Pyrenean Zone, France). Comptes Rendus – Géoscience. https://doi.org/10.1016/j.crte.2015.11.008. [Google Scholar]
  • Chevrot S, Villaseñor A, Sylvander M, Benahmed S, Beucler E, Cougoulat G, et al. 2014. High-resolution imaging of the Pyrenees and Massif Central from the data of the PYROPE and IBERARRAY portable array deployments. J. Geophys. Res. Solid Earth 119: 6399–6420. [CrossRef] [Google Scholar]
  • Chevrot S, Sylvander M, Diaz J, Martin R, Mouthereau F, Manatschal G, et al. 2018. The non-cylindrical crustal architecture of the Pyenees. Sci. Rep. 8: 9591. https://doi.org/10.1038/s41598-018-27889-x. [CrossRef] [Google Scholar]
  • Chevrot S, Sylvander M, Villaseñor A, Díaz J, Stehly L, Boué P, et al. 2022. Passive imaging of collisional orogens: a review of a decade of geophysical studies in the Pyrénées. BSGF – Earth Sci. Bull. 193: 1–18. https://doi.org/10.1051/bsgf/2021049/5514862/bsgf. [CrossRef] [EDP Sciences] [Google Scholar]
  • Choukroune P. 1974. Structure et évolution tectonique de la zone nord-pyrénéenne: analyse de la déformation dans une portion de chaîne à schistosité sub-verticale. PhD thesis, Université des sciences et techniques de Montpellier 2, France. [Google Scholar]
  • Choukroune P. 1976. A discussion on natural strain and geological structure – Strain patterns in the Pyrenean Chain. Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 283(1312): 271–280. [Google Scholar]
  • Choukroune P. 1989. The ECORS Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics 8: 23–39. https://doi.org/10.1029/TC008i001p00023. [CrossRef] [Google Scholar]
  • Choukroune P, Mattauer M. 1978. Tectonique des plaques et Pyrénées; sur le fonctionnement de la faille transformante nord-pyrenéenne; comparaisons avec des modèles actuels. Bull. la Société géologique Fr. 7: 689–700. [CrossRef] [Google Scholar]
  • Choukroune P, Roure F, Pinet B, TEAM EP. 1990. Main results of the ECORS Pyrenees profile. Tectonophysics 173: 411–423. [CrossRef] [Google Scholar]
  • Christophoul F, Soula J-C, Brusset S, Elibana B, Roddaz M, Bessiere G, et al. 2003. Time, place and mode of propagation of foreland basin systems as recorded by the sedimentary fill: examples of the Late Cretaceous and Eocene retro-foreland basins of the north-eastern Pyrenees. Geol. Soc. London, Spec. Publ. 208: 229–252. https://doi.org/10.1144/GSL.SP2003.208.01.11. [CrossRef] [Google Scholar]
  • Clavell E. 1992. Geologia del petroli de les conques terci ries de Catalunya. Univ. de Barcelona. [Google Scholar]
  • Clerc C, Lagabrielle Y. 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the Cretaceous Pyrenean hot paleomargins. Tectonics 33: 1340–1359. https://doi.org/10.1002/2013TC003471. [CrossRef] [Google Scholar]
  • Clerc C, Lahfid A, Monié P, Lagabrielle Y, Chopin C, Poujol M, et al. 2015. High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the north Pyrenean paleo-passive margin. Solid Earth Discuss. 7: 797–857. https://doi.org/10.5194/sed-7-797-2015. [Google Scholar]
  • Clerc C, Lagabrielle Y, Labaume P, Ringenbach J-C, Vauchez A, Nalpas T, et al. 2016. Basement – Cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the Northeastern Pyrenean analog. Tectonophysics 686: 82–97. https://doi.org/10.1016/j.tecto.2016.07.022. [CrossRef] [Google Scholar]
  • Cochelin B, Lemirre B, Denèle Y, de Saint Blanquat M, Lahfid A, Duchêne S. 2018. Structural inheritance in the central pyrenees: The variscan to Alpine tectonometamorphic evolution of the Axial Zone. J. Geol. Soc. London. 175: 336–351. https://doi.org/10.1144/jgs2017-066. [CrossRef] [Google Scholar]
  • Coll X, Gómez-Gras D, Roigé M, Teixell A, Boya S, Mestres N. 2020. Heavy-mineral prove-nance signatures during the infill and uplift of a foreland basin: An example from the Jaca basin (Southern Pyrenees, Spain). Journal of Sedimentary Research 90: 1747–1769. https://doi.org/10.2110/jsr.2020.084. [CrossRef] [Google Scholar]
  • Coll X, Roigé M, Gómez-Gras D, Teixell A, Boya S, Mestres N. 2022. Interplay of multiple sediment routing systems revealed by combined sandstone petrography and Heavy Mineral Analysis (HMA) in the South Pyrenean Foreland Basin. Minerals 12: 262. [CrossRef] [Google Scholar]
  • Coney PJ, Muñoz JA, McClay KR, Evenchick CA. 1996. Syntectonic burial and post-tectonic exhumation of the southern Pyrenees foreland fold-thrust belt. J. Geol. Soc. London 153: 9–16. [CrossRef] [Google Scholar]
  • Conti P, Cornamusini G, Carmignani L. 2020. An outline of the geology of the Northern Apennines (Italy), with geological map at 1: 250 000 scale. Int. J. Geosci. 139: 149–194. [Google Scholar]
  • Cooper M, Warren MJ. 2020. Inverted fault systems and inversion tectonic settings. In: Scarselli N, Adam J, Chiarella D, Roberts DG, Bally AW, (Eds.). Regional geology and tectonics: Principles of geologic analysis. Elsevier pp. 169–204. https://doi.org/10.1016/b978-0-444-64134-2.00009-2. [Google Scholar]
  • Corre B, Lagabrielle Y, Labaume P, Fourcade S, Clerc C, Ballèvre M. 2016. Deformation associated with mantle exhumation in a distal, hot passive margin environment: New constraints from the Saraillé Massif (Chaînons Béarnais, North-Pyrenean Zone). Comptes Rendus Geosci. 348: 279–289. https://doi.org/10.1016/j.crte.2015.11.007. [CrossRef] [Google Scholar]
  • Costa E, Garcés M, López-Blanco M, Beamud E, Gómez-Paccard M, Larrasoaña JC. 2010. Closing and continentalization of the South Pyrenean foreland basin (NE Spain): magnetochronological constraints. Basin Res. 22: 904–917. [Google Scholar]
  • Crémades A, Ford M, Charreau J. 2021. Evidence of decoupled deformation during Jurassic rifting and Cenozoic inversion phases in the salt-rich Corbières-Languedoc Transfer Zone (Pyreneo-Provençal orogen, France). BSGF – Earth Sci. Bull. 192. [Google Scholar]
  • Critelli S, Mongelli G, Perri F, Martín-algarra A, Martín-martín M, Perrone V, et al. 2008. Compositional and Geochemical Signatures for the Sedimentary Evolution of the Middle Triassic – Lower Jurassic Continental Redbeds from Western-Central Mediterranean Alpine Chains. J. Geol. 116: 375–386. https://doi.org/10.1086/588833. [CrossRef] [Google Scholar]
  • Cruset D, Vergés J, Albert R, Gerdes A, Benedicto A, Cantarero I, et al. 2020. Quantifying deformation processes in the SE Pyrenees using U-Pb dating of fracture-filling calcites. J. Geol. Soc. London 177: 1186–1196. https://doi.org/10.1144/jgs2020-014. [CrossRef] [Google Scholar]
  • Curnelle R, Dubois P, Seguin JC. 1982. The Mesozoic-Tertiary Evolution of the Aquitaine Basin. Philos. Trans. R. Soc. London, Ser. A 305: 63–84. [CrossRef] [Google Scholar]
  • Curry ME, van der Beek P, Huismans RS, Wolf SG, Muñoz J-A. 2019. Evolving paleotopography and lithospheric flexure of the Pyrenean Orogen from 3D flexural modeling and basin analysis. Earth Planet. Sci. Lett. 515: 26–37. https://doi.org/10.1016/j.epsl.2019.03.009. [CrossRef] [Google Scholar]
  • Curry ME, van der Beek P, Huismans RS, Wolf SG, Fillon C, Muñoz JA. 2021. Spatio-temporal patterns of Pyrenean exhumation revealed by inverse thermo-kinematic modeling of a large thermochronologic data set. Geology 49: 738–742. https://doi.org/10.1130/G48687.1. [CrossRef] [Google Scholar]
  • Danišík M, McInnes BIA, Kirkland CL, McDonald BJ, Evans NJ, Becker T. 2017. Seeing is believing: Visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals. Sci. Adv. 3: e1601121. https://doi.org/10.1126/sciadv.1601121. [Google Scholar]
  • Daudet M, Mouthereau F, Brichau S, Crespo-Blanc A, Gautheron C, Angrand P. 2020. Tectono-stratigraphic and thermal evolution of the western Betic flysch: implications for the geodynamics of South Iberian margin and Alboran Domain. Tectonics 39: e2020TC006093. [CrossRef] [Google Scholar]
  • de Graciansky PC. 1962. Données stratigraphiques et tectoniques nouvelles sur la Montagne de Tauch. Bull. la Soc. Géologique Fr. 7 IV: 509–527. [CrossRef] [Google Scholar]
  • de Saint Blanquat M, Bajolet F, Grand’Homme A, Proietti A, Zanti M, Boutin A, et al. 2016. Cretaceous mantle exhumation in the central Pyrenees: New constraints from the peridotites in eastern Ariège (North Pyrenean zone, France). Comptes Rendus – Geosci. 348. https://doi.org/10.1016/j.crte.2015.12.003. [Google Scholar]
  • Debrand-Passard S, Courbouleix S, Lienhardt MJ. 1984. Synthèse géologique du sud-est de la France. Mémoir de la Bureau de Recherche géologique et Minières. BRGM. [Google Scholar]
  • DeCelles PG. 2012. Foreland basin systems revisited: Variations in response to tectonic settings. In: Busby C, Azor A, (Eds.). Tectonics of Sedimentary Basins. Wiley-Blackwell, pp. 405–426. https://doi.org/10.1002/9781444347166.ch20. [Google Scholar]
  • DeCelles PG, Giles K 1996. Foreland basin systems. Basin Res. 8: 105–123. https://doi.org/10.1046/j.1365-2117.1996.01491.x. [CrossRef] [Google Scholar]
  • Deckers J. 2015. The Paleocene stratigraphic records in the Central Netherlands and close surrounding basins: highlighting the different responses to a late Danian change in stress regime within the Central European Basin System. Tectonophysics 659: 102–108. [CrossRef] [Google Scholar]
