Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 195, 2024
Article Number 21
Number of page(s) 15
DOI https://doi.org/10.1051/bsgf/2024017
Published online 15 October 2024
  • Arzi AA. 1978. Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44: 173–184. [CrossRef] [Google Scholar]
  • Avigad D. 1998. High-pressure metamorphism and cooling on SE Naxos (Cyclades, Greece). Eur J Mineral 10: 1309–1320. [CrossRef] [Google Scholar]
  • Avigad D, Ziv A, Garfunkel Z. 2001. Ductile and brittle shortening, extension-parallel folds and maintenance of crustal thickness in the central Aegean (Cyclades, Greece). Tectonics 20: 277–287. [CrossRef] [Google Scholar]
  • Babeyko AY, Sobolev S, Trumbull R, Oncken O, Lavier L. 2002. Numerical models of crustal scale convection and partial melting beneath the Altiplano-Puna plateau. Earth Planet Sci Lett 199: 373–388. [CrossRef] [Google Scholar]
  • Bousquet R, Goffé, B., Henry P, Le Pichon X, Chopin C. 1997. Kinematic, thermal and petrological model of the Central Alps: lepontine metamorphism in the upper crust and eclogitisation of the lower crust. Tectonophysics 273: 105–127. [CrossRef] [Google Scholar]
  • Brichau S, Ring U, Ketcham RA, Carter A, Stockli D, Brunel M. 2006. Constraining the long-term evolution of the slip rate for a major extensional fault system in the central Aegean, Greece, using thermochronology. Earth Planet Sci Lett 241: 293–306. [CrossRef] [Google Scholar]
  • Brown M. 2001. Orogeny, migmatites and leucogranites: a review. J Earth Syst Sci 110: 313–336. [CrossRef] [Google Scholar]
  • Brown M, Averkin Y.A, McLellan E.L, Sawyer E.W. 1995. Melt segregation in migmatites. J. Geophys. Res. Solid Earth 100, 15655–15679. https://doi.org/10.1029/95JB00517 [CrossRef] [Google Scholar]
  • Brun J-P. 1983. L’origine des domes gneissiques; modèles et tests. Bull. Société Géologique Fr. S7-XXV: 219–228. [Google Scholar]
  • Brun J-P., Gapais D, Le Theoff B. 1981. The mantled gneiss domes of Kuopio (Finland): interfering diapirs. Tectonophysics 74: 283–304. [CrossRef] [Google Scholar]
  • Brun J-P., Sokoutis D, Van Den Driessche F J. 1994. Analogue modeling of detachment fault systems and core complexes. Geology 22: 319–322. [CrossRef] [Google Scholar]
  • Buck WR. 1991. Modes of continental lithospheric extension. J Geophys Res Solid Earth 96: 20161–20178. [CrossRef] [Google Scholar]
  • Buick IS. 1991. The late Alpine evolution of an extensional shear zone, Naxos, Greece. J Geol Soc 148: 93–103. [CrossRef] [Google Scholar]
  • Buick IS, Holland TJB. 1989. The P-T path associated with crustal extension, Naxos, Cyclades, Greece. Geol Soc Lond Spec Publ 43: 365–369. [CrossRef] [Google Scholar]
  • Burg J-P., Kaus BJP, Podladchikov YY. 2004. Dome structures in collision orogens: Mechanical investigation of the gravity/compression interplay, in: Gneiss Domes in Orogeny. Geological Society of America. https://doi.org/10.1130/0-8137-2380-9.47 [Google Scholar]
  • Burg J-P, Podladchikov Y. 2000. From buckling to asymmetric folding of the continental lithosphere: numerical modelling and application to the Himalayan syntaxes. Geol Soc Lond Spec Publ 170: 219–236. [CrossRef] [Google Scholar]
  • Carslaw HS, Jaeger JC. 1959. Conduction of heat in solids, 2nd ed. Oxford: Clarendon Press. [Google Scholar]
  • Chen Y, Morgan WJ. 1990. A nonlinear rheology model for mid-ocean ridge axis topography. J Geophys Res 95: 17583. [CrossRef] [Google Scholar]
  • Collins WJ. 1989. Polydiapirism of the Archean Mount Edgar Batholith, Pilbara Block, Western Australia. Precambrian Res 43: 41–62. [CrossRef] [Google Scholar]
  • Collins WJ, Murphy JB, Blereau E, Huang H-Q. 2021. Water availability controls crustal melting temperatures. Lithos 402-403: 106351. [CrossRef] [Google Scholar]
  • Coney PJ, Harms TA. 1984. Cordilleran metamorphic core complexes: Cenozoic extensional relics of Mesozoic compression. Geology 12: 550. [CrossRef] [Google Scholar]
  • Cruden AR, Koyi H, Schmeling H. 1995. Diapiric basal entrainment of mafic into felsic magma. Earth Planet Sci Lett 131: 321–340. [CrossRef] [Google Scholar]
  • Davis GH. 1983. Shear-zone model for the origin of metamorphic core complexes. Geology 11: 342. [CrossRef] [Google Scholar]
  • Dercourt J, Zonenshain L.P, Ricou L.-E, Kazmin V.G, Le Pichon X, Knipper A.L, Grandjacquet C, Sbortshikov I.M, Geyssant J, Lepvrier C, Pechersky D.H, Boulin J, Sibuet J.-C, Savostin L.A, Sorokhtin O, Westphal M, Bazhenov M.L, Lauer J.P, Biju-Duval B. 1986. Geological evolution of the tethys belt from the atlantic to the pamirs since the LIAS. Tectonophysics 123, 241–315. https://doi.org/10.1016/0040-1951(86)90199-X [CrossRef] [Google Scholar]
  • Dewey J.F, Şengör A.M.C. 1979. Aegean and surrounding regions: Complex multiplate and continuum tectonics in a convergent zone. Geol. Soc. Am. Bull. 90, 84. https://doi.org/10.1130/0016-7606(1979)90<84:AASRCM>2.0.CO;2 [Google Scholar]
  • Duchêne S, Aïssa R, Vanderhaeghe O. 2006. Pressure-Temperature-time Evolution of Metamorphic Rocks from Naxos (Cyclades, Greece): constraints from Thermobarometry and Rb/Sr dating. Geodin Acta 19: 301–321. [CrossRef] [Google Scholar]
  • Duretz T, Räss L, Podladchikov Y, Schmalholz S. 2019. Resolving thermomechanical coupling in two and three dimensions: spontaneous strain localization owing to shear heating. Geophys J Int 216: 365–379. [CrossRef] [Google Scholar]
  • Edmonds M, Cashman KV, Holness M, Jackson M. 2019. Architecture and dynamics of magma reservoirs. Philos Trans R Soc Math Phys Eng Sci 377. 20180298. [Google Scholar]
  • England PC, Thompson AB. 1984. Pressure—temperature—time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. J Petrol 25: 894–928. [CrossRef] [Google Scholar]
  • Eskola PE. 1948. The problem of mantled gneiss domes. Q J Geol Soc 104: 461–476. [CrossRef] [Google Scholar]
  • Fytikas M, Innocenti F, Manetti P, Peccerillo A, Mazzuoli R, Villari L. 1984. Tertiary to quaternary evolution of volcanism in the Aegean region. Geol Soc Lond Spec Publ 17: 687–699. [CrossRef] [Google Scholar]
  • Ganne J, Gerbault M, Block S. 2014. Thermo-mechanical modeling of lower crust exhumation—Constraints from the metamorphic record of the Palaeoproterozoic Eburnean orogeny, West African Craton. Precambrian Res 243: 88–109. [CrossRef] [Google Scholar]
  • Ganzhorn AC, Trap P, Arbaret L, Champallier R, Fauconnier J, Labrousse L, Prouteau G. 2016. Impact of gneissic layering and localized incipient melting upon melt flow during experimental deformation of migmatites. J Struct Geol 85: 68–84. [CrossRef] [Google Scholar]
  • Gardien V, Thompson AB, Grujic D, Ulmer P. 1995. Experimental melting of biotite+ plagioclase+ quartz±muscovite assemblages and implications for crustal melting. J Geophys Res Solid Earth 100: 15581–15591. [CrossRef] [Google Scholar]
  • Gautier P, Brun J-P., Jolivet L. 1993. Structure and kinematics of Upper Cenozoic extensional detachment on Naxos and Paros (Cyclades Islands, Greece). Tectonics 12: 1180–1194. [CrossRef] [Google Scholar]
  • Gautier P, Brun, J-P., Moriceau R, Sokoutis D, Martinod J, Jolivet L. 1999. Timing, kinematics and cause of Aegean extension: a scenario based on a comparison with simple analogue experiments. Tectonophysics 315: 31–72. [CrossRef] [Google Scholar]
  • Hacker BR, Abers GA, Peacock SM. 2003. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents: subduction zone mineralogy and physical properties. J Geophys Res Solid Earth 108. https://doi.org/10.1029/2001JB001127 [Google Scholar]
  • Harada S, Mitsui T, Sato K. 2012. Particle-like and fluid-like settling of a stratified suspension. Eur Phys J E 35. https://doi.org/10.1140/epje/i2012-12001-6 [CrossRef] [Google Scholar]
  • Jansen JB. 1973. Geological Map of Naxos. [Google Scholar]
  • Jansen JBH, Schuiling RD. 1976. Metamorphism on Naxos; petrology and geothermal gradients. Am J Sci 276: 1225–1253. [CrossRef] [Google Scholar]
  • Jolivet L, Brun J-P. 2010. Cenozoic geodynamic evolution of the Aegean. Int J Earth Sci 99: 109–138. [CrossRef] [Google Scholar]
  • Jolivet L, Arbaret L, Le Pourhiet L, Cheval-Garabédian F, Roche V, Rabillard A, Labrousse L. 2021. Interactions of plutons and detachments: a comparison of Aegean and Tyrrhenian granitoids. Solid Earth 12: 1357–1388. [CrossRef] [Google Scholar]
  • Keay S, Lister G, Buick I . 2001. The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece. Tectonophysics 342: 275–312. [CrossRef] [Google Scholar]
  • Keller AA, Blunt MJ, Roberts PV. 2000. Behavior of nonaqueous phase liquids in fractured porous media under two‐phase flow conditions. Transp Porous Media 38: 189–203. [CrossRef] [Google Scholar]
  • Kruckenberg SC, Ferré EC, Teyssier C, Vanderhaeghe O, Whitney DL, Seaton NCA, Skord JA. 2010. Viscoplastic flow in migmatites deduced from fabric anisotropy: an example from the Naxos dome, Greece. J Geophys Res 115. https://doi.org/10.1029/2009JB007012 [CrossRef] [Google Scholar]
  • Kruckenberg SC, Vanderhaeghe O, Ferré EC, Teyssier C, Whitney DL. 2011. Flow of partially molten crust and the internal dynamics of a migmatite dome, Naxos, Greece: internal dynamics of the Naxos dome. Tectonics 30: n/a-n/a. [CrossRef] [Google Scholar]
  • Lamont TN, Searle MP, Waters DJ, Roberts NMW, Palin RM, Smye A, Dyck B, Gopon P, Weller OM, St-Onge MR. 2020. Compressional origin of the Naxos metamorphic core complex, Greece: structure, petrography, and thermobarometry. GSA Bull 132: 149–197. [CrossRef] [Google Scholar]
  • Lamont TN, Smye AJ, Roberts, N.M.W., Searle MP, Waters DJ, White RW. 2023. Constraints on the thermal evolution of metamorphic core complexes from the timing of high-pressure metamorphism on Naxos, Greece. GSA Bull. https://doi.org/10.1130/B36332.1 [Google Scholar]
  • Le Pourhiet L, Huet B, May DA, Labrousse L, Jolivet L. 2012. Kinematic interpretation of the 3D shapes of metamorphic core complexes. Geochem Geophys Geosyst 13. https://doi.org/10.1029/2012GC004271. [Google Scholar]
  • Linnros H, Hansman R, Ring U. 2019. The 3D geometry of the Naxos detachment fault and the three-dimensional tectonic architecture of the Naxos metamorphic core complex, Aegean Sea, Greece. Int J Earth Sci 108: 287–300. [CrossRef] [Google Scholar]
  • Lister GS, Banga G, Feenstra A. 1984. Metamorphic core complexes of Cordilleran type in the Cyclades, Aegean Sea, Greece. Geology 12: 221. [CrossRef] [Google Scholar]
  • Louis-Napoléon A, Gerbault M, Bonometti T, Thieulot C, Martin R, Vanderhaeghe O. 2020. 3-D numerical modelling of crustal polydiapirs with volume-of-fluid methods. Geophys J Int 222: 474–506. [CrossRef] [Google Scholar]
  • Louis-Napoléon A, Bonometti T, Gerbault M, Martin R, Vanderhaeghe O. 2022. Models of convection and segregation in heterogeneous partially molten crustal roots with a VOF method − I: flow regimes, Geophys J Int 229: 2047–2080. [CrossRef] [Google Scholar]
  • Louis-Napoléon A, Gerbault M, Bonometti T, Vanderhaeghe O, Martin R, Maury N. 2024. Convection and segregation in heterogeneous orogenic crust with a VOF method − II: how to form migmatite domes. Geophys J Int 236: 207–232. [Google Scholar]
  • Martin D, Nokes R. 1989. A fluid-dynamical study of crystal settling in convecting magmas. J Petrol 30: 1471–1500. [CrossRef] [Google Scholar]
  • Martin L, Duchêne S, Deloule E, Vanderhaeghe O. 2006. The isotopic composition of zircon and garnet: a record of the metamorphic history of Naxos, Greece. Lithos 87: 174–192. [CrossRef] [Google Scholar]
  • Martin LAJ, Duchêne S, Deloule E, Vanderhaeghe O. 2008. Mobility of trace elements and oxygen in zircon during metamorphism: consequences for geochemical tracing. Earth Planet Sci Lett 267: 161–174. [CrossRef] [Google Scholar]
  • Myers JS, Watkins KP. 1985. Origin of granite-greenstone patterns, Yilgarn Block, Western Australia. Geology 13: 778. [CrossRef] [Google Scholar]
  • Palin RM, White RW, Green ECR. 2016. Partial melting of metabasic rocks and the generation of tonalitic-trondhjemitic-granodioritic (TTG) crust in the Archaean: constraints from phase equilibrium modelling. Precambrian Res 287: 73–90. [CrossRef] [Google Scholar]
  • Palin RM, White RW, Green ECR, Diener JFA, Powell R, Holland TJB. 2016. High-grade metamorphism and partial melting of basic and intermediate rocks. J Metamorph Geol 34: 871–892. [CrossRef] [Google Scholar]
  • Patino Douce AE, Johnston AD. 1991. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107: 202–218. [CrossRef] [Google Scholar]
  • Peillod A, Majka J, Ring U, Drüppel K, Patten C, Karlsson A, Włodek A, Tehler E. 2021a. Differences in decompression of a high-pressure unit: A case study from the Cycladic Blueschist Unit on Naxos Island, Greece. Lithos 386-387: 106043. [CrossRef] [Google Scholar]
  • Peillod A, Ring U, Glodny J, Skelton A. 2017. An Eocene/Oligocene blueschist-/greenschist facies P-T loop from the Cycladic Blueschist Unit on Naxos Island, Greece: deformation-related re-equilibration vs. thermal relaxation. J Metamorph Geol 35: 805–830. [CrossRef] [Google Scholar]
  • Peillod A, Tehler E, Ring U. 2021b. Quo vadis Zeus: is there a Zas shear zone on Naxos Island, Aegean Sea, Greece? A review of metamorphic history and new kinematic data. J Geol Soc 178. https://doi.org/10.1144/jgs2020-217 [CrossRef] [Google Scholar]
  • Petford N, Cruden AR, McCaffrey KJW, Vigneresse J-L. 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408: 669–673. [CrossRef] [Google Scholar]
  • Porada H, Berhorst V. 2000. Towards a new understanding of the Neoproterozoic-early palæozoic Lufilian and northern Zambezi belts in Zambia and the Democratic Republic of Congo. J Afr Earth Sci 30: 727–771. [CrossRef] [Google Scholar]
  • Rabillard A, Jolivet L, Arbaret L, Bessière E, Laurent V, Menant A, Augier R, Beaudoin A. 2018. Synextensional granitoids and detachment systems within cycladic metamorphic core complexes (Aegean Sea, Greece): toward a regional tectonomagmatic model. Tectonics 37. https://doi.org/10.1029/2017TC004697 [Google Scholar]
  • Ramberg H. 1981. The role of gravity in orogenic belts. Geol Soc Lond Spec Publ 9: 125–140. [CrossRef] [Google Scholar]
  • Ranalli G. 1995. Rheology of the Earth, Springer. ed. [Google Scholar]
  • Rapp RP, Watson EB, Miller CF. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res. 51: 1–25. [Google Scholar]
  • Räss L, Duretz T, Podladchikov YY. 2019. Resolving hydromechanical coupling in two and three dimensions: spontaneous channelling of porous fluids owing to decompaction weakening. Geophys J Int 218: 1591–1616. [CrossRef] [Google Scholar]
  • Rey PF, Teyssier C, Kruckenberg SC, Whitney DL. 2011. Viscous collision in channel explains double domes in metamorphic core complexes. Geology 39: 387–390. [Google Scholar]
  • Riel N, Mercier J, Weinberg R. 2016. Convection in a partially molten metasedimentary crust? Insights from the El Oro complex (Ecuador). Geology 44: 31–34. [CrossRef] [Google Scholar]
  • Ring U, Glodny J, Will T, Thomson S. 2010. The hellenic subduction system: high-pressure metamorphism, exhumation, normal faulting, and large-scale extension. Annu Rev Earth Planet Sci 38: 45–76. [CrossRef] [Google Scholar]
  • Roscoe R. 1952. The viscosity of suspensions of rigid spheres. Br J Appl Phys 3: 267–269. [CrossRef] [Google Scholar]
  • Rosenberg CL. 2001. Deformation of partially molten granite: a review and comparison of experimental and natural case studies. Int J Earth Sci 90: 60–76. [CrossRef] [Google Scholar]
  • Rosenberg CL, Handy MR. 2005. Experimental deformation of partially melted granite revisited: implications for the continental crust. J Metamorph Geol 23: 19–28. [CrossRef] [Google Scholar]
  • Rutter EH, Brodie KH, Irving DH. 2006. Flow of synthetic, wet, partially molten “granite” under undrained conditions: an experimental study: FLOW OF PARTIALLY MOLTEN “GRANITE.” J Geophys Res Solid Earth 111: n/a-n/a. https://doi.org/10.1029/2005JB004257 [CrossRef] [Google Scholar]
  • Sawyer EW. 1994. Melt segregation in the continental crust. Geology 22: 1019–1022. [CrossRef] [Google Scholar]
  • Schenker FL, Gerya T, Burg J-P. 2012. Bimodal behavior of extended continental lithosphere: Modeling insight and application to thermal history of migmatitic core complexes. Tectonophysics 579: 88–103. [CrossRef] [Google Scholar]
  • Schmeling H, Marquart G, Weinberg R, Kumaravel P. 2023. Dynamic two‐phase flow modeling of melt segregation in continental crust: batholith emplacement versus crustal convection, with implications for magmatism in thickened plateaus. Geochem Geophys Geosyst 24. https://doi.org/10.1029/2023GC010860 [CrossRef] [Google Scholar]
  • Schmeling H, Marquart G, Weinberg R, Wallner H. 2019. Modelling melting and melt segregation by two-phase flow: new insights into the dynamics of magmatic systems in the continental crust. Geophys J Int 217: 422–450. [CrossRef] [Google Scholar]
  • Seward D, Vanderhaeghe O, Siebenaller L, Thomson S, Hibsch C, Zingg A, Holzner P, Ring U, Duchêne S. 2009. Cenozoic tectonic evolution of Naxos Island through a multi-faceted approach of fission-track analysis. Geol Soc Lond Spec Publ 321: 179–196. [CrossRef] [Google Scholar]
  • Spakman W, Wortel, M.J.R., Vlaar NJ. 1988. The Hellenic Subduction Zone: a tomographic image and its geodynamic implications. Geophys Res Lett 15: 60–63. [CrossRef] [Google Scholar]
  • Talbot CJ. 1979. Infrastructural migmatitic upwelling in East Greenland interpreted as thermal convective structures. Precambrian Res 8: 77–93. [CrossRef] [Google Scholar]
  • Tassara A. 2006. Factors controlling the crustal density structure underneath active continental margins with implications for their evolution: CONTINENTAL MARGIN CRUSTAL DENSITY. Geochem Geophys Geosyst 7: n/a-n/a. [CrossRef] [Google Scholar]
  • Thompson AB, Connolly JA. 1995. Melting of the continental crust: some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. J Geophys Res Solid Earth 100: 15565–15579. [CrossRef] [Google Scholar]
  • Tirel C, Gueydan F, Tiberi C, Brun J-P. 2004. Aegean crustal thickness inferred from gravity inversion. Geodynamical implications. Earth Planet Sci Lett 228: 267–280. [CrossRef] [Google Scholar]
  • Turcotte D, Schubert G. 2014. Geodynamics:, 3rd ed. Cambridge University Press. [CrossRef] [Google Scholar]
  • Ueda K, Gerya TV, Burg J-P. 2012. Delamination in collisional orogens: Thermomechanical modeling: DELAMINATION IN COLLISIONAL OROGENS. J Geophys Res Solid Earth 117: n/a–n/a. [CrossRef] [Google Scholar]
  • Urai JL, Schuiling RD, Jansen JB. 1990. Alpine deformation on Naxos (Greece), in: Deformation Mechanisms, Rheology and Tectonics, Geological Society Special Publication. Knipe, R. J. & Rutter, E. H., pp. 509–522. [Google Scholar]
  • van der Molen F I, Paterson MS. 1979. Experimental deformation of partially-melted granite. Contrib Mineral Petrol 70: 299–318. [CrossRef] [Google Scholar]
  • Van Kranendonk MJ, Collins WJ, Hickman A, Pawley MJ. 2004. Critical tests of vertical vs. horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precambrian Res 131: 173–211. [CrossRef] [Google Scholar]
  • Vanderhaeghe O. 2001. Melt segregation, pervasive melt migration and magma mobility in the continental crust: the structural record from pores to orogens. Phys. Chem. Earth Part Solid Earth Geod. 26, 213–223. https://doi.org/10.1016/S1464-1895(01)00048-5 [CrossRef] [Google Scholar]
  • Vanderhaeghe O. 2004. Structural development of the Naxos migmatite dome, in: Gneiss Domes in Orogeny. Geological Society of America. https://doi.org/10.1130/0-8137-2380-9.211 [Google Scholar]
  • Vanderhaeghe O. 2009. Migmatites, granites and orogeny: Flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics 477: 119–134. [CrossRef] [Google Scholar]
  • Vanderhaeghe O, Duchêne S. 2010. Crustal-scale mass transfer, geotherm and topography at convergent plate boundaries: crustal dynamics at convergent plate boundaries. Terra Nova 22: 315–323. [CrossRef] [Google Scholar]
  • Vanderhaeghe O. 2012. The thermal–mechanical evolution of crustal orogenic belts at convergent plate boundaries: A reappraisal of the orogenic cycle. J. Geodyn. 56–57, 124–145. https://doi.org/10.1016/j.jog.2011.10.004 [Google Scholar]
  • Vanderhