Issue
BSGF - Earth Sci. Bull.
Volume 194, 2023
Special Issue Messinian Crisis
Article Number 15
Number of page(s) 18
DOI https://doi.org/10.1051/bsgf/2023013
Published online 06 December 2023
  • Achalhi M, Münch P, Cornée J-J., Azdimousa A, Melinte-Dobrinescu M, Quillévéré F et al. 2016. The late Miocene Mediterranean-Atlantic connections through the North Rifian Corridor: new insights from the Boudinar and Arbaa Taourirt basins (northeastern Rif, Morocco). Palaeogeogr Palaeoclimatol Palaeoecol 459: 131–152. [Google Scholar]
  • Aguirre E, Menéndez Amor J, Lhénaff R, Alférez F, Maco J. 1967. El Mioceno superior (Andaluciense) en Sevilla y Cadiz. 4th Congress of the Committee of the Mediterranean Neogene. Bologne, 19 p. [Google Scholar]
  • Aguirre J, Braga JC, Martín JM, Puga-Bernabéu Á, Pérez-Asensio J, Sánchez-Almazo I et al. 2015. An enigmatic kilometre-scale concentration of small mytilids (Late Miocene, Guadalquivir Basin, S Spain). Palaeogeogr Palaeoclimatol Palaeoecol 436: 199–213. [Google Scholar]
  • Amadori C, Garcia-Castellanos D, Toscani G et al. 2018. Restored topography of the Po Plain-Northern Adriatic region during the Messinian base-level drop-Implications for the physiography and compartmentalization of the palaeo-Mediterranean basin. Basin Res 30: 1247–1263. [Google Scholar]
  • Anthonissen DE, Ogg JG. 2012. Cenozoic and Cretaceous biochronology of planktonic foraminifera and calcareous nannofossils. In Gradstein FM, Ogg JG, Schmitz MD, Ogg GM, eds. The geologic time scale 2012. Amsterdam (The Netherlands): Elsevier, pp. 1083–1127. [Google Scholar]
  • Bache F, Gargani J, Suc J- P et al. 2015. Messinian evaporite deposition during sea level rise in the Gulf of Lions (Western Mediterranean). Mar Pet Geol 66: 262–277. [Google Scholar]
  • Bache F, Olivet J-L, Gorini C et al. 2009. Messinian erosional and salinity crises: view from the Provence Basin (Gulf of Lions, Western Mediterranean). Earth Planet Sci Lett 286: 139–157. [Google Scholar]
  • Bache F, Popescu S-M, Rabineau M et al. 2012. A two-step process for the reflooding of the Mediterranean after the Messinian Salinity Crisis. Basin Res 24: 125–153. [Google Scholar]
  • Berggren WA, Haq BU. 1976. The Andalusian Stage (Late Miocene): biostratigraphy, biochronology and paleoecology. Palaeogeogr Palaeoclimatol Palaeoecol 20: 67–129. [Google Scholar]
  • Blanc P-L. 2002. The opening of the Plio-Quaternary Gibraltar Strait: assessing the size of a cataclysm. Geodin Acta 15: 303–317. [Google Scholar]
  • Booth-Rea G, Ranero CR, Grevemeyer I. 2018. The Alboran volcanic-arc modulated the Messinian faunal exchange and salinity crisis. Sci Rep 8: 13015. [Google Scholar]
  • Borrero Dominguez JD, Roldán García FJ. 1985. Carmona. Mapa Geológico de España at scale 1:50,000, 985 (13-40), Madrid : Instituto Geológico y Minero de España. [Google Scholar]
  • Bulian F, Sierro FJ, Ledesma S, Jiménez-Espejo FJ, Bassetti M-A. 2021. Messinian West Alboran Sea record in the proximity of Gibraltar: early signs of Atlantic-Mediterranean gateway restriction. Mar Geol 434: 106430. [Google Scholar]
  • Capella W, Barhoun N, Flecker R et al. 2018. Palaeogeographic evolution of the late Miocene Rifian Corridor (Morocco): reconstructions from surface and subsurface data. Earth-Sci Rev 180: 37–59. [Google Scholar]
  • Cavazza W, DeCelles PG. 1998. Upper Messinian siliciclastic rocks in southeastern Calabria (southern Italy): paleotectonic and eustatic implications for the evolution of the central Mediterranean region. Tectonophysics 298: 223–241. [Google Scholar]