  • Deckers J, van der Voet E. 2018. A review on the structural styles of deformation during Late Cretaceous and Paleocene tectonic phases in the southern North Sea area. J. Geodyn. 115: 1–9. [CrossRef] [Google Scholar]
  • Desegaulx P, Brunet M-F. 1990. Tectonic subsidence of the Aquitaine basin since Cretaceous times. Bull. la Société géologique Fr. 8: 295–306. [CrossRef] [Google Scholar]
  • Desegaulx P, Roure F, Villein A. 1990. Structural evolution of the Pyrenees: tectonic inheritance and flexural behaviour in the continental crust. Tectonophysics 182: 211–225. [CrossRef] [Google Scholar]
  • Dewey JF, Helman ML, Turco E, Hutton DWH, Knott SD. 1989. Kinematics of the western Mediterranean. In: Coward MP, Dietrich D, Park RG, (Eds.). Alpine Tectonics. Geological Society, London, Special Publication, pp. 265–284. [Google Scholar]
  • Dèzes P, Schmid SM, Ziegler PA. 2004. Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389: 1–33. https://doi.org/10.1016/j.tecto.2004.06.011. [CrossRef] [Google Scholar]
  • Diaz J, Vergés J, Chevrot S, Antonio-Vigil A, Ruiz M, Sylvander M, et al. 2018. Mapping the crustal structure beneath the eastern Pyrenees. Tectonophysics 744: 296–309. https://doi.org/10.1016/j.tecto.2018.07.011. [CrossRef] [Google Scholar]
  • Dielforder A, Frasca G, Brune S, Ford M. 2019. Formation of the Iberian-European Convergent Plate Boundary Fault and Its Effect on Intraplate Deformation in Central Europe. Geochemistry, Geophys. Geosystems 20. https://doi.org/10.1029/2018GC007840. [Google Scholar]
  • Dubois P, Seguin J-C. 1978. Les flyschs crétacé et éocène de la zone commingeoise et leur environnement. Bull. la Société Géologique Fr. 7(XX): 657–671. https://doi.org/10.2113/gssgfbull.S7-XX.5.657. [CrossRef] [Google Scholar]
  • Ducoux M, Jolivet L, Callot JP, Aubourg C, Masini E, Lahfid A, et al. 2019. The Nappe des Marbres Unit of the Basque-Cantabrian Basin: The Tectono-thermal Evolution of a Fossil Hyperextended Rift Basin. Tectonics 38: 3881–3915. https://doi.org/10.1029/2018TC005348. [CrossRef] [Google Scholar]
  • Ducoux M, Jolivet L, Cagnard F, Baudin T. 2021a. Basement-cover decoupling during the inversion of a hyperextended basin: insights from the Eastern Pyrenees. Tectonics 40: 1–23. https://doi.org/10.1029/2020TC006512. [CrossRef] [Google Scholar]
  • Ducoux M, Jolivet L, Masini E, Augier R, Lah A, Bernet M, et al. 2021b. Distribution and intensity of High-Temperature Low-Pressure metamorphism across the Pyrenean-Cantabrian belt: constraints on the thermal record of the pre-orogenic hyperextension rifting. BSGF – Earth Sci. Bull. 192: 43. https://doi.org/10.1051/bsgf/2021029/5432657/bsgf. [Google Scholar]
  • Ducoux M, Masini E, Tugend J, Gómez-Romeu J, Calassou S. 2022. Basement-decoupled hyperextension rifting: The tectono-stratigraphic record of the salt-rich Pyrenean necking zone (Arzacq Basin, SW France). GSA Bull. 134: 941–964. https://doi.org/10.1130/B35974.1. [CrossRef] [Google Scholar]
  • Duffy OB, Dooley TP, Hudec MR, Jackson MPA, Fernandez N, Jackson CAL, et al. 2018. Structural evolution of salt-influenced fold-and-thrust belts: A synthesis and new insights from basins containing isolated salt diapirs. J. Struct. Geol. 114: 206–221. https://doi.org/10.1016/j.jsg.2018.06.024. [CrossRef] [Google Scholar]
  • Erdös Z, Huismans RS, van der Beek P, Thieulot C. 2014a. Extensional inheritance and surface processes as controlling factors of mountain belt structure. J. Geophys. Res. Solid Earth 119: 9042–9061. [CrossRef] [Google Scholar]
  • Erdös Z, van der Beek P, Huismans RS. 2014b. Evaluating balanced section restoration with thermochronology data: A case study from the Central Pyrenees. Tectonics 33: 617–634. https://doi.org/10.1002/2013TC003481. [CrossRef] [Google Scholar]
  • Erdös Z, Huismans RS, van der Beek P. 2019. Control of increased sedimentation on orogenic fold-and-thrust belt structure–insights into the evolution of the Western Alps. Solid Earth 10(2): 391–404. [CrossRef] [Google Scholar]
  • Espurt N, Angrand P, Teixell A, Labaume P, Ford M, de Saint Blanquat M, et al. 2019a. Crustal-scale balanced cross-section and restorations of the Central Pyrenean belt (Nestes-Cinca transect): Highlighting the structural control of Variscan belt and Permian-Mesozoic rift systems on mountain building. Tectonophysics 764: 25–45. https://doi.org/10.1016/j.tecto.2019.04.026. [CrossRef] [Google Scholar]
  • Espurt N, Wattellier F, Philip J, Hippolyte JC, Bellier O, Bestani L. 2019b. Mesozoic halokinesis and basement inheritance in the eastern Provence fold-thrust belt, SE France. Tectonophysics 766: 60–80. https://doi.org/10.1016/j.tecto.2019.04.027. [CrossRef] [Google Scholar]
  • Ethève N, Mohn G, Lamotte DF de, Roca E, Tugend J, Gómez-romeu J. 2018. Extreme Mesozoic Crustal Thinning in the Eastern Iberia Margin: The Example of the Columbrets Basin (Valencia Trough). Tectonics 37: 1–27. https://doi.org/10.1002/2017TC004613. [Google Scholar]
  • Evans NJ, McInnes BIA, McDonald B, Danišík M, Becker T, Vermeesch P, et al. 2015. An in situ technique for (U-Th-Sm)/He and U-Pb double dating. J. Anal. At. Spectrom. Spectrom. 30: 1636–1645. https://doi.org/10.1039/C5JA00085H. [CrossRef] [Google Scholar]
  • Ferrer O, Roca E, Benjumea B, Muñoz JA, Ellouz N, MARCONI Team. 2008. The deep seismic reflection MARCONI-3 profile: Role of extensional Mesozoic structure during the Pyrenean contractional deformation at the eastern part of the Bay of Biscay. Mar. Pet. Geol. 25: 714–730. https://doi.org/10.1016/j.marpetgeo.2008.06.002. [CrossRef] [Google Scholar]
  • Ferrer O, Jackson MPA, Roca E, Rubinat M. 2012. Evolution of salt structures during extension and inversion of the Offshore Parentis Basin (Eastern Bay of Biscay). Geol. Soc. Spec. Publ. 363: 361–380. https://doi.org/10.1144/SP363.16. [CrossRef] [Google Scholar]
  • Filleaudeau PY, Mouthereau F, Pik R. 2011. Thermo-tectonic evolution of the south-central Pyrenees from rifting to orogeny: Insights from detrital zircon U/Pb and (U-Th)/He thermochronometry. Basin Res. 24: 401–417. https://doi.org/10.1111/j1365-2117.2011.00535.x. [Google Scholar]
  • Fillon C, van der Beek P. 2012. Post-orogenic evolution of the southern Pyrenees: constraints from inverse thermo-kinematic modelling of low-temperature thermochronology data. Basin Res. 24: 418–436. https://doi.org/10.1111/j.1365-2117.2011.00533.x. [CrossRef] [Google Scholar]
  • Fillon C, Gautheron C, van der Beek P. 2013a. Oligocene-Miocene burial and exhumation of the Southern Pyrenean foreland quantified by low-temperature thermochronology. J. Geol. Soc. London 170: 67–77. [CrossRef] [Google Scholar]
  • Fillon C, Huismans RS, van der Beek P, Muñoz JA. 2013b. Syntectonic sedimentation controls on the evolution of the southern Pyrenean fold-and-thrust belt: Inferences from coupled tectonic-surface processes models. J. Geophys. Res. 118: 1–16. https://doi.org/10.1002/jgrb.50368. [Google Scholar]
  • Fillon C, Huismans RS, van der Beek P. 2013c. Syntectonic sedimentation effects on the growth of fold-and-thrust belts. Geology 41: 83–86. https://doi.org/10.1130/G33531.1. [CrossRef] [Google Scholar]
  • Fillon C, Mouthereau F, Calassou S, Pik R, Bellahsen N, Gautheron C, et al. 2020. Post-orogenic exhumation in the western Pyrenees: evidence for extension driven by pre-orogenic inheritance. J. Geol. Soc. London jgs2020-079. https://doi.org/10.1144/jgs2020-079. [Google Scholar]
  • Fitzgerald PG, Muñoz JA, Coney PJ, Baldwin SL. 1999. Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of a collisional orogen. Earth Planet. Sci. Lett. 173: 157–170. https://doi.org/10.1016/S0012-821X(99)00225-3. [CrossRef] [Google Scholar]
  • Flemings PB, Jordan TE. 1990. Stratigraphic modeling of foreland basins: interpreting thrust deformation and lithosphere rheology. Geology 18: 430–434. [CrossRef] [Google Scholar]
  • Ford M. 2004. Depositional wedge tops: Interaction between low basal friction external orogenic wedges and flexural foreland basins. Basin Res. 16: 361–375. [CrossRef] [Google Scholar]
  • Ford M, Vergés J. 2021. Evolution of a salt-rich transtensional rifted margin, eastern North Pyrenees, France. J. Geol. Soc. London 178: jgs2019 -157. https://doi.org/10.1144/jgs2019-157. [CrossRef] [Google Scholar]
  • Ford M, Hemmer L, Vacherat A, Gallagher K, Christophoul F. 2016. Retro-wedge foreland basin evolution along the ECORS line, eastern Pyrenees, France. J. Geol. Soc. London 173: 419–437. https://doi.org/10.1144/jgs2015-129. [CrossRef] [Google Scholar]
  • Frasca G, Manatschal G, Cadenas P, Miró J, Lescoutre R. 2021. A kinematic reconstruction of Iberia using intracontinental slip corridors. Terra Nov.: 1–9. https://doi.org/10.1111/ter.12549. [Google Scholar]
  • Garcés M, López-blanco M, Valero L, Beamud E, Muñoz J-A, Oliva-Urcia B, et al. 2020. Paleogeographic and sedimentary evolution of the South Pyrenean foreland basin. Mar. Pet. Geol. 113. [Google Scholar]
  • Garcia-Castellanos D, Larrasoaña JC. 2015. Quantifying the post-tectonic topographic evolution of closed basins: The Ebro basin (northeast Iberia). Geology 43: 2–5. https://doi.org/10.1130/G36673.1. [Google Scholar]
