Open Access
Issue |
BSGF - Earth Sci. Bull.
Volume 194, 2023
|
|
---|---|---|
Article Number | 9 | |
Number of page(s) | 24 | |
DOI | https://doi.org/10.1051/bsgf/2023004 | |
Published online | 02 June 2023 |
- Abdillahi MM. 2014. Predicting output curves for deep wells in Asal Rift, Djibouti. UNU-GTP 22. [Google Scholar]
- Abrajano TA, Sturchio NC, Bohlke JK, Lyon GL, Poreda RJ, Stevens CM. 1988. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or shallow origin? Chemical Geology 71: 211–222. https://doi.org/10.1016/0009-2541(88)90116-7. [CrossRef] [Google Scholar]
- Ahmed MM. 2018. Well design for the Asal geothermal field: a case study for well Glc-2. UNU-GTP 20. [Google Scholar]
- Allard P, Tazieff H, Dajlevic D, 1979. Observations of seafloor spreading in Afar during the November 1978 fissure eruption. Nature 279: 30–33. https://doi.org/10.1038/279030a0. [CrossRef] [Google Scholar]
- Al Saade K, Ashy R, Al-Fassi F, Al Judaibi A. 2022. Microbial diversity and abundance in the hot springs on the west coast of Saudi Arabia as a potential source of novel industrial products. MBJ 7: 8–17. https://doi.org/10.21608/mb.2022.134787.1055. [CrossRef] [Google Scholar]
- Ansary MMS, Ahmadimoghadam A, Mirtadzadini SM. 2017. Distribution of cyanobacteria in two sirch hot springs with regards to the physicochemical traits of water. Banat’s Journal of Biotechnology 8: 83–89. https://doi.org/10.7904/2068-4738-VIII(15)-83. [CrossRef] [Google Scholar]
- Aquater. 1989. Djibouti geothermal exploration project, Republic of Djibouti: final report. Government of Djibouti, ISERST 159. [Google Scholar]
- Arif S, Willenberg C, Dreyer A, Nacke H, Hoppert M. 2021. Sasso Pisano geothermal field environment harbours diverse Ktedonobacteria representatives and illustrates habitat-specific adaptations. Microorganisms 9: 1402. https://doi.org/10.3390/microorganisms9071402. [CrossRef] [Google Scholar]
- Ármannsson H, Benjamínsson J, Jeffrey AWA. 1989. Gas changes in the Krafla geothermal system, Iceland. Chemical Geology 76: 175–196. https://doi.org/10.1016/0009-2541(89)90089-2. [CrossRef] [Google Scholar]
- Arrouvel C, Prinzhofer A. 2021. Genesis of natural hydrogen: new insights from thermodynamic simulations. International Journal of Hydrogen Energy 46: 18780–18794. https://doi.org/10.1016/j.ijhydene.2021.03.057. [CrossRef] [Google Scholar]
- Barberi F, Ferrara G, Santacroce R, Treuil M, Varet J. 1975a. A transitional basalt-pantellerite sequence of fractional crystallization, the Boina Centre (Afar Rift, Ethiopia). Journal of Petrology 16: 22–56. https://doi.org/10.1093/petrology/16.1.22. [CrossRef] [Google Scholar]
- Barberi F, Ferrara G, Santacroce R, Varet J. 1975b. Structural evolution of the Afar triple junction. 1: 38–54. https://doi.org/10.1086/627797. [Google Scholar]
- Barberi F, Tazieff H, Varet J. 1972. Volcanism in the afar depression – its tectonic and magmatic significance. Tectonophysics 15: 19–29. https://doi.org/10.1016/0040-1951(72)90046-7. [CrossRef] [Google Scholar]
- Barberi F, Varet J. 1977. Volcanism of Afar: small-scale plate tectonics implications. GSA Bulletin 88: 1251–1266. https://doi.org/10.1130/0016-7606(1977)88<1251:VOASPT>2.0.CO;2. [CrossRef] [Google Scholar]
- Barberi F, Varet J. 1970. The Erta Ale volcanic range (Danakil depression, northern Afar, Ethiopia). Bull Volcanol 34: 848–917. https://doi.org/10.1007/BF02596805. [CrossRef] [Google Scholar]
- Boreham CJ, Sohn JH, Cox N, Williams J, Hong Z, Kendrick MA. 2021. Hydrogen and hydrocarbons associated with the Neoarchean Frog’s Leg Gold Camp, Yilgarn Craton, Western Australia. Chemical Geology 575: 120098. https://doi.org/10.1016/j.chemgeo.2021.120098. [CrossRef] [Google Scholar]
- Brindley GW, Youell RF. 1953. Ferrous chamosite and ferric chamosite. Mineral Mag J Mineral Soc 30: 57–70. https://doi.org/10.1180/minmag.1953.030.220.07. [CrossRef] [Google Scholar]
- Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14’N, MAR). Chemical Geology 191: 345–359. https://doi.org/10.1016/S0009-2541(02)00134-1. [CrossRef] [Google Scholar]
- Charlou JL, Fouquet Y, Bougault H, Donval JP, Etoubleau J, Jean-Baptiste P, et al. 1998. Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20′N fracture zone and the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta 62: 2323–2333. https://doi.org/10.1016/S0016-7037(98)00138-0. [CrossRef] [Google Scholar]
- Combaudon V, Moretti I, Kleine BI, Stefánsson A. 2022. Hydrogen emissions from hydrothermal fields in Iceland and comparison with the Mid-Atlantic Ridge. International Journal of Hydrogen Energy 47: 10217–10227. https://doi.org/10.1016/j.ijhydene.2022.01.101. [CrossRef] [Google Scholar]
- Coveney J, Raymond, Goebel ED, Zeller EJ, Dreschhoff GAM, Angino EE. 1987. Serpentinization and the origin of hydrogen gas in Kansas. The American Association of Petroleum Geologists Bulletin 71: 39–48. https://doi.org/10.1306/94886D3F-1704-11D7-8645000102C1865D. [Google Scholar]
- D’Amore F, Giusti D, Abdallah A. 1997. Geochemistry of the high-salinity geothermal field of Asal, Republic of Djibouti, Africa. Geothermics 27: 197–210. https://doi.org/10.1016/S0375-6505(97)10009-8. [CrossRef] [Google Scholar]
- Delibrias G, Marinelli G, Stieltjes L. 1975. Spreading rate of the Asal Rift: a geological approach, Afar Depression of Ethiopia. [Google Scholar]
- Demange J, Stieltjes L, Varet J. 1980. L’éruption d’Asal de novembre 1978. Bulletin de la Société géologique de France S7-XXII: 837–843. https://doi.org/10.2113/gssgfbull.S7-XXII.6.837. [CrossRef] [Google Scholar]
- Deville E, Prinzhofer A. 2016. The origin of N2-H2-CH4-rich natural gas seepages in ophiolitic context: a major and noble gases study of fluid seepages in New Caledonia. Chemical Geology 440: 139–147 [CrossRef] [Google Scholar]
- Dodsworth JA, Gevorkian J, Despujos F, Cole JK, Murugapiran SK, Ming H, et al. 2014. Thermoflexus hugenholtzii gen. nov., sp. nov., a thermophilic, microaerophilic, filamentous bacterium representing a novel class in the Chloroflexi, Thermoflexia classis nov., and description of Thermoflexaceae fam. nov. and Thermoflexales ord. nov. International Journal of Systematic and Evolutionary Microbiology 64: 2119–2127. https://doi.org/10.1099/ijs.0.055855-0. [CrossRef] [Google Scholar]
- Doubre C, Manighetti I, Dorbath C, Dorbath L, Jacques E, Delmond JC. 2007. Crustal structure and magmato-tectonic processes in an active rift (Asal-Ghoubbet, Afar, East Africa): 1. Insights from a 5-month seismological experiment. J Geophys Res 112: B05405. https://doi.org/10.1029/2005JB003940. [Google Scholar]