  • Civis J, Dabrio CJ, González-Delgado JA et al. 2004. Cuenca del Guadalquivir. In: Vera JA, ed. Madrid (Spain): Geología de España. Instituto Geológico y Minero de España and Sociedad Geológica de España, pp. 543–550. [Google Scholar]
  • Clauzon G. 1978. The Messinian Var canyon (Provence, Southern france) − Paleogeographic implications. Mar Geol 27: 231–246. [Google Scholar]
  • Clauzon G. 1982. Le canyon Messinien du Rhône: une preuve décisive du “desiccated deep-basin model” [Hsü, Cita et Ryan, 1973]. Bull Soc Géol Fr 24(3)(S7):597–610. [Google Scholar]
  • Clauzon G, Le Strat P, Duvail C et al. 2015b. The Roussillon Basin (S. France): a case-study to distinguish local and regional events between 6 and 3 Ma. Mar Pet Geol 66: 18–40. [Google Scholar]
  • Clauzon G, Suc J-P, Do Couto D et al. 2015a. New insights on the Sorbas Basin (SE Spain): The onshore reference of the Messinian Salinity Crisis. Mar Pet Geol 66: 71–100. [Google Scholar]
  • Clauzon G, Suc J-P., Gautier F, Berger A. Loutre M-F. 1996. Alternate interpretation of the Messinian salinity crisis: controversy resolved? Geology 24: 363–366. [Google Scholar]
  • Clauzon G, Suc J-P, Popescu S-M et al. 2005. Influence of Mediterranean sea-level changes on the Dacic Basin (Eastern Paratethys) during the late Neogene: the Mediterranean Lago Mare facies deciphered. Basin Res 17: 437–462. [Google Scholar]
  • Climate data for cities worldwide. Available from https://en.climate-data.org (last consult: 2023 /09/07). [Google Scholar]
  • Cornée J-J., Münch P, Achalhi M et al. 2016. The Messinian erosional surface and early Pliocene reflooding in the Alboran Sea: new insights from the Boudinar Basin, Morocco. Sediment Geol 333: 115–129. [Google Scholar]
  • Cornée J-J., Münch P, Melinte-Dobrinescu MC et al. 2014. The Early Pliocene reflooding in the Western Mediterranean: new insights from the rias of the Internal Rif, Morocco. CR Geosci 346: 90–98. [Google Scholar]
  • Delrieu B, Rouchy J-M., Foucault A. 1993. La surface d’érosion finimessinienne en Crète centrale (Grèce) et sur le pourtour méditerranéen: rapports avec la crise de salinité méditerranéenne. CR Acad Sci Paris 316(S2): 527–533. [Google Scholar]
  • Do Couto D, Gumiaux C, Jolivet L et al. 2015. 3D modelling of the Sorbas Basin (Spain): new constraints on the Messinian Erosional Surface morphology. Mar Pet Geol 66: 101–116. [Google Scholar]
  • Do Couto D, Popescu S-M, Suc J-P et al. 2014. Lago Mare and the Messinian Salinity Crisis: evidence from the Alboran Sea (S. Spain). Mar Pet Geol 52: 57–76. [Google Scholar]
  • Fauquette S, Guiot J, Suc J-P. 1998. A method for climatic reconstruction of the Mediterranean Pliocene using pollen data. Palaeogeogr Palaeoclimatol Palaeoecol 144: 183–201. [Google Scholar]
  • Fauquette S, Suc J-P, Bertini A et al. 2006. How much did climate force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region. Palaeogeogr Palaeoclimatol Palaeoecol 238: 281–301. [Google Scholar]
  • Favre E, Escarguel G, Suc J-P., Vidal G, Thévenod L. 2008. A contribution to deciphering the meaning of AP/NAP with respect to vegetation cover. Rev Palaeobot Palynol 148: 13–35. [Google Scholar]
  • Favre E, François L, Fluteau F, Cheddadi R, Thévenod L, Suc J-P. 2007. Messinian vegetation maps of the Mediterranean region using models and interpolated pollen data. Geobios 40: 433–443. [Google Scholar]
  • Feakins SJ, Warny S, Lee JE. 2012. Hydrologic cycling over Antarctica during the middle Miocene warming. Nat Geosci 5: 557–560. [Google Scholar]
  • Garcia-Castellanos D, Estrada F, Jiménez-Munt I et al. 2009. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 462: 778–781. [Google Scholar]
  • Gautier F, Clauzon G, Suc J-P., Cravatte J, Violanti D. 1994. Age et durée de la crise de salinité messinienne. CR Acad Sci Paris 318(S2): 1103–1109. [Google Scholar]
  • Gómez de la Peña L, Ranero CR, Gràcia E, Booth-Rea G. 2021. The evolution of the westernmost Mediterranean basins. Earth-Sci Rev 214: 103445. [Google Scholar]
  • Gorini C, Lofi J, Duvail C et al. 2005. The late Messinian salinity crisis and Late Miocene tectonism: interaction and consequences on the physiography and post-rift evolution of the Gulf of Lions margin. Mar Pet Geol 22: 695–712. [Google Scholar]
  • Govers R, Meijer P, Krijgsman W. 2009. Regional isotatic response to Messinian Salinity Crisis events. Tectonophysics 463: 109–129. [Google Scholar]
  • Hilgen FJ. 1991. Extention of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary. Earth Planet Sci Lett 107: 349–368. [Google Scholar]
  • Hilgen FJ, Lourens LJ, Van Dam JA. 2012. The Neogene period. In Gradstein FM, Ogg JG, Schmitz MD, Ogg GM, eds. The geologic time scale 2012. Amsterdam (The Netherlands): Elsevier, 2012, pp. 923–978. [Google Scholar]
  • Hodell DA, Benson RH, Kent DV, Boersma A, Rakic-El Bied K. 1994. Magnetostratigraphy, biostratigraphic, and stable isotope stratigraphy of an Upper Miocene drill core from Salé Briqueterie (northwestern Morocco): a high-resolution chronology for the Messinian stage. Paleoceanography 9: 835–855. [Google Scholar]
  • Iaccarino SM, Bertini A, Di Stefano A et al. 2008. The Trave section (Monte dei Corvi, Ancona, Central Italy): an integrated paleontological study of the Messinian deposits. Stratigraphy 5 (3-4): 281–306. [Google Scholar]
  • Jiménez-Moreno G, Head MJ, Harzauser M. 2006. Early and liddle Miocene dinoflagellate cyst stratigraphy of the central Paratethys-Central Europe. J Micropaleontol 25: 113–139. [Google Scholar]
  • Jiménez-Moreno G, Pérez-Asensio JN, Larrasoaña JC et al. 2013. Vegetation, sea-level, and climate changes during the Messinian salinity crisis. Geol Soc Am Bull 125: 432–444. [Google Scholar]
  • Jolivet L, Augier R, Robin C, Suc J-P., Rouchy JM. 2006. Lithospheric-scale geodynamic context of the Messinian salinity crisis. Sediment Geol 188-189: 9–33. [Google Scholar]
  • Krijgsman W, Capella W, Simon D et al. 2018. The Gibraltar Corridor: Watergate of the Messinian Salinity Crisis. Mar Geol 404: 238–246. [Google Scholar]
  • Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS. 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature 400: 652–655. [Google Scholar]
  • Krijgsman W, Fortuin AR, Hilgen FJ, Sierro FJ. 2001. Astrochronology for the Messinian Sorbas basin (SE Spain) and orbital (precessional) forcing for evaporite cyclicity. Sediment Geol 140: 41–60. [Google Scholar]
  • Ledesma S. 2000. Astrobiocronología y estratigrafía de alta resolución del Neógeno de la Cuenca Guadalquivir-Golfo de Cádiz. PhD thesis, University of Salamanca. Available from https://gredos.usal.es/bitstream/10366/141065/1/DGL_LedesmaMateo%202000.pdf (last consult: 2023/09/07). [Google Scholar]
  • Leroux E, Aslanian D, Rabineau M, Pellen R, Moulin M. 2018. The late Messinian event: a worldwide tectonic revolution. Terra Nova 30: 207–214. [Google Scholar]
  • Lofi J, Gorini C, Berné S et al. 2005. Erosional processes and paleo-environmental changes in the Western Gulf of Lions (SW France) during the Messinian Salinity Crisis. Mar Geol 217: 1–30. [Google Scholar]
  • Madof AS, Bertoni C, Lofi J. 2019. Discovery of vast fluvial deposits provides evidence for drawdown during the late Miocene Messinian salinity crisis. Geology 47: 171–174. [Google Scholar]
  • Magné J, Viguier C. 1974. Stratigraphie du Néogène marin “post-nappe” de l’Andalousie occidentale. Mémoires du Bureau de Recherches Géologiques et Minières 78 (2): 821–827. [Google Scholar]
  • Manzi V, Gennari R, Hilgen F et al. 2013. Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova 25: 315–322. [Google Scholar]
  • Manzi V, Roveri M, Gennari R et al. 2007. The deep-water counterpart of the Messinian Lower Evaporites in the Apennine foredeep: the Fannantello section (Northern Apennines, Italy). Palaeogeogr Palaeoclimatol Palaeoecol 251: 470–499. [Google Scholar]
  • Martínez del Olmo WM, Martín D. 2016a. El Neógeno de la Cuenca Guadalquivir-Cádiz (Sur de España). Revista de la Sociedad Geológica de España 29: 35–58. [Google Scholar]
  • Martínez del Olmo WM, Martín D. 2016b. The Messinian record of Spanish onshore and offshore data (Atlantic Ocean and Western Mediterranean Sea). Pet Geosci 22: 291–296. [Google Scholar]
  • Martínez del Olmo WM, Riaza Molina C, Torrescusa Villaverde S. 1996. Descenso eustático messiniense en une cuenca atlántica. El cañón submarine del Río Guadalquivir (SO de España). Geogaceta 20: 138–141. [Google Scholar]
  • Martínez del Olmo WM, Sánchez DM. 2019. Surcos erosivos, sistemas de turbiditas y episodios climáticos en el Tortoniense y Messiniense de la Cuenca Guadalquivir (SO de España). Revista de la Sociedad Geológica de España 32: 97–112. [Google Scholar]
  • Melinte-Dobrinescu MC, Suc J-P, Clauzon G et al. 2009. The Messinian Salinity Crisis in the Dardanelles region: chronostratigraphic constraints. Palaeogeogr Palaeoclimatol Palaeoecol 278: 24–39. [Google Scholar]
  • Miller KG, Mountain GS, Wright JD, Browning JV. 2011. 80-Million-year record of level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography 24 (2): 40–53. [Google Scholar]
  • Murphy LN, Kirk-Davidoff DB, Mahowald N, Otto-Bliesner BL. 2009. A numerical study of the climate response to lowered Mediterranean Sea level during the Messinian Salinity Crisis. Palaeogeogr Palaeoclimatol Palaeoecol 279: 41–59. [Google Scholar]
  • Néraudeau D. 2007. Les bioaccumulations néogènes (calcaires à algues, faluns) d’Europe occidentale et leurs relations avec la crise messinienne. CR Palevol 6: 59–71. [Google Scholar]
  • Néraudeau D, Goubert E, Lacour D, Rouchy JM. 2001. Changing biodiversity of Mediterranean irregular echinoids from the Messinian to Present-Day. Palaeogeogr Palaeoclimatol Palaeoecol 175: 43–60. [Google Scholar]
  • Néraudeau D, Roman J, Borghi E. 1999. Impact of the Messinian crisis on the Mediterranean echinoid fauna. In Candia Carnevali M, Bonasoro F, eds. Echinoderm Research. Rotterdam (The Netherlands): Balkema AA, pp. 355–360. [Google Scholar]
  • Ogg JG. 2012. Geomagnetic polarity time scale. In Gradstein FM, Ogg JG, Schmitz MD, Ogg GM eds. The Geologic Time Scale 2012. Amsterdam (The Netherlands ): Elsevier, pp. 85–113. [Google Scholar]
  • Ohneiser C, Florindo F, Stocchi P, Roberts AP, DeConto RM, Pollard D. 2015. Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding. Nat Commun 6: 8765. [Google Scholar]
  • Pellen R, Aslanian D, Rabineau M et al. 2019. The Messinian Ebro River incision. Glob Planet Change 181: 102988. [Google Scholar]
  • Pellen R, Aslanian D, Rabineau M et al. 2022. Structural and sedimentary origin of the Gargano-Pelagosa Gateway and impact on sedimentary evolution during the Messinian Salinity Crisis. Earth-Sci Rev 232: 104114. [Google Scholar]
  • Pellen R, Popescu S-M, Suc J-P et al. 2017. The Apennine foredeep (Italy) during the latest Messinian: Lago Mare reflects competing brackish and marine conditions based on calcareous nannofossils and dinoflagellate cysts. Geobios 50: 237–257. [Google Scholar]
  • Perconig E. 1974. Mise au point du stratotype de l’Andalousien. Mémoires du Bureau de Recherches Géologiques et Minières 78 (2): 664–673. [Google Scholar]
  • Perconig E, Martínez-Fresneda F. 1977. Sobre la heterocronia de la “Caliza Tosca” en el Mioceno superior de Andalucia occidental. Messinian Seminar n° 3, Malaga ( Spain ) UNESCO −IUGS IGCP Project n° 96 Messinian Correlation, 7 pp. [Google Scholar]
  • Pérez-Asensio JN. 2021. Quantitative palaeobathymetric reconstructions based on foraminiferal proxies: a case study from the Neogene of South-West Spain. Palaeontology 64: 475–488. [Google Scholar]
  • Pérez-Asensio JN, Aguirre J, Schmiedl G, Civis J. 2012. Messinian paleoenvironmental evolution in the lower Guadalquivir Basin (SW Spain) based on benthic foraminifera. Palaeogeogr Palaeoclimatol Palaeoecol 326-328: 135–151. [Google Scholar]
  • Popescu S-M., Cavazza W, Suc J-P., Melinte-Dobrinescu MC, Barhoun N, Gorini C. 2021. Pre-Zanclean end of the Messinian Salinity Crisis: new evidence from Central Mediterraneran reference sections. J Geol Soc 178 (3): jgs 2020–183. [Google Scholar]
  • Popescu SM, Dalibard M, Suc JP et al. 2015. Lago Mare episodes around the Messinian-Zanclean boundary in the deep southwestern Mediterranean. Mar Pet Geol 66: 55–70. [Google Scholar]
  • Pozzi J-P., Barthès V, Thibal J, Pocachard J, Lim M, Thomas T et al. 1993. Downhole magnetostratigraphy in sediments: comparison with the paleomagnetism of a core. J Geophys Res 98: 7939–7957. [Google Scholar]
  • Rico-García A. 2007. El Neógeno superior marino en Vejer de la Frontera (Cádiz, SO España) y su evolución regresiva. Geogaceta 42: 115–118. [Google Scholar]
  • Rubino J-L., Haddadi N, Camy-Peyret J et al. 2010. Messinian salinity crisis expression along North African margin. Society of Petroleum Engineers Conference, Le Caire, 129526–PP. [Google Scholar]
  • Ryan WBF, Carbotte SM, Coplan JO et al. 2009. Global multi-resolution topography synthesis. Geochem Geophys Geosystems 10: Q03014. [Google Scholar]
  • Ryan WBF, Cita MB. 1978. The nature and distribution of Messinian erosional surfaces-Indicators of a several-kilometer-deep Mediterranean in the Miocene. Mar Geol 27: 193–230. [Google Scholar]
  • Sierro FJ, Flores JA, Civis J, González Delgado JA, Francés G. 1993. Late Miocene globorotaliid event-stratigraphy and biogeography in the NE-Atlantic and Mediterranean. Mar Micropaleontol 21: 143–168. [Google Scholar]
  • Sierro FJ, González Delgado JA, Dabrio CJ, Flores JA, Civis J. 1990. The Neogene of the Guadalquivir Basin (SW Spain). Paleontologia i Evolucio, special issue 2: 209–250. [Google Scholar]
  • Sierro FJ, González Delgado JA, Dabrio CJ, Flores JA, Civis J. 1996. Late Neogene depositional sequences in the foreland basin of Guadalquivir (SW Spain). In Friend P, Dabrio CJ, eds. Tertiary Basins of Spain Cambridge (United Kingdom): Cambridge University press, pp. 339–345. [Google Scholar]
  • Sierro FJ, Ledesma S, Flores JA. 2008. Astrobiochronology of late Neogene deposits near the Strait of Gibraltar (SW Spain). Implications for the tectonic control of the Messinian Salinity Crisis. CIESM Workshop Monographs 33: 45–48. [Google Scholar]
  • Sternai P, Caricchi L, Garcia-Castellanos D, Jolivet L, Sheldrake TE, Castelltort S. 2017. Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis. Nat Geosci 10: 783–787. [Google Scholar]
  • Suc J-P., Bessais E. 1990. Pérennité d’un climat thermo-xérique en Sicile avant, pendant, après la crise de salinité messinienne. CR Acad Sci Paris 310(S2): 1701–1707. [Google Scholar]
  • Suc J-P., Gillet H, Çağatay MN et al. 2015a. The region of the Strandja Sill (North Turkey) and the Messinian events. Mar Pet Geol 66: 149–164. [Google Scholar]
  • Suc J-P., Gorini C, Rabineau M et al. 2019. Paleoenvironnements méditerranéens. 2, La Crise de salinité messinienne. Géochronique 151: 24–30. [Google Scholar]
  • Suc J-P., Popescu S-M., Do Couto D et al. 2015b. Marine gateways vs. fluvial stream within the Balkans from 6 to 5 Ma. Mar Pet Geol 66: 231–245. [Google Scholar]
  • Suc J-P., Violanti D, Londeix L et al. 1995. Evolution of the Messinian Mediterranean environments: the Tripoli Formation at Capodarso (Sicily, Italy). Rev Palaeobot Palynol 87: 51–79. [Google Scholar]
  • van den Berg BCJ, Sierro FJ, Hilgen FJ et al. 2018. Imprint of Messinian Salinity Crisis events on the Spanish Atlantic margin. Newsl Stratigr 51 (1): 93–115. [Google Scholar]
  • van der Laan E, Gaboardi S, Hilgen FJ, Lourens LJ. 2005. Regional climate and glacial control on high-resolution oxygen isotope records from Ain el Beida (latest Miocene, northwest Morocco): a cyclostratigraphic analysis in the depth and time domain. Paleoceanography 20: PA1001. [Google Scholar]
  • van der Laan E, Hilgen FJ, Lourens LJ, de Kaenel E, Gaboardi S, Iaccarino S. 2012. Astronomical forcing of Northwest African climate and glacial history during the late Messinian (6. 5- 5. 5 Ma). Palaeogeogr Palaeoclimatol Palaeoecol 313–314: 107-126. [Google Scholar]
  • van der Laan E, Snel E, de Kaenel E, Hilgen FJ, Krijgsman W. 2006. No major deglaciation across the Miocene-Pliocene boundary: integrated stratigraphy and astronomical tuning of the Loulja sections (Bou Regreg area, NW Morocco). Paleoceanography 21: PA3011. [Google Scholar]
  • van Dijk G, Maars J, Andreetto F, Hernández-Molina FJ, Rodríguez-Tovar J, Krijgsman W. 2023. A terminal Messinian flooding of the Mediterranean evidenced by contouritic deposits on Sicily. Sedimentology 70: 1195–1223. [Google Scholar]
  • Vera JA. 2000. El Terciario de la Cordillera Bética: estado actual de conocimientos. Revista de la Sociedad Geológica de España 13: 345–373. [Google Scholar]
  • Warny S. 1999. Marine and continental environment changes in the Gibraltar Arc area during the late Neogene (8–2. 7 Ma) linked to the evolution of global climate and to Atlantic Ocean-Mediterranean relationship. A palynological contribution to the Mediterranean Messinian Salinity Crisis through dinoflagellate cysts and pollen analysis. PhD thesis, Université Catholique de Louvain. [Google Scholar]
  • Warny SA, Wrenn JH. 1997. New species of dinoflagellate cysts from the Bou Regreg core: a Miocene-Pliocene boundary section on the Atlantic coast of Morocco. Rev Palaeobot Palynol 96: 281–304. [Google Scholar]
  • Warny SA, Bart PJ, Suc J-P. 2003. Timing and progression of climate, tectonic and glacioeustatic influences on the Messinian Salinity Crisis. Palaeogeogr Palaeoclimatol Palaeoecol 202: 59–66. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.