  • Garcia-Castellanos D, Vergés J, Gaspar-Escribano J, Cloetingh S. 2003. Interplay between tectonics, climate and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). J. Geophys. Res. 208: 2347. https://doi.org/10.1029/2002JB002073. [Google Scholar]
  • García-Senz J, Pedrera A, Ayala C, Ruiz-constán ANA, Robador A, Rodríguez-fernández R. 2020. Inversion of the north Iberian hyperextended margin: the role of exhumed mantle indentation during continental collision. In: Hammerstein JA, Cuia R Di, Cottam MA, Zamora G, Butler RW, (Eds.). Fold and thrust belts: Structural style, evolution and exploration. Geological Society London Special Publication 490, pp. 177–198. [Google Scholar]
  • Gaspar-Escribano JM, Garcia-Castellanos D, Roca E, Cloetingh S. 2004. Cenozoic vertical motions of the Catalan Coastal Ranges (NE Spain): The role of tectonics, isostasy and surface transport. Tectonics 23. [Google Scholar]
  • Geel T, Roep TB. 1998. Oligocene to middle Miocene basin development in the Eastern Betic Cordilleras, SE Spain (Velez Rubio Corridor-Espuna): reflections of west Mediterranean plate-tectonic reorganizations. Basin Res. 10: 325–344. [CrossRef] [Google Scholar]
  • Gómez-Romeu J, Masini E, Tugend J, Ducoux M, Kusznir N. 2019. Role of rift structural inheritance in orogeny highlighted by the Western Pyrenees case-study. Tectonophysics 766: 131–150. https://doi.org/10.1016/j.tecto.2019.05.022. [CrossRef] [Google Scholar]
  • Gorini C, Viallard P, Déramond J. 1991. Inversion négative bassin de Narbone. Comptes Rendu Acadamie Sci. Paris 312 Série: 1013–1019. [Google Scholar]
  • Grool AR, Ford M, Vergés J, Huismans RS, Christophoul F, Dielforder A. 2018. Insights into the crustal-scale dynamics of a doubly vergent orogen from a quantitative analysis of its forelands: A case study of the Eastern Pyrenees. Tectonics 37: 450–476. https://doi.org/10.1002/2017TC004731. [CrossRef] [Google Scholar]
  • Grool AR, Huismans RS, Ford M. 2019. Salt décollement and rift inheritance controls on crustal deformation in orogens. Terra Nov. 31. https://doi.org/10.1111/ter.12428. [Google Scholar]
  • Guennoc P, Gorini C, Mauffret A. 2000. Histoire géologique du Golfe du Lion et cartographie du rift oligo-aquitanien et de la surface messinienne. Géologie de la France: 67–97. [Google Scholar]
  • Guieu G, Roussel J. 1990. Arguments for the pre-rift uplift and rift propagation in the Ligurian-Provencal Basin (northwestern Mediterranean) In the light of Pyrenean Provencal Orogeny. Tectonics 9: 1113–1142. [CrossRef] [Google Scholar]
  • Guimerá J, Alvaro M. 1990. Structure et évolution de la compression alpine dans la Chaîne Ibérique et la Chaîne côtière catalane (Espagne). Bull. la Société géologique Fr. 6: 339–348. [CrossRef] [Google Scholar]
  • Gunnell Y, Zeyen H, Calvet M. 2008. Geophysical evidence of a missing lithospheric root beneath the Eastern Pyrenees: Consequences for post-orogenic uplift and associated geomorphic signatures. Earth Planet. Sci. Lett. 276: 302–313. https://doi.org/10.1016/j.epsl.2008.09.031. [CrossRef] [Google Scholar]
  • Handy MR, Schmid S, Bousquet R, Kissling E, Bernoulli D. 2010. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth-Science Rev. 102: 121–158. https://doi.org/10.1016/j.earscirev.2010.06.002. [CrossRef] [Google Scholar]
  • Hart NR, Stockli DF, Lavier LL, Hayman NW. 2017. Thermal evolution of a hyperextended rift basin, Mauléon Basin western Pyrenees. Tectonics 36: 2016TC004365. https://doi.org/10.1002/2016TC004365. [Google Scholar]
  • Heller PL, Angevine CL, Winslow NS, Paola C. 1988. Two-phase stratigraphic model of foreland-basin sequences. Geology 16: 501–504. [CrossRef] [Google Scholar]
  • Hennuy J. 2003. Sédimentation carbonatée et silicoclastique sous contôle tectonique, le bassin sud-provençal et sa plate-forme carbonatée du turonien moyen au coniacien moyen. Évolutions séquentielle, diagénétique, paléogéographique. PhD thesis, Université Aix Marsaille 1: 194. [Google Scholar]
  • Henry J, Zolnai G. 1971. Sur le Trias resédimenté dans le sud-ouest du bassin aquitain. Cent. Rech. Pau, Bull. 5: 389–398. [Google Scholar]
  • Hinsbergen DJJ Van, Torsvik TH, Schmid SM, Matenco LC, Maffione M, Vissers RLM, et al. 2020. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 81: 79–229. https://doi.org/10.1016/j.gr.2019.07.009. [CrossRef] [Google Scholar]
  • Hoareau G, Crognier N, Lacroix B, Aubourg C, Roberts NM, Niemi N, et al. 2021. Combination of Δ47 and U-Pb dating in tectonic calcite veins unravel the last pulses related to the Pyrenean Shortening (Spain). Earth and Planetary Science Letters 553: 116636. [CrossRef] [Google Scholar]
  • Horne AM, van Soest MC, Hodges KV, Tripathy-Lang A, Hourigan JK. 2016. Integrated single crystal laser ablation U/Pb and (U-Th)/He dating of detrital accessory minerals – Proof-of-concept studies of titanites and zircons from the Fish Canyon tuff. Geochim. Cosmochim. Acta 178: 106–123. https://doi.org/10.1016/j.gca.2015.11.044. [CrossRef] [Google Scholar]
  • Horne AM, van Soest MC, Hodges KV. 2019. U/Pb and (U-Th-Sm)/He “double” dating of detrital apatite by laser ablation: A critical evaluation. Chem. Geol. 506: 40–50. https://doi.org/10.1016/j.chemgeo.2018.12.004. [CrossRef] [Google Scholar]
  • Horton BK, Plate M. 2018. Sedimentary record of Andean mountain building. Earth-Science Rev. 178: 279–309. https://doi.org/10.1016/j.earscirev.2017.11.025. [CrossRef] [Google Scholar]
  • Hudec MR, Dooley TP, Burrel L, Teixell A, Fernandez N. 2021. An alternative model for the role of salt depositional configuration and preexisting salt structures in the evolution of the Southern Pyrenees, Spain. J. Struct. Geol. 146: 104325. https://doi.org/10.1016/j.jsg.2021.104325. [Google Scholar]
  • Huyghe D, Mouthereau F, Ségalen L, Furió M. 2020. Long-term dynamic topographic support during post-orogenic crustal thinning revealed by stable isotope (δ18O) paleo-altimetry in eastern Pyrenees. Sci. Rep. 10: 1–8. https://doi.org/10.1038/s41598-020-58903-w. [NASA ADS] [CrossRef] [Google Scholar]
  • Issautier B, Nicolas S, Serrano O. 2020. Role of structural inheritance and salt tectonics in the formation of pseudosymmetric continental rifts on the european margin of the hyperextended Mauléon basin (Early Cretaceous Arzacq and Tartas Basins). Mar. Pet. Geol. 118: 104395. https://doi.org/10.1016/j.marpetgeo.2020.104395. [CrossRef] [Google Scholar]
  • Izquierdo-Llavall E, Menant A, Aubourg C, Callot JP, Hoareau G, Camps P, et al. 2020. Preorogenic Folds and Syn-Orogenic Basement Tilts in an Inverted Hyperextended Margin: The Northern Pyrenees Case Study. Tectonics 39: 1–32. https://doi.org/10.1029/2019TC005719. [CrossRef] [Google Scholar]
  • James V, Canérot J. 1999. Diapirisme et structuration post-triasique des Pyrénées occidentales et de l’Aquitaine méridionale (France). Eclogae Geologicae Helvetiae 92: 63–72. [Google Scholar]
  • Jammes S, Huismans RS. 2012. Structural styles of mountain building: Controls of lithospheric rheologic stratification and extensional inheritance. Journal of Geophysical Research 117: B10403. https://doi.org/10.1029/2012B009376. [CrossRef] [Google Scholar]
  • Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics 28: n/a–n/a. https://doi.org/10.1029/2008TC002406. [CrossRef] [Google Scholar]
  • Jammes S, Tiberi C, Manatschal G. 2010. 3D architecture of a complex transcurrent rift system: The example of the Bay of Biscay-Western Pyrenees. Tectonophysics 489: 210–226. https://doi.org/10.1016/j.tecto.2010.04.023. [CrossRef] [Google Scholar]
  • Jolivet M, Labaume P, Monié P, Brunel M, Arnaud N, Campani M. 2007. Thermochronology constraints for the propagation sequence of the south Pyrenean basement thrust system (France–Spain). Tectonics 26: TC5007. https://doi.org/10.2006TC002080. [Google Scholar]
  • Jolivet L, Faccena C, Agard P, Frizon de la Motte D, Menant A, Sternai P, et al. 2016. Neo-Tethys geodynamics and mantle convection: fromextension to compression in Africa and a conceptual model for obduction. Can. J. Earth Sci. 53: 1–15. https://doi.org/10.1139/cjes-2015-0118. [Google Scholar]
  • Jolivet L, Romagny A, Gorini C, Maillard A, Thinon I, Couëffé R, et al. 2020. Fast dismantling of a mountain belt by mantle flow: Late-orogenic evolution of Pyrenees and Liguro-Provençal rifting. Tectonophysics 776. https://doi.org/10.1016/j.tecto.2019.228312 . [CrossRef] [Google Scholar]
  • Jolivet L, Baudin T, Calassou S, Chevrot S, Ford M, Issautier B, et al. 2021a. Geodynamic evolution of a wide plate boundary in the Western Mediterranean, near-field versus far-field interactions. BSGF – Earth Sci. Bull. 192: 48. https://doi.org/10.1051/bsgf/2021043. [Google Scholar]
  • Jolivet L, Menant A, Roche V, Pourhiet L, Le Maillard A, Augier R, et al. 2021b. Transfer zones in Mediterranean back-arc regions and tear faults. https://doi.org/10.1051/bsgf/2021006/5260048/bsgf. [Google Scholar]
  • Jordan TE. 1995. Retroarc forel and and related basins. In: Busby CJ, Ingersoll RV, (Eds.). Tectonics of sedimentary basins. Blackwell Science, pp. 331–361. [Google Scholar]
  • Jourdan JM, Philippe Y, Moen-Maurel L, Tegon C, Bailly G, Bringuier F, et al. 1998. Bilan du permis La Noue après retraitement 2D (bassins de Tarbes et du Comminges). Internal Report Elf Aquitaine Exploration Production France. [Google Scholar]
  • Jourdon A, Le Pourhiet L, Mouthereau F, Masini E. 2019. Role of rift maturity on the architecture and shortening distribution in mountain belts. Earth Planet. Sci. Lett. 512: 89–99. https://doi.org/10.1016/j.epsl.2019.01.057. [CrossRef] [Google Scholar]
  • Jourdon A, Mouthereau F, Le Pourhiet L, Callot J. 2020. Topographic and tectonic evolution of mountain belts controlled by salt thickness and rift architecture. Tectonics 39: e2019TC005903. https://doi.org/10.1029/2019TC005903. [CrossRef] [Google Scholar]
  • Kley J. 2018. Timing and spatial patterns of Cretaceous and Cenozoic inversion in the Southern Permian Basin. In: Kilhams B, Kukla PA, Mazur S, McKie T, Munlieff H, Van Ojik K, (Eds.). Mesozoic resource potential in the Southern Permian Basin. Geological Society, London, Special Publications 469, pp. 19–31. [Google Scholar]
  • Kley J, Voigt T. 2008. Late Cretaceous intraplate thrusting in central Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 36: 839–842. https://doi.org/10.1130/G24930A.1. [CrossRef] [Google Scholar]
  • Krzywiec P, Vergés Jaume. 1996. Role of the foredeep evaporites in wedge tectonics and formation of triangle zones: Comparison of the Carpathian and Pyrenean thrust fronts. In: Lacombe O, Lavé J, Roure F, Vergés J, (Eds.). Thrust belts and foreland basins. Springer, pp. 385–396. [Google Scholar]
  • Labaume P, Teixell A. 2018. 3D structure of subsurface thrusts in the eastern Jaca Basin, southern Pyrenees. Geodyn. Acta 16: 477–498. https://doi.org/10.1344/GeologicaActa2018.16.4.9. [Google Scholar]
  • Labaume P, Teixell A. 2020. Evolution of salt structures of the Pyrenean rift (Chaînons Béarnais, France): From hyper-extension to tectonic inversion. Tectonophysics 228451. https://doi.org/10.1016/j.tecto.2020.228451 . [Google Scholar]
  • Labaume P, Meresse F, Jolivet M, Teixell A, Lahfid A. 2016. Tectonothermal history of an exhumed thrust-sheet-top basin: An example from the south Pyrenean thrust belt. Tectonics 35: 1280–1313. https://doi.org/10.1002/2016TC004192. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Bodinier JL. 2008. Submarine reworking of exhumed subcontinental mantle rocks: Field evidence from the Lherz peridotites, French Pyrenees. Terra Nov. 20: 11–21. https://doi.org/10.1111/j.1365-3121.2007.00781.x. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): insights from the geological setting of the lherzolite bodies. Tectonics 29: TC4012. [Google Scholar]
  • Lagabrielle Y, Asti R, Duretz T, Clerc C, Fourcade S, Teixell A, et al. 2020. A review of Cretaceous smooth-slopes extensional basins along the Iberia-Eurasia plate boundary: How pre-rift salt controls the models of continental rifting and mantle exhumation. Earth-Science Rev. 201: 103071. https://doi.org/10.1016/j.earscirev.2019.103071. [CrossRef] [Google Scholar]
  • Lamotte DF, De Raulin C, Mouchot N, Christophe J, Daveau W, Blanpied C, et al. 2011. The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics 30: 1–22. https://doi.org/10.1029/2010TC002691. [Google Scholar]
  • Larrasoaña JC, Parés JM, Millán H, del Valle J, Pueyo EL. 2003. Paleomagnetic, structural, and stratigraphic constraints on transverse fault kinematics during basin inversion: The Pamplona Fault (Pyrenees, north Spain). Tectonics 22. https://doi.org/10.1029/2002TC001446. [Google Scholar]
  • Laumonier B. 2015. Les Pyrénées alpines sud-orientales (France, Espagne) – essai de synthèse. Rev. Géologie pyrénéenne 2. [Google Scholar]
  • Lawton TF, Roca E, Guimerà J. 1999. Kinematic-stratigraphic evolution of a growth syncline and its implications for tectonic development of the proximal foreland basin, southeastern Ebro basin, Catalunya, Spain. Geol. Soc. Am. Bull. 111: 412–431. [CrossRef] [Google Scholar]
  • Le Breton E, Brune S, Ustaszewski K, Zahirovic S, Seton M, Müller RD. 2020. Kinematics and extent of the Piemont-Liguria Basin – implications for subduction processes in the Alps. Solid Earth Discuss. 2020: 1–42. https://doi.org/10.5194/se-2020-161. [Google Scholar]
  • Le Maire P, Thinon I, Tugend J, Issautier B, Martelet G, Paquet F, et al. 2021. New Magnetic compilation and interpretation of the Bay of Biscay and surrounding continental shelves. BSGF-Earth Sci. Bull. 192: 58. [CrossRef] [EDP Sciences] [Google Scholar]
  • Léger J, Pik R, Ford M, Tibari B, Ternois S, Frasca G, et al. 2021. Detrital (U-Th-Sm)/He and U/Pb geo-thermochronometry as a tool to reveal past orogen dynamics and source to sink evolution. A case study from the Corbières, eastern Pyrenees, France. Abstract, ThermoNet. Barcellonette. [Google Scholar]
  • Lehujeur M, Chevrot S, Villaseñor A, Masini E, Saspiturry N, Lescoutre R, et al. 2021. Three-dimensional shear velocity structure of the Mauléon and Arzacq Basins (Western Pyrenees). BSGF – Earth Sci. Bull. 192. https://doi.org/10.1051/bsgf/2021039/5432932/bsgf. [Google Scholar]
  • Leleu S, Hartley AJ, van Oosterhout C, Kennan L, Ruckwied K, Gerdes K. 2016. Structural, stratigraphic and sedimentological characterisation of a wide rift system: The Triassic rift system of the Central Atlantic Domain. Earth-Science Rev. 158: 89–124. https://doi.org/10.1016/j.earscirev.2016.03.008. [CrossRef] [Google Scholar]
  • Lescoutre R, Manatschal G. 2020. Role of rift-inheritance and segmentation for orogenic evolution: example from the Pyrenean-Cantabrian system. BSGF – Earth Sci. Bull. 191. [Google Scholar]
  • Lescoutre R, Tugend J, Brune S, Masini E, Manatschal G. 2019. Thermal evolution of asymmetric hyperextended magma-poor rift systems: results from numerical modelling of Pyrenean field observations. Geochemistry, Geophysics, Geosystems 20: 4567–4587. https://doi.org/10.1029/2019GC008600. [CrossRef] [Google Scholar]
  • Lescoutre R, Manatschal G, Muñoz JA. 2021. Nature, Origin, and Evolution of the Pyrenean-Cantabrian Junction. Tectonics 40: 1–40. https://doi.org/10.1029/2020TC006134. [CrossRef] [Google Scholar]
  • Lewis CJ, Vergés J, Marzo M. 2000. High mountains in a zone of extended crust ’ Insights into the Neogene-Quaternary topographic development of northeastern Iberia. Tectonics 19: 86–102. [CrossRef] [Google Scholar]
  • López-Horgue MA, Iriarte E, Schröder S, Fernández-Mendiola PA, Caline B, Corneyllie H, et al. 2010. Structurally controlled hydrothermal dolomites in Albian carbonates of the Asón valley, Basque Cantabrian Basin, Northern Spain. Mar. Pet. Geol. 27: 1069–1092. [CrossRef] [Google Scholar]
  • Lopez-Mir B, Muñoz JA, García-Senz J. 2014. Restoration of basins driven by extension and salt tectonics: Example from the Cotiella Basin in the central Pyrenees. J. Struct. Geol. 69: 147–162. https://doi.org/10.1016/j.jsg.2014.09.022. [CrossRef] [Google Scholar]
  • Lopez-Mir B, Muñoz JA, García-Senz J. 2015. Extensional salt tectonics in the partially inverted Cotiella post-rift basin (south-central Pyrenees): structure and evolution. Int. J. Earth Sci. 104: 419–434. [CrossRef] [Google Scholar]
  • Luis F. 2001. La cinématique de l’Atlantique Nord: la question de la déformation intraplaque. Ifremer, PhD thesis, Université de Brest. [Google Scholar]
  • Macchiavelli C, Vergés J, Schettino A, Fernàndez M, Turco E, Casciello E, et al. 2017. A New Southern North Atlantic Isochron Map: Insights Into the Drift of the Iberian Plate Since the Late Cretaceous. J. Geophys. Res. Solid Earth 122: 9603–9626. https://doi.org/10.1002/2017JB014769. [CrossRef] [Google Scholar]
  • Maerten L, Séranne M. 1995. Extensional tectonics of the Oligo-Miocene Herault Basin (S France), Gulf of Lion margin. Bull. Soc. Geol. Fr. 166: 739–749. [Google Scholar]
  • Manatschal G, Chenin P, Lescoutre R, Miró J, Cadenas P, Saspiturry N, et al. 2021. The role of inheritance in forming rifts and rifted margins and building collisional orogens: a Biscay-Pyrenean perspective. BSGF – Earth Sci. Bull. https://doi.org/10.1051/bsgf/2021042. [Google Scholar]
  • Marroni M, Monechi S, Perilli N, Principi G, Treves B. 1992. Late Cretaceous flysch deposits of the Northern Apennines, Italy: age of inception of orogenesis-controlled sedimentation. Cretac. Res. 13: 487–504. https://doi.org/10.1016/0195-6671(92)90013-G. [CrossRef] [Google Scholar]
  • Martin-Rojas I, Somma R, Delgado F, Estévez A, Iannace A, Perrone V, et al. 2009. Triassic continental rifting of Pangaea: Direct evidence from the Alpujarride carbonates, Betic Cordillera, SE Spain. J. Geol. Soc. London. 166: 447–458. https://doi.org/10.1144/0016-76492008-091. [CrossRef] [Google Scholar]
  • Mas JR, Alonso A, Guimera J. 1993. Evolución tectonosedimentaria de una cuenca extensional intraplaca: la cuenca finijurásica-eocretácica de Los Cameros La Rioja-Soria). Rev. la Soc. Geológica España 6: 129–144. [Google Scholar]
  • Masini E, Manatschal G, Tugend J, Mohn G, Flament J-M. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq-Mauléon rift system (Western Pyrenees, SW France). Int. J. Earth Sci. 103: 1569–1596. [CrossRef] [Google Scholar]