- Doubre C, Peltzer G. 2007. Fluid-controlled faulting process in the Asal Rift, Djibouti, from 8 yr of radar interferometry observations. Geol 35: 69. https://doi.org/10.1130/G23022A.1. [CrossRef] [Google Scholar]
- Elmi D. 2005. Analysis of geothermal well test data from the Asal rift area, Republic of Djibouti. UNU-GTP Reports 2005, 21. [Google Scholar]
- Fournier M, Gasse F, Lépine J-C. 1984. Carte géologique de la République de Djibouti à 1:100 000. [Google Scholar]
- Franzson H, Zierenberg R, Schiffman P. 2008. Chemical transport in geothermal systems in Iceland. Journal of Volcanology and Geothermal Research 173: 217–229. https://doi.org/10.1016/j.jvolgeores.2008.01.027. [CrossRef] [Google Scholar]
- Gaucher EC. 2020. New perspectives in the industrial exploration for native hydrogen. Elements 16: 8–9. https://doi.org/10.2138/gselements.16.1.8. [CrossRef] [Google Scholar]
- Geymond U, Ramanaidou E, Lévy D, Ouaya A, Moretti I. 2022. Can weathering of banded iron formations generate natural hydrogen? Evidence from Australia, Brazil and South Africa. Minerals 12: 163. https://doi.org/10.3390/min12020163. [CrossRef] [Google Scholar]
- Giggenbach WF. 1996. Chemical composition of volcanic gases. In: Monitoring and mitigation of volcano hazards. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 221–256. https://doi.org/10.1007/978-3-642-80087-0_7. [CrossRef] [Google Scholar]
- Guajardo-Leiva S, Santos F, Salgado O, Regeard C, Quillet L, Díez B. 2021. Unveiling ecological and genetic novelty within lytic and lysogenic viral communities of hot spring phototrophic microbial mats. Microbiol Spectr 9: e00694-21. https://doi.org/10.1128/Spectrum.00694-21. [CrossRef] [Google Scholar]
- Guélard J, Beaumont V, Rouchon V, Guyot F, Pillot D, Jézéquel D, et al. 2017. Natural H2 in Kansas: deep or shallow origin? Geochemistry, Geophysics, Geosystems 18: 1841–1865. https://doi.org/10.1002/2016GC006544. [CrossRef] [Google Scholar]
- Haddad PG, Ranchou-Peyruse M, Guignard M, Mura J, Casteran F, Ronjon-Magand L, et al. 2022. Geological storage of hydrogen in deep aquifers – an experimental multidisciplinary study. Energy Environ Sci 15: 3400–3415. https://doi.org/10.1039/D2EE00765G. [CrossRef] [Google Scholar]
- Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, et al. 2008. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci U S A 105: 2134–2139. https://doi.org/10.1073/pnas.0708857105. [CrossRef] [Google Scholar]
- Havig JR, Hamilton TL. 2019. Productivity and community composition of low biomass/high silica precipitation hot springs: a possible window to earth’s early biosphere? Life 9: 64. https://doi.org/10.3390/life9030064. [CrossRef] [Google Scholar]
- Henley RW, Ellis AJ. 1983. Geothermal systems ancient and modern: a geochemical review. Earth-Science Reviews 19: 1–50. https://doi.org/10.1016/0012-8252(83)90075-2. [CrossRef] [Google Scholar]
- Holloway JR, O’Day PA. 2000. Production of CO2 and H2 by diking-eruptive events at Mid-Ocean Ridges: implications for abiotic organic synthesis and global geochemical cycling. International Geology Review 42: 673–683. https://doi.org/10.1080/00206810009465105. [CrossRef] [Google Scholar]
- Houssein DE, Axelsson G. 2010. Geothermal resources in the Asal Region, Republic of Djibouti: an update with emphasis on reservoir engineering studies. Geothermics 39: 220–227. https://doi.org/10.1016/j.geothermics.2010.06.006. [CrossRef] [Google Scholar]
- Inan K, Ozer A, Ibrahim Guler H, Osman Belduz A, Canakci S. 2016. Brevibacillus gelatini sp. nov., isolated from a hot spring. International Journal of Systematic and Evolutionary Microbiology 66: 712–718. https://doi.org/10.1099/ijsem.0.000780. [CrossRef] [Google Scholar]
- Kelley DS. 2005. A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307: 1428–1434. https://doi.org/10.1126/science.1102556. [NASA ADS] [CrossRef] [Google Scholar]
- Kelley DS, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA, Lilley MD, et al. 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412: 145–149. https://doi.org/10.1038/35084000. [CrossRef] [Google Scholar]
- Klein F, Tarnas JD, Bach W. 2020. Abiotic sources of molecular hydrogen on earth. Elements 16: 19–24. https://doi.org/10.2138/gselements.16.1.19. [CrossRef] [Google Scholar]
- Kularatne K, Sissmann O, Kohler E, Chardin M, Noirez S, Martinez I. 2018. Simultaneous ex-situ CO2 mineral sequestration and hydrogen production from olivine-bearing mine tailings. Applied Geochemistry 95: 195–205. https://doi.org/10.1016/j.apgeochem.2018.05.020. [CrossRef] [Google Scholar]
- Lapi T, Chatzimpiros P, Raineau L, Prinzhofer A. 2022. System approach to natural versus manufactured hydrogen: an interdisciplinary perspective on a new primary energy source. International Journal of Hydrogen Energy 47: 21701–21712. https://doi.org/10.1016/j.ijhydene.2022.05.039. [CrossRef] [Google Scholar]
- Larin N, Zgonnik V, Rodina S, Deville E, Prinzhofer A, Larin VN. 2015. Natural molecular hydrogen seepage associated with surficial, rounded depressions on the European Craton in Russia. Nat Resour Res 24: 369–383. https://doi.org/10.1007/s11053-014-9257-5. [CrossRef] [Google Scholar]
- Leila M, Lévy D, Battani A, Piccardi L, Šegvić B, Badurina L, et al. 2021. Origin of continuous hydrogen flux in gas manifestations at the Larderello geothermal field, Central Italy. Chemical Geology 585: 120564. https://doi.org/10.1016/j.chemgeo.2021.120564 [CrossRef] [Google Scholar]
- Leila M, Loiseau K, Moretti I. 2022. Controls on generation and accumulation of blended gases (CH4/H2/He) in the Neoproterozoic Amadeus Basin, Australia. Marine and Petroleum Geology 140: 105643. https://doi.org/10.1016/j.marpetgeo.2022.105643. [CrossRef] [Google Scholar]
- Lempart M, Derkowski A, Luberda-Durnaś K, Skiba M, Błachowski A. 2018. Dehydrogenation and dehydroxylation as drivers of the thermal decomposition of Fe-chlorites. American Mineralogist 103: 1837–1850. https://doi.org/10.2138/am-2018-6541. [CrossRef] [Google Scholar]
- López-López O, Cerdán M, González-Siso M. 2013. Hot spring metagenomics. Life 3: 308–320. https://doi.org/10.3390/life3020308. [CrossRef] [Google Scholar]
- Malvoisin B, Brunet F. 2023. Barren ground depressions, natural H2 and orogenic gold deposits: spatial link and geochemical model. Science of the Total Environment 856: 158969. https://doi.org/10.1016/j.scitotenv.2022.158969. [CrossRef] [Google Scholar]
- Marín-Paredes R, Tapia-Torres Y, Martínez-Romero E, Quesada M, Servín-Garcidueñas LE. 2021. Metagenome assembly and metagenome-assembled genome of “ Candidatus Aramenus sulfurataquae” from thermal sediments from the Los Azufres volcanic complex. Microbiol Resour Announc 10: e00379–21. https://doi.org/10.1128/MRA00379-21. [Google Scholar]