  • Masse J-P, Philip J. 1976. Paléogeographie et tectonique du crétacé moyen en Provence : révision du concept d’isthme durencien. Rev. Géographie Phys. Géologie Dyn. XVIII: 49–66. [Google Scholar]
  • Maufrangeas A, Leleu S, Loisy C, Roperch P, Jolley D, Vinciguerra C, et al. 2020. Stratigraphy of the Paleocene continental sedimentary succession of the northern Pyrenean basin (Corbières, southern France) using δ13Corg isotopes. J. Geol. Soc. London 177: 752–765. [CrossRef] [Google Scholar]
  • Maurel O, Moniè P, Pik R, Arnaud N, Brunel M, Jolivet M. 2008. The Meso-Cenozoic thermo-tectonic evolution of the Eastern Pyrenees: an 40Ar/39Ar fission track and (U-Th)/He thermochronological study of the Canigou and Mont-Louis massifs. Int. J. Earth Sci. 97: 565–584. https://doi.org/10.1007/s00531-007-0179-x. [CrossRef] [Google Scholar]
  • McClay K, Whitehouse PS. 2004. Analog modeling of doubly vergent thrust wedges. AAPG Mem. 82: 184–206. [Google Scholar]
  • McClay K, Muñoz JA, García-Senz J. 2004. Extensional salt tectonics in a contractional orogen: A newly identified tectonic event in the Spanish Pyrenees. Geology 32: 737–740. https://doi.org/10.1130/G20565.1. [CrossRef] [Google Scholar]
  • McQueen HWS, Beaumont C. 1989. Mechanical models of tilted block basins. In: Origin and evolution of sedimentary basins and their energy and mineral resources. Geophysical Monograph Series. pp. 65–71. https://doi.org/10.1029/GM048p0065. [Google Scholar]
  • Meigs AJ, Burbank DW. 1997. Growth of the South Pyrenean orogenic wedge. Tectonics 16: 239–258. [CrossRef] [Google Scholar]
  • Meigs AJ, Vergés J, Burbank DW. 1996. Ten-million-year history of a thrust sheet. Geol. Soc. Am. Bull. 108: 1608–1625. [CrossRef] [Google Scholar]
  • Mencos J, Carrera N, Muñoz JA. 2015. Influence of rift basin geometry on the subsequent postrift sedimentation and basin inversion: The Organyà Basin and the Bóixols thrust sheet (south central Pyrenees). Tectonics 34. https://doi.org/10.1002/2014TC003692. [Google Scholar]
  • Mesalles L, Mouthereau F, Bernet M, Chang C-P, Lin AT-S, Fillon C, et al. 2014. From submarine continental accretion to arc-continent orogenic evolution: The thermal record in southern Taiwan. Geology 42: 907–910. https://doi.org/10.1130/G35854.1. [CrossRef] [Google Scholar]
  • Miall AD. 1995. Collision-related foreland basins. In: Busby CJ, Ingersoll RV, (Eds.). Tectonics of sedimentary basins. Blackwell Science, Oxford, pp. 393–424. [Google Scholar]
  • Milesi G, Monié P, Münch P, Soliva R, Taillefer A, Bruguier O, et al. 2020. Tracking geothermal anomalies along a crustal fault using (U-Th)/He apatite thermochronology and rare-earth element (REE) analyses: The example of the Têt fault (Pyrenees, France). Solid Earth 11: 1747–1771. https://doi.org/10.5194/se-11-1747-2020. [CrossRef] [Google Scholar]
  • Miró J, Manatschal G, Cadenas P, Muñoz JA. 2021. Reactivation of a hyperextended rift system: The Basque-Cantabrian Pyrenees case. Basin Res.: 1–25. https://doi.org/10.1111/bre.12595. [Google Scholar]
  • Molli G. 2008. Northern Apennine – Corsica orogenic system: an updated overview. In: Siegesmund S, Fügenschuh B, Froitzheim N, (Eds.). Tectonic Aspects of the Alpine-Dinaride-Carpathian System. Geological Society of London Special Publication 298, pp. 413–442. [Google Scholar]
  • Monod B, Bourroullec I. 2014. Digital geological map at 1/250 000 the the Midi-Pyrénées region. In: Notice Technique, Bureau Des Recherches Géologiques et Minières, Orléans, France. [Google Scholar]
  • Morris RG, Sinclair HD, Yelland AJ. 1998. Exhumation of the Pyrenean orogen: implications for sediment discharge. Basin Res. 10: 69–85. [CrossRef] [Google Scholar]
  • Mouchené M, van der Beek P, Carretier S, Mouthereau F. 2017. Autogenic versus allogenic controls on the evolution of a coupled fluvial megafan – mountainous catchment system: numerical modelling and comparison with the Lannemezan megafan system (northern Pyrenees, France). Earth Surf. Dyn. 5: 125–143. https://doi.org/10.5194/esurf-5-125-2017. [CrossRef] [Google Scholar]
  • Mouthereau F, Filleaudeau P, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33: 1–32. https://doi.org/10.1002/2014TC003663. [Google Scholar]
  • Mouthereau F, Angrand P, Jourdon A, Calassou S, Ford M, Jolivet L, et al. 2021. Cenozoic mountain building and topographic evolution in Western Europe: impact of billion years lithosphere evolution and plate tectonics. BSGF – Earth Sci. Bull.: 1–132. [Google Scholar]
  • Müller RD, Cannon J, Qin X, Watson RJ, Gurnis M, Williams S, et al. 2018. GPlates: building a virtual Earth through deep time. Geochemistry, Geophys. Geosyst. 19: 2243–2261. [CrossRef] [Google Scholar]
  • Muñoz JA. 1992. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In: McClay K, (Ed.). Thrust Tectonics. Chapman and Hall, London, pp. 235–246. [Google Scholar]
  • Muñoz JA. 2002. The Pyrenees. In: Gibbons W, Moreno T, (Eds.). The Geology of Spain. Geological Society of London, pp. 370–385. [Google Scholar]
  • Muñoz JA. 2019. Alpine orogeny: Deformation and structure in the Northern Iberian Margin (Pyrenees s.l.). In: Quesada C, Oliveira JT, (Eds.). The geology of Iberia: A geodynamic approach. Springer International Publishing, pp. 433–451. [Google Scholar]
  • Muñoz-Jiménez A, Casas-Sainz AM. 1997. The Rioja Trough (N Spain): tectosedimentary evolution of a symmetric foreland basin. Basin Res. 9: 65–85. [CrossRef] [Google Scholar]
  • Naylor M, Sinclair HD. 2008. Pro- vs. retro-foreland basins. Basin Res. 20: 285–303. https://doi.org/10.1111/j.1365-2117.2008.00366.x. [CrossRef] [Google Scholar]
  • Nichols GJ, Hirst JP. 1998. Alluvial fans and fluvial distributary systems, Oligo-Miocene, northern Spain: contrasting processes and products. J. Sediment. Res. 68: 879–889. [CrossRef] [Google Scholar]
  • Nielsen SB, Thomsen E, Hansen DL, Clausen OR. 2005. Plate-wide stress relaxation explains European Palaeocene basin inversions, pp. 195–198. [Google Scholar]
  • Nijman W. 1998. Cyclicity and basin axis shift in a piggyback basin: towards modelling of the Eocene Tremp-Age Basin, South Pyrenees, Spain. Geol. Soc. London, Spec. Publ. 134: 135–162. [CrossRef] [Google Scholar]
  • Nirrengarten M, Manatschal G, Tugend J, Kusznir NJ, Sauter D. 2017. Nature and origin of the J-magnetic anomaly offshore Iberia-Newfoundland: implications for plate reconstructions. Terra Nov. 29: 20–28. https://doi.org/10.1111/ter.12240. [CrossRef] [Google Scholar]
  • Nirrengarten M, Manatschal G, Tugend J, Kusznir N, Sauter D. 2018. Kinematic Evolution of the Southern North Atlantic: Implications for the Formation of Hyperextended Rift Systems. Tectonics 37: 89–118. https://doi.org/10.1002/2017TC004495. [CrossRef] [Google Scholar]
  • Odlum ML, Stockli DF, Capaldi TN, Thomson KD, Clark J, Puigdefàbregas C, et al. 2019. Tectonic and sediment provenance evolution of the South Eastern Pyrenean foreland basins during rift margin inversion and orogenic uplift. Tectonophysics 765: 226–248. https://doi.org/10.1016/j.tecto.2019.05.008. [CrossRef] [Google Scholar]
  • Oliva-Urcia B, Beamud E, Arenas C, Pueyo EL, Garcés M, Soto R, et al. 2019. Dating the northern deposits of the Ebro foreland basin; implications for the kinematics of the SW Pyrenean front. Tectonophysics 765: 11–34. https://doi.org/10.1016/j.tecto.2019.05.007. [CrossRef] [Google Scholar]
  • Olivet JL. 1996a. La cinématique de la plaque Ibérique. Bull. Cent. Rech. Explor. Prod. Elf Aquitaine 20: 131–195. [Google Scholar]
  • Olivet JL. 1996b. Kinematics of the Iberian Plate. Bull. des Centres Rech. Explor. Elf Aquitaine 20: 131–195. [Google Scholar]
  • Ortiz A, Guillocheau F, Lasseur E, Briais J, Robin C, Serrano O, et al. 2020. Sediment routing system and sink preservation during the post-orogenic evolution of a retro-foreland basin: The case example of the North Pyrenean (Aquitaine, Bay of Biscay) Basins. Mar. Pet. Geol. 112: 104085. https://doi.org/10.1016/j.marpetgeo.2019.104085. [CrossRef] [Google Scholar]
  • Ortiz A, Guillocheau F, Robin C, Lasseur E, Briais J, Fillon C. 2022. Siliciclastic sediment volumes and rates of the North Pyrenean retro-foreland basin. Basin Res. n/a. https://doi.org/10.1111/bre.12665. [Google Scholar]
  • Parizot O, Missenard Y, Haurine F, Blaise T, Barbarand J, Benedicto A, et al. 2021. When did the Pyrenean shortening end? Insight from U-Pb geochronology of syn-faulting calcite (Corbières area, France). Terra Nov.: 1–9. https://doi.org/10.1111/ter.12547. [Google Scholar]
  • Patin J. 1967. L’évolution morphologique du plateau de Lannemezan. Rev. géographique des Pyrénées du Sud-Ouest. Sud-Ouest Eur. 38: 325–337. [Google Scholar]
  • Pérez-Rivarés FJ, Tirapu GMP, Abad MCA, Crespo MG. 2004. Magnetostratigraphy of the Miocene continental deposits of the Montes de Castejón (central Ebro basin, Spain): geochronological and paleoenvironmental implications. Geol. Acta 2: 221–234. [Google Scholar]
  • Peyaud JB, Barbarand J, Carter A, Pagel M. 2005. Mid-Cretaceous uplift and erosion on the northern margin of the Ligurian Tethys deduced from thermal history reconstruction. Int. J. Earth Sci. 94: 462–474. https://doi.org/10.1007/s00531-005-0486-z. [CrossRef] [Google Scholar]
  • Peyton SL, Carrapa B. 2013. An introduction to low-temperature thermochronologic techniques, methodology and applications. In: Knight C, Cuzella J, (Eds.). Application of structural methods to rocky mountain hydrocarbon exploration and development, pp. 15–36. https://doi.org/10.1306/13381688St653578 . [Google Scholar]
  • Philip J, Masse J-P, Machhour L. 1987. L’évolution paléogéographique et structurale du front de chevauchement nord-toulonnais (Basse-Provence occidentale, France). Bull. al Soc. géologique Fr. (III): 541–550. [CrossRef] [Google Scholar]
  • Platt JP, Behrmann JH, Cunningham PC, Dewey JF, Helman M, Parish M, et al. 1989. Kinematics of the Alpine arc and the motion history of Adria. Nature 337: 158–161. [CrossRef] [Google Scholar]
  • Plaziat J-C. 1981. Late Cretaceous to late Eocene palaeogeographic evolution of southwest Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol, Paleogene paleography and the geological events at the Eocene/Oligocene boundary 36: 263–320. https://doi.org/10.1016/0031-0182(81)90110-3. [CrossRef] [Google Scholar]
  • Poprawski Y, Basile C, Agirrezabala LM, Jaillard E, Gaudin M, Jacquin T. 2014. Sedimentary and structural record of the Albian growth of the Bakio salt diapir (the Basque Country, northern Spain). Basin Res. 26: 746–766. https://doi.org/10.1111/bre.12062. [CrossRef] [Google Scholar]
  • Puigdefàbregas C, Souquet P. 1986. Tecto-sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics 29: 173–203. [CrossRef] [Google Scholar]
  • Puigdefàbregas C, Muñoz JA, Marzo M. 1986. Thrust belt development in the eastern {Pyrenees} and related depositional sequences in the southern foreland basin. Forel. Basins: 229–246. [CrossRef] [Google Scholar]
  • Puigdefàbregas C, Muñoz JA, Vergés J. 1992. Thrusting and foreland basin evolution in the Southern Pyrenees. In: McClay KR, (Ed.). Thrust Tectonics. Chapman & Hall, London, pp. 247–254. [Google Scholar]
  • Rahl JM, Haines SH, van der Pluijm BA. 2011. Links between orogenic wedge deformation and erosional exhumation: Evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees. Earth Planet. Sci. Lett. 307: 180–190. https://doi.org/10.1016/j.epsl.2011.04.036. [CrossRef] [Google Scholar]
  • Ramos A, García-Senz J, Pedrera A, Ayala C, Rubio F, Peropadre C, et al. 2022. Salt control on the kinematic evolution of the Southern Basque-Cantabrian Basin and its underground storage systems (Northern Spain). Tectonophysics 822: 229178. https://doi.org/10.1016/j.tecto.2021.229178 . [CrossRef] [Google Scholar]
  • Randle CH, Bond CS, Lark RM, Monaghan AA. 2018. Can uncertainty in geological cross-section interpretations be quantified and predicted? Geosphere 154(3): 1087–1100. https://doi.org/10.1130/GES01510.1. [CrossRef] [Google Scholar]
  • Rat J, Mouthereau F, Brichau S, Crémades A, Bernet M, Balvay M, et al. 2019. Tectonothermal evolution of the Cameros Basin: Implications for tectonics of North Iberia. Tectonics 38: 440–469. https://doi.org/10.1029/2018TC005294. [CrossRef] [Google Scholar]
  • Reiners PW, Brandon MT. 2006. Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences 34: 419–466. https://doi.org/10.1146/annurev.earth.34.031405.125202. [CrossRef] [Google Scholar]
  • Reiners PW, Ehlers TA, Zeitler PK. 2005. Past, present, and future of thermochronology. Rev. Mineral. Geochemistry 58: 1–18. https://doi.org/10.2138/rmg.2005.58.1. [CrossRef] [Google Scholar]
  • Riba O, Reguant S, Villena J. 1983. Ensayo de síntesis estratigráfica y evolutiva de la cuenca terciaria del Ebro. Geol. España 2: 131–159. [Google Scholar]
  • Ríos J. 1948. Diapirismo. Boletín Inst. Geológico y Min. España 60: 155–390. [Google Scholar]
  • Roca E, Muñoz JA, Ferrer O, Ellouz N. 2011. The role of the Bay of Biscay Mesozoic extensional structure in the configuration of the Pyrenean orogen: constraints from the MARCONI deep seismic reflection survey. Tectonics 10: 405–408. https://doi.org/10.1029/2010TC002735. [Google Scholar]
  • Rocher M, Lacombe O, Angelier J, Deffontaines B, Verdier F. 2000. Cenozoic folding and faulting in the south Aquitaine Basin (France): insights from combined structural and paleostress analyses. J. Struct. Geol. 22: 627–645. https://doi.org/10.1016/S0191-8141(99)00181-9. [CrossRef] [Google Scholar]
  • Roest WR, Srivastava PS. 1991. Kinematics of the plate boundaries between Eurasia, Iberia, and Africa in the North Atlantic from the Late Cretaceous to the present. Geology 19: 613–616. [CrossRef] [Google Scholar]
  • Roigé M, Gómez-Gras D, Remacha E, Daza R, Boya S. 2016. Tectonic control on sediment sources in the Jaca basin (Middle and Upper Eocene of the South-Central Pyrenees). Comptes Rendus – Geosci. 348: 236–245. https://doi.org/10.1016/j.crte.2015.10.005. [CrossRef] [Google Scholar]
  • Roigé M, Gomez-Gras D, Stockli DF, Teixell A, Boya S, Remacha E. 2019. Detrital zircon U-Pb insights into the timing and provenance of the South Pyrenean Jaca basin. J. Geol. Soc. London 176: 1182–1190. [CrossRef] [Google Scholar]
  • Rosenbaum G, Lister GS, Duboz C. 2002a. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Teconophysics 359: 117–129. [CrossRef] [Google Scholar]
  • Rosenbaum G, Lister GS, Duboz C. 2002b. Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. J. Virtual Explor. 8: 107–126. [Google Scholar]
  • Rougier G, Ford M, Christophoul F, Bader A-G. 2016. Stratigraphic and tectonic studies in the central Aquitaine Basin, northern Pyrenees: Constraints on the subsidence and deformation history of a retro-foreland basin. Comptes Rendus – Geosci. 348: 224–235. https://doi.org/10.1016/j.crte.2015.12.005. [CrossRef] [Google Scholar]
  • Roure F. 2008. Foreland and Hinterland basins: what controls their evolution? Swiss J. Geosci. 101: S5– S29. https://doi.org/10.1007/s00015-008-1285-x. [CrossRef] [Google Scholar]
  • Roure F, Choukroune P. 1998. Contribution of the ECORS seismic data to the Pyrenean Geology: crustal architecture and geodynamic evolution of the Pyrenees. Mémoire Hors-Série de La Société Géologique de France, pp. 37–52. [Google Scholar]
  • Roure F, Choukroune P, Berastegui X, Muñoz JA, Villien A, Matheron P, et al. 1989. ECORS deep seismic data and balanced cross-sections: geometric constraints on the evolution of the Pyrenees. Tectonics 8: 41–50. [CrossRef] [Google Scholar]
  • Rouvier H, Henry B, Le Goff M. 2012. Mise en évidence par le paléomagnétisme de rotations régionales dans la virgation des Corbières (France). Bull. la Société géologique Fr. 183: 409–424. [CrossRef] [Google Scholar]
  • Rowan MG, Ratliff RA. 2012. Cross-section restoration of salt-related deformation: Best practices and potential pitfalls. J. Struct. Geol. 41: 24–37. https://doi.org/10.1016/j.jsg.2011.12.012. [CrossRef] [Google Scholar]
  • Sàbat F, Gelabert B, Rodríguez-Perea A, Giménez J. 2011. Geological structure and evolution of Majorca: Implications for the origin of the Western Mediterranean. Tectonophysics 510: 217–238. [CrossRef] [Google Scholar]
  • Salas R, Guimerà J, Mas R, Martin-Closas C, Meléndez A, Alonso A. 2001. Evolution of the Mesozoic Central Iberian Rift System and its inversion (Iberian chain). In: Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S, (Eds.). Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mémoires du Muséum national d’histoire naturelle volume 186, pp. 145–185. [Google Scholar]
  • Salvany JM. 1989. Los sistemas lacustres evapor ́ıticos del sector navarro-riojano de la Cuenca del Ebro durante el Oligoceno y Mioceno inferior. Acta Geol. Hisp. 24: 231–241. [Google Scholar]
  • Sans M, Muñoz JA, Vergés J. 1996. Thrust wedge geometries related to evaporitic horizons (Southern Pyrenees). Bull. Can. Pet. Geol. 44: 375–384. [Google Scholar]
  • Santolaria P, Vendeville BC, Graveleau F, Soto R, Casas-Sainz A. 2015. Double evaporitic décollements: Influence of pinch-out overlapping in experimental thrust wedges. J. Struct. Geol. 76: 35–51. https://doi.org/10.1016/j.jsg.2015.04.002. [CrossRef] [Google Scholar]
  • Santolaria P, Casas-Sainz AM, Soto R, Casas A. 2017. Gravity modelling to assess salt tectonics in the western end of the South Pyrenean Central Unit. J. Geol. Soc. London. 174: 269–288. [CrossRef] [Google Scholar]
  • Santolaria P, Ayala C, Pueyo EL, Rubio FM, Soto R, Calvín P, et al. 2020. Structural and geophysical characterization of the western termination of the South Pyrenean triangle zone. Tectonics 39: e2019TC005891. [CrossRef] [Google Scholar]
  • Saspiturry N, Razin P, Baudin T, Serrano O, Issautier B, Lasseur E, et al. 2019. Symmetry vs. asymmetry of a hyper-thinned rift: Example of the Mauléon Basin (Western Pyrenees, France). Mar. Pet. Geol. 104: 86–105. https://doi.org/10.1016/j.marpetgeo.2019.03.031. [CrossRef] [Google Scholar]
  • Saspiturry N, Allanic C, Razin P, Issautier B, Baudin T, Lasseur E, et al. 2020. Closure of a hyperextended system in an orogenic lithospheric pop-up, Western Pyrenees: The role of mantle buttressing and rift structural inheritance. Terra Nov. 32: 253–260. https://doi.org/10.1111/ter.12457. [CrossRef] [Google Scholar]
  • Saspiturry N, Issautier B, Razin P, Baudin T, Asti R, Lagabrielle Y, et al. 2021. Review of Iberia-Eurasia plate-boundary basins: Role of sedimentary burial and salt tectonics during rifting and continental breakup. Basin Res. 33: 0–2. https://doi.org/10.1111/bre.12529. [Google Scholar]
  • Saspiturry N, Allanic C, Serrano O, Courrioux G, Baudin T, Le Bayon B, et al. 2022. Upper lithospheric transfer zones driving the non-cylindricity of the West-Pyrenean orogenic prism (Mauléon hyperextended basin). J. Struct. Geol. 156: 104535. https://doi.org/10.1016/j.jsg.2022.104535. [CrossRef] [Google Scholar]
  • Saura E, Ardèvol L, Teixell A, Vergés J. 2016. Rising and falling diapirs, shifting depocenters and flap overturning in the Cretaceous Sopeira and Sant Gervàs subbasins (Ribagorça basin, Southern Pyrenees). Tectonics 35: 638–662. https://doi.org/10.1002/2015TC004001. [CrossRef] [Google Scholar]
  • Scheck-Wenderoth M, Lamarche J. 2005. Crustal memory and basin evolution in the Central European Basin System – New insights from a 3D structural model. Tectonophysics 397: 143–165. [CrossRef] [Google Scholar]
  • Schettino A, Turco E. 2011. Tectonic history of the western Tethys since the Late Triassic. Geol. Soc. Am. Bull. 123: 89–105. [CrossRef] [Google Scholar]
  • Schettino A, Turco E. 2009. Breakup of Pangaea and plate kinematics of the central Atlantic and Atlas regions. Geophys. J. Int. 178: 1078–1097. https://doi.org/10.1111/j.1365-246X2009.04186.x. [CrossRef] [Google Scholar]
  • Seguret M. 1972. Étude tectonique des nappes et séries décollées de la partie centrale du versant sud des Pyrénées: caractère synsédimentaire, rôle de la compression et de la gravité. Université des sciences et techniques du Languedoc. [Google Scholar]
  • Senz JG, Zamorano M. 1992. Evolución tectónica y sedimentaria durante el Priaboniense superior-Mioceno inferior, en el frente de cabalgamiento de las Sierras Marginales occidentales. [Google Scholar]
  • Séranne M. 1999. The Gulf of Lion continental margin (NW Mediterranean) revisited by IBS: an overview. In: Durand B, Jolivet L, Horváth F, Séranne M, eds. The Mediterranean basins: Tertiary extension within the Alpine Orogen. Volume Special Publication 156. London: The Geological Society, pp. 15–36. [Google Scholar]
  • Séranne M, Couëffé R, Husson E, Baral C, Villard J. 2021. The transition from Pyrenean shortening to Gulf of Lion rifting in Languedoc (South France) – A tectonic-sedimentation analysis. BSGF – Earth Sci. Bull. 192: 1–29. https://doi.org/10.1051/bsgf/2021017/5302093/bsgf. [CrossRef] [EDP Sciences] [Google Scholar]
  • Serrano A, Martínez del Olmo W. 1990. Tectónica salina en el Dominio Cántabro-Navarro: Evolución, edad y origen de las estructuras salinas. In: Ortí F, Salvany JM, (Eds.). Formaciones Evaporíticas de La Cuenca Del Ebro y Cadenas Periféricas, y de La Zona de Levante. Enresa, Madrid, pp. 39–53. [Google Scholar]
  • Serrano O, Delmas J, Hanot F, Vially R, Herbin J-P, Houel P, et al. 2006. Le bassin d’Aquitaine : valorisation des données sismiques, cartographique structurale et potentiel pétrolier. [Google Scholar]
  • Sibuet J-C, Srivastava SP, Spakman W. 2004. Pyrenean orogeny and plate kinematics. J. Geophys. Res. Solid Earth 109: B08104. https://doi.org/10.1029/2003JB002514. [Google Scholar]
  • Sinclair H. 2012. Thrust Wedge/Foreland Basin Systems. In: Busby C, Azor A, (Eds.). Tectonics of Sedimentary Basins. Wiley-Blackwell, pp. 522–537. https://doi.org/10.1002/9781444347166.ch26. [Google Scholar]
  • Sinclair HD, Naylor M. 2012. Foreland basin subsidence driven by topographic growth versus plate subduction. Geol. Soc. Am. Bull. 124: 368–379. https://doi.org/10.1130/B30383.1. [CrossRef] [Google Scholar]
  • Sinclair HD, Gibson M, Naylor M, Morris RG. 2005. Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes. Am. J. Sci. 305: 369–406. https://doi.org/10.2475/ajs.305.5.369. [CrossRef] [Google Scholar]
  • Soler y Jose R, Martínez del Olmo W, Megias AG, Abeger Monteagudo JA. 1983. Rasgos básicos del neógeno del Mediterráneo español. Mediterránea Serv. Geológicos 1: 71–83. [Google Scholar]
  • Soula J-C, Bessière G. 1980. Sinistral horizontal shearing as a dominant process of deformation in the Alpine Pyrenees. J. Struct. Geol. 2: 69–74. [CrossRef] [Google Scholar]
  • Srivastava SP, Roest WR, Kovacs LC, Oakey G, Levesque S, Verhoef J, et al. 1990a. Motion of Iberia since the Late Jurassic: results from detailed aeromagnetic measurements in the Newfoundland Basin. Tectonophysics 184: 229–260. [CrossRef] [Google Scholar]
  • Srivastava SP, Schouteni H, Roest WR, Klitgordi KD, Kovacs LC, Verhoef J, et al. 1990b. lberian plate kinematics: a jumping plate boundary between Eurasia and Africa. Nature 344: 756–759. [CrossRef] [Google Scholar]
  • Srivastava SP, Sibuet J-C, Cande S, Roest WR, Reid ID. 2000. Magnetic evidence for slow seafloor spreading during the formation of the Newfoundland and Iberian margins. Earth Planet. Sci. Lett. 182: 61–76. [CrossRef] [Google Scholar]
  • Stephenson R, Schiffer C, Peace A, Nielsen B, Jess S. 2020. Late Cretaceous-Cenozoic basin inversion and palaeostress fields in the North Atlantic-western Alpine-Tethys realm: implications for intraplate tectonics. Earth Sci. Rev. 210: 103252. [CrossRef] [Google Scholar]
  • Suc J-P, Fauquette S. 2012. The use of pollen floras as a tool to estimate palaeoaltitude of mountains: The eastern Pyrenees in the Late Neogene, a case study. Palaeogeogr. Palaeoclim. Palaeoecol. 321-322: 41–54. [CrossRef] [Google Scholar]
  • Sutra E, Manatschal G, Mohn G, Unternehr P. 2013. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochemistry, Geophys. Geosystems 14: 2575–2597. https://doi.org/10.1002/ggge.20135. [CrossRef] [Google Scholar]
  • Teixell A. 1996. The Ansó transect of the southern Pyrenees: basement and cover thrust geometries. J. Geol. Soc. London 153: 301–310. [CrossRef] [Google Scholar]
  • Teixell A, Muñoz JA. 2000. Evolución tectonosedimentaria del Pirineo meridional durante el Terciario: una síntesis basada en la transversal del río Noguera Ribagorçana. Rev. la Soc. Geológica España 13: 251–264. [Google Scholar]
  • Teixell A, Labaume P, Lagabrielle Y. 2016. The crustal evolution of the west-central Pyrenees revisited: Inferences from a new kinematic scenario. Comptes Rendus Geosci. 348: 257–267. https://doi.org/10.1016/j.crte.2015.10.010. [CrossRef] [Google Scholar]
  • Teixell A, Labaume P, Ayarza P, Espurt N, de Saint Blanquat M, Lagabrielle Y. 2018. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics 724-725: 146–170. https://doi.org/10.1016/j.tecto.2018.01.009. [CrossRef] [Google Scholar]
  • Ternois S, Odlum M, Ford M, Pik R, Stockli D, Tibari B, et al. 2019a. Thermochronological evidence of early Orogenesis, Eastern Pyrenees, France. Tectonics 38: 1308–1336. https://doi.org/10.1029/2018TC005254. [CrossRef] [Google Scholar]
  • Ternois S, Pik R, Ford M, Tibari B, Mercadier J, Lebel F, et al. 2019b. Unravelling early growth of a collisional orogen using in situ laser ablation double dating on detrital zircon, eastern North Pyrenees, France. In: EGU General Assembly 2019 Conference Abstracts, Vienna, Austria, p. 12965. [Google Scholar]
  • Ternois S, Mouthereau F, Jourdon A. 2021a. Decoding low-temperature thermochronology signals in mountain belts: modelling the role of rift thermal imprint into continental collision. BSGF – Earth Sci. Bull. 192: 38. https://doi.org/10.1051/bsgf/2021028. [Google Scholar]
  • Ternois S, Mouthereau F, Jourdon A. 2021b. Erratum to: Decoding low-temperature thermochronology signals in mountain belts: modelling the role of rift thermal imprint into continental collision. BSGF – Earth Sci. Bull. 192: 0–2. https://doi.org/10.1051/bsgf/2021028. [Google Scholar]
  • Thomson KD, Stockli DF, Clark JD, Puigdefàbregas C, Fildani A. 2017. Detrital zircon (U-Th)/(He-Pb) double-dating constraints on provenance and foreland basin evolution of the Ainsa Basin, south-central Pyrenees, Spain. Tectonics 36: 2017TC004504. https://doi.org/10.1002/2017TC004504. [Google Scholar]
  • Thomson KD, Stockli DF, Odlum ML, Tolentino P, Puigdefàbregas C, Clark J, et al. 2019. Sediment provenance and routing evolution in the Late Cretaceous-Eocene Ager Basin, south-central Pyrenees, Spain. Basin Res. 0. https://doi.org/10.1111/bre.12376. [Google Scholar]
  • Torsvik TH, Müller RD, van der Voo R, Steinberger B, Gaina C. 2008. Global plate motion frames: Toward a unified model. Rev. Geophys. 46: RG3004. https://doi.org/10.1029/2007RG000227. [CrossRef] [Google Scholar]
  • Tripathy-Lang A, Hodges KV, Monteleone BD, van Soest MC. 2013. Laser (U-Th)/He thermochronology of detrital zircons as a tool for studying surface processes in modern catchments: Detrital zircon thermochronology. J. Geophys. Res. Earth Surf. 118: 1333–1341. https://doi.org/10.1002/jgrf.20091. [CrossRef] [Google Scholar]
  • Trümpy R. 1980. An outline of the geology of Switzerland. Wepf & Co, Basel, Switzerland. [Google Scholar]
  • Tucker GE, van der Beek P. 2013. A model for post-orogenic development of a mountain range and its foreland. Basin Res. 24: 241–259. https://doi.org/10.1111/j.1365-2117.2012.00559.x. [CrossRef] [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E. 2014a. Characterizing and identifying structural domains at rifted continental margins: application to the Bay of Biscay margins and its Western Pyrenean fossil remnants. Geol. Soc. London, Spec. Publ. 413: 171–203. https://doi.org/10.1144/SP413.3. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E, Mohn G, Thinon I. 2014b. Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics 33: 1239–1276. https://doi.org/10.1002/2014TC003529. [CrossRef] [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ. 2015. Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the Iberian-European plate boundary. Geology 43: 15–18. https://doi.org/10.1130/G36072.1. [CrossRef] [Google Scholar]
  • Vacherat A, Mouthereau F, Al E. 2014. Thermal imprint of rift-related processes in orogens as recorded in the Pyrenees. Earth Planet. Sci. Lett. 408: 296–306. https://doi.org/10.1016/j.epsl.2014.10.014. [CrossRef] [Google Scholar]
  • Vacherat A, Mouthereau F, Pik R, Bellahsen N, Gautheron C, Bernet M, et al. 2016. Rift-to-collision transition recorded by tectonothermal evolution of the northern Pyrenees. Tectonics 35: 907–933. https://doi.org/10.1002/2015TC004016. [CrossRef] [Google Scholar]
  • Vacherat A, Mouthereau F, Pik R, Huyghe D, Paquette JL, Christophoul F, et al. 2017. Rift-to-collision sediment routing in the Pyrenees: A synthesis from sedimentological, geochronological and kinematic constraints. Earth-Science Rev. 172. https://doi.org/10.1016/j.earscirev.2017.07.004. [Google Scholar]
  • Van Hoorn B. 1970. Sedimentology and paleogeography of an Upper Cretaceous turbidite basin in the south-central Pyrenees, Spain. Leidse Geologische Mededelingen 45: 73–154. [Google Scholar]
  • Vergés J. 1993. Estudi geològic del vessant sud del Pirineu oriental i central Evolució cinemàtica en 3D. Barcelona University. [Google Scholar]
  • Vergés J, Burbank DW. 1996. Eocene-Oligocene thrusting and basin configuration in the eastern and central Pyrenees (Spain). In: Tertiary basins of Spain: The stratigraphic record of crustal kinematics. Cambridge University Press, pp. 120–133. [Google Scholar]
  • Vergés J, Fernandez M. 2006. Ranges and basins in the Iberian Peninsula: their contribution to the present topography. In: Gee DG, Stephenson RA, (Eds.). European lithosphere dynamics. Geological Society London Memoirs, pp. 223–234. [Google Scholar]
  • Vergés J, Fernàndez M. 2012. Tethys-Atlantic interaction along the Iberia-Africa plate boundary: The Betic-Rif orogenic system. Tectonophysics 579: 144–172. https://doi.org/10.1016/j.tecto.2012.08.032. [CrossRef] [Google Scholar]
  • Vergés J, Muñoz JA, Martínez A. 1992. South Pyrenean fold and thrust belt: The role of foreland evaporitic levels in thrust geometry. In: McClay K, (Ed.). Thrust Tectonics. Chapman & Hall, London, pp. 255–264. [Google Scholar]
  • Vergés J, Millán H, Roca E, Muñoz JA, Marzo M, Cirés J, et al. 1995. Eastern Pyrenees and related foreland basins: pre-, syn- and post-collisional crustal-scale cross-sections. Mar. Pet. Geol. 12: 903–915. https://doi.org/10.1016/0264-8172(95)98854-X. [CrossRef] [Google Scholar]
  • Vergés J, Marzo M, Santaeulària T, Serra-Kiel J, Burbank DW, Muñoz JA, et al. 1998. Quantified vertical motions and tectonic evolution of the SE Pyrenean foreland basin. Geol. Soc. London, Spec. Publ. 134: 107–134. https://doi.org/10.1144/GSL.SP1998.134.01.06. [CrossRef] [Google Scholar]
  • Vergés J, Fernàndez M, Martínez A. 2002. The Pyrenean orogen: pre-, syn-, and post-collisional evolution. J. Virtual Explor. 8: 55–74. [Google Scholar]
  • Vergés J, Kullberg JC, Casas-Sainz A, de Vicente G, Duarte LV, Fernàndez M, et al. 2019. An introduction to the Alpine Cycle in Iberia. In: Quesada C, Oliveira JT (Eds.). The geology of Iberia: A geodynamic approach. Springer Nature, Switzerland, pp. 1–14. https://doi.org/10.1007/978-3-030-11295-0_1. [Google Scholar]
  • Vergés J, Poprawski Y, Almar Y, Drzawiecki PA, Moragas M, Bovar-Arnal T, et al. 2020. Tectono-sedimentary evolution of Jurassic-Cretaceous diapiric structures: Miravete anticline, Maestrat Basin, Spain. Basin Res.: 0–21. https://doi.org/10.1016/j.optmat.2011.11.002. [Google Scholar]
  • Vermeesch P, Sherlock SC, Roberts NMW, Carter A. 2012. A simple method for in-situ U-Th-He dating. Geochim. Cosmochim. Acta 79: 140–147. https://doi.org/10.1016/j.gca.2011.11.042. [CrossRef] [Google Scholar]
  • Viallard P. 1987. Un modèle de charriage épigyyptique: la nappe des Corbières orientales (Aude, France). Bull. La Soc. Geol. Fr. 8: 551–559. [CrossRef] [Google Scholar]
  • Vinciguerra C. 2020. Reconstruction des paléo-drainages des bassins précoces péri-orogéniques (Crétacé terminal-Paléocène) à partir des dépôts fluviatiles dans le système pyrénéen oriental. PhD thesis, Université Michel de Montaigne-Bordeaux III, France. [Google Scholar]
  • Vinciguerra C, Leleu S, Desmares D, Emmanuel L, Martinez L, Loisy C. 2022. Global carbon isotopic events in a Campanian-Maastrichtian deltaic succession (Tremp-Graus Basin, Spain) and multiproxy stratigraphy for high sedimentation rate environments. Cretac. Res. 137: 105222. https://doi.org/10.1016/j.cretres.2022.105222. [CrossRef] [Google Scholar]
  • Vissers RLM, Meijer PT. 2012a. Mesozoic rotation of Iberia: Subduction in the Pyrenees? Earth-Science Rev. 110: 93–110. https://doi.org/10.1016/j.earscirev.2011.11.001. [CrossRef] [Google Scholar]
  • Vissers RLM, Meijer PT. 2012b. Iberian plate kinematics and Alpine collision in the Pyrenees. Earth-Science Rev. 114: 61–83. https://doi.org/10.1016/j.earscirev.2012.05.001. [CrossRef] [Google Scholar]
  • Voigt T, Kley J, Voigt S. 2021. Dawn and dusk of Late Cretaceous basin inversion in central Europe. Solid Earth 12: 1443–1471. [CrossRef] [Google Scholar]
  • Waldner M, Bellahsen N, Mouthereau F, Bernet M, Pik R, Rosenberg CL, et al. 2021. Central Pyrenees Mountain Building: Constraints From New LT Thermochronological Data From the Axial Zone. Tectonics 40: e2020TC006614. https://doi.org/10.1029/2020TC006614. [CrossRef] [Google Scholar]
  • Waltham D, Taberner C, Docherty C. 2000. Error estimation in decompacted subsidence curves. Am. Assoc. Pet. Geol. Bull. 84: 1087–1094. [Google Scholar]
  • Wang Y, Chevrot S, Monteiller V, Komatitsch D, Mouthereau F, Manatschal G, et al. 2016. The deep roots of the western Pyrenees revealed by full waveform inversion of teleseismic P waves. Geology 44. https://doi.org/10.1130/G37812.1. [Google Scholar]
  • Wehr H, Chevrot S, Courrioux G, Guillen A. 2018. A three-dimensional model of the Pyrenees and their foreland basins from geological and gravimetric data. Tectonophysics 734-735: 16–32. https://doi.org/10.1016/j.tecto.2018.03.017. [CrossRef] [Google Scholar]
  • Whitchurch AL, Carter A, Sinclair HD, Duller RA, Whittaker AC, Allen PA. 2011. Sediment routing system evolution within a diachronously uplifting orogen: Insights from detrital zircon thermochronological analyses from the South-Central Pyrenees. Am. J. Sci. 311: 442–482. [CrossRef] [Google Scholar]
  • Wicker V, Ford M. 2021. Assessment of the tectonic role of the Triassic evaporites in the North Toulon fold-thrust belt. BSGF – Earth Sci. Bull. 192: 51. https://doi.org/10.1051/bsgf/2021033/5451740/bsgf. [Google Scholar]
  • Willett SD, Brandon MT. 2002. On steady states in mountain belts. Geology 30: 175–178. https://doi.org/10.1130/0091-7613(2002)030<0175:OSSIMB>2.0.CO;2. [CrossRef] [Google Scholar]
  • Willett S, Beaumont C, Fullsack P. 1993. Mechanical model for the tectonics of doubly vergent compressional orogens. Geology 21: 371–374. [CrossRef] [Google Scholar]
  • Wolf SG, Huismans RS, Muñoz JA, Curry ME, van der Beek P. 2021. Growth of collisional orogens from small and cold to large and hot – Inferences from geodynamic models. Journal of Geophysical Research: Solid Earth 126: e2020JB021168. [Google Scholar]
  • Xie X, Heller PL. 2009. Plate tectonics and basin subsidence history. Geol. Soc. f Am. Bull. 121: 55–64. https://doi.org/10.1130/B26398.1. [Google Scholar]
  • Yelland AJ. 1990. Fission track thermotectonics in the Pyrenean orogen. Int. J. Radiat. Appl. Instrum. Part D. Nucl. Tracks Radiat. Meas. 17: 293–299. https://doi.org/10.1016/1359-0189(90)90049-4. [CrossRef] [Google Scholar]
  • Yelland AJ. 1991. Fission track thermotectonics of the Iberian-Eurasian plate orogen. PhD thesis, Birkbeck University of London, London. [Google Scholar]
  • Zamora G, Fleming M, Gallastegui J. 2017. Salt tectonics within the offshore Asturian Basin: North Iberian margin. In: Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Elsevier, pp. 353–368. [Google Scholar]
  • Ziegler PA, Dèzes P. 2006. Crustal evolution of Western and Central Europe. In: Gee DG, Stephenson RA, (Eds.). European lithosphere dynamics. Memoir of the Geological Society, London 32, pp. 43–56. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.