- Mlynarski M, Zlotnicki J. 2001. Fluid circulation in the active emerged Asal rift (east Africa, Djibouti) inferred from self-potential and Telluric-Telluric prospecting. Tectonophysics 339: 455–472. https://doi.org/10.1016/S0040-1951(01)00127-5. [CrossRef] [Google Scholar]
- Moretti I. 2019. H2: energy vector or source? Actualite Chimique 442: 15–16. [Google Scholar]
- Moretti I, Geymond U, Pasquet G, Aimar L, Rabaute A. 2022. Natural hydrogen emanations in Namibia: field acquisition and vegetation indexes from multispectral satellite image analysis. International Journal of Hydrogen Energy 47: 35588–35607. https://doi.org/10.1016/j.ijhydene.2022.08.135. [CrossRef] [Google Scholar]
- Moretti I, Prinzhofer A, Françolin J, Pacheco C, Rosanne M, Rupin F, et al. 2021. Long-term monitoring of natural hydrogen superficial emissions in a Brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions. International Journal of Hydrogen Energy 46: 3615–3628. https://doi.org/10.1016/j.ijhydene.2020.11.026. [CrossRef] [Google Scholar]
- Moretti I, Webber ME. 2021. Natural hydrogen: a geological curiosity or the primary energy source for a low-carbon future. Renewable Matter 34: 6. [Google Scholar]
- Neal C, Stanger G. 1983. Hydrogen generation from mantle source rocks in Oman. Earth and Planetary Science Letters 66: 315–320. https://doi.org/10.1016/0012-821X(83)90144-9. [CrossRef] [Google Scholar]
- Ningsih F, Yokota A, Sakai Y, Nanatani K, Yabe S, Oetari A, et al. 2019. Gandjariella thermophila gen. nov., sp. nov., a new member of the family Pseudonocardiaceae, isolated from forest soil in a geothermal area. International Journal of Systematic and Evolutionary Microbiology 69: 3080–3086. https://doi.org/10.1099/ijsem.0.003594. [CrossRef] [Google Scholar]
- Nonn C, Leroy S, Khanbari K, Ahmed A. 2017. Tectono-sedimentary evolution of the eastern Gulf of Aden conjugate passive margins: narrowness and asymmetry in oblique rifting context. Tectonophysics 721: 322–348. https://doi.org/10.1016/j.tecto.2017.09.024. [CrossRef] [Google Scholar]
- Nonn C, Leroy S, Lescanne M, Castilla R. 2019. Central Gulf of Aden conjugate margins (Yemen-Somalia): Tectono-sedimentary and magmatism evolution in hybrid-type margins. Marine and Petroleum Geology 105: 100–123. https://doi.org/10.1016/j.marpetgeo.2018.11.053. [CrossRef] [Google Scholar]
- Oskarsson N. 1984. Monitoring of fumarole discharge during the 1975–1982 rifting in Krafla volcanic center, north Iceland. Journal of Volcanology and Geothermal Research 22: 97–121. https://doi.org/10.1016/0377-0273(84)90036-2. [CrossRef] [Google Scholar]
- Panosyan H, Margaryan A, Birkeland N-K. 2020. Geothermal springs in Armenia and Nagorno-Karabakh: potential sources of hydrolase-producing thermophilic bacilli. Extremophiles 24: 519–536. https://doi.org/10.1007/s00792-020-01173-1. [CrossRef] [Google Scholar]
- Pasquet G. 2023. Évolution des gaz associés à l’ouverture des rifts, hydrogène naturel et autres. Cas du rift est-africain (PhD thesis). Université de Pau et des Pays de l’Adour. [Google Scholar]
- Pasquet G, Combaudon V, Moretti I. 2022. Génération d’hydrogène par les jeunes croÛtes océaniques : les cas de l’Islande et de la zone de l’Afar. Hydrogène et gaz rares Géologues: 74–78. [Google Scholar]
- Pasquet G, Houssein Hassan R, Sissmann O, Varet J, Moretti I. 2021. An attempt to study natural H2 resources across an Oceanic Ridge penetrating a continent: the Asal-Ghoubbet Rift (Republic of Djibouti). Geosciences 12: 16. https://doi.org/10.3390/geosciences12010016. [CrossRef] [Google Scholar]
- Prinzhofer A, Rigollet C. 2022. Natural hydrogen: A new source of carbon-free and renewable energy that can compete with hydrocarbons. First Break 40(10): 78–84. https://doi.org/10.3997/1365-2397.fb2022087. [CrossRef] [Google Scholar]
- Prinzhofer A, Moretti I, Françolin J, Pacheco C, D’Agostino A, Werly J, et al. 2019. Natural hydrogen continuous emission from sedimentary basins: the example of a Brazilian H2-emitting structure. International Journal of Hydrogen Energy 44: 5676–5685. https://doi.org/10.1016/j.ijhydene.2019.01.119. [CrossRef] [Google Scholar]
- Prinzhofer A, Tahara Cissé CS, Diallo AB. 2018. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). International Journal of Hydrogen Energy 43: 19315–19326. https://doi.org/10.1016/j.ijhydene.2018.08.193. [CrossRef] [Google Scholar]
- Reed MH, Palandri J. 2008. Hydrogen Produced by reduction of H2O in rock reaction: peridotite vs basalt. In: AIP Conference Proceedings. Presented at the 2007, AIP, Sendai (Japan), pp. 100–104. https://doi.org/10.1063/1.2896951. [Google Scholar]
- Rigollet C, Prinzhofer A. 2022. Natural hydrogen: a new source of carbon-free and renewable energy that can compete with hydrocarbons. First Break 40: 78–84. https://doi.org/10.3997/1365-2397.fb2022087. [CrossRef] [Google Scholar]
- Sano Y, Urabe A, Wakita H, Wushiki H. 1993. Origin of hydrogen-nitrogen gas seeps, Oman. Applied Geochemistry 8: 1–8. https://doi.org/10.1016/0883-2927(93)90053-J. [CrossRef] [Google Scholar]
- Schumacher D. 1996. Hydrocarbon-induced alteration of soils and sediments. In: Schumacher D, Abrams MA, eds. Hydrocarbon migration and its near-surface expression. American Association of Petroleum Geologists, pp. 0. https://doi.org/10.1306/M66606C6. [CrossRef] [Google Scholar]
- Sissmann O, Brunet F, Martinez I, Guyot F, Verlaguet A, Pinquier Y, et al. 2014. Enhanced olivine carbonation within a basalt as compared to single-phase experiments: reevaluating the potential of CO2 mineral sequestration. Environ Sci Technol 48: 5512–5519. https://doi.org/10.1021/es405508a. [CrossRef] [Google Scholar]
- Smith NJP, Shepherd TJ, Styles MT, Williams GM. 2005. Hydrogen exploration: a review of global hydrogen accumulations and implications for prospective areas in NW Europe. Petroleum Geology Conference Series 6: 349–358. https://doi.org/10.1144/0060349. [CrossRef] [Google Scholar]
- Smrhova T, Jani K, Pajer P, Kapinusova G, Vylita T, Suman J, et al. 2022. Prokaryotes of renowned Karlovy Vary (Carlsbad) thermal springs: phylogenetic and cultivation analysis. Environmental Microbiome 17: 48. https://doi.org/10.1186/s40793-022-00440-2. [CrossRef] [Google Scholar]
- Steudel A, Kleeberg R, Koch CB, Friedrich F, Emmerich K. 2016. Thermal behavior of chlorites of the clinochlore-chamosite solid solution series: oxidation of structural iron, hydrogen release and dehydroxylation. Applied Clay Science 132–133: 626–634. https://doi.org/10.1016/j.clay.2016.08.013. [CrossRef] [Google Scholar]
- Stevens TO, McKinley JP. 2000. Abiotic controls on H2 production from basalt-water reactions and implications for aquifer biogeochemistry. Environ Sci Technol 34: 826–831. https://doi.org/10.1021/es990583g. [CrossRef] [Google Scholar]
- Stevens TO, McKinley JP. 1995. Lithoautotrophic microbia, ecosystems in deep basalt aquifers. Science 270: 450–454. https://doi.org/10.1126/science.270.5235.450. [CrossRef] [Google Scholar]
- Stieltjes L, Joron JL, Treuil M, Varet J. 1976. Le rift d’Asal, segment de dorsale émerge ; discussion pétrologique et géochimique. Bulletin de la Société géologique de France S7-XVIII: 851–862. https://doi.org/10.2113/gssgfbull.S7-XVIII.4.851. [CrossRef] [Google Scholar]
- Stimac J, Nordquist G, Suminar A, Sirad-Azwar L. 2008. An overview of the Awibengkok geothermal system, Indonesia. Geothermics 37: 300–331. https://doi.org/10.1016/j.geothermics.2008.04.004. [CrossRef] [Google Scholar]
- Sun H, Nelson M, Chen F, Husch J. 2009. Soil mineral structural water loss during loss on ignition analyses. Can J Soil Sci 89: 603–610. https://doi.org/10.4141/CJSS09007. [CrossRef] [Google Scholar]
- Truche L, McCollom TM, Martinez I. 2020. Hydrogen and abiotic hydrocarbons: molecules that change the world. Elements 16: 13–18. https://doi.org/10.2138/gselements.16.1.13. [CrossRef] [Google Scholar]
- Turk J, Haizlip J, Mohamed J, Mann M, Letvin A, Moussa N. 2019. A comparison of alteration mineralogy and measured temperatures from three exploration wells in the Fiale Caldera, Djibouti. GRC Transactions 43: 11. [Google Scholar]
- Vacquand C, Deville E, Beaumont V, Guyot F, Sissmann O, Pillot D, et al. 2018. Reduced gas seepages in ophiolitic complexes: evidences for multiple origins of the H2-CH4-N2 gas mixtures. Geochimica et Cosmochimica Acta 223: 437–461. https://doi.org/10.1016/j.gca.2017.12.018. [CrossRef] [Google Scholar]
- Varet J. 2014. Asal-Fialé geothermal field (Djibouti republic): a new interpretation for a geothermal reservoir in an actively spreading rift segment. In: Proceedings 5th African Rift geothermal Conference 9. [Google Scholar]
- Varet J. 1978. Carte géologique de l’Afar central et méridional (Éthiopie et T.F.A.I.). [Google Scholar]
- Wang Jiajun, Wang Jianan, Feng L, Lin T. 2015. Fluid mixing in droplet-based microfluidics with a serpentine microchannel. RSC Adv 5: 104138–104144. https://doi.org/10.1039/C5RA21181F. [CrossRef] [Google Scholar]
- Wetzel LR, Shock EL. 2000. Distinguishing ultramafic-from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions. J Geophys Res 105: 8319–8340. https://doi.org/10.1029/1999JB900382. [CrossRef] [Google Scholar]
- Worman SL, Pratson LF, Karson JA, Schlesinger WH. 2020. Abiotic hydrogen (H2) sources and sinks near the Mid-Ocean Ridge (MOR) with implications for the subseafloor biosphere. Proc Natl Acad Sci U S A 117: 13283–13293. https://doi.org/10.1073/pnas.2002619117. [CrossRef] [Google Scholar]
- Zan L, Gianelli G, Troisi C, Haga AO. 1990. Geothermal exploration in the Republic of Djibouti: thermal and geological data of the Hanle and Asal areas. Geothermics 19: 561–582. https://doi.org/10.1016/0375-6505(90)90005-V. [CrossRef] [Google Scholar]
- Zgonnik V. 2020. The occurrence and geoscience of natural hydrogen: a comprehensive review. Earth-Science Reviews 203: 103140. https://doi.org/10.1016/j.earscirev.2020.103140. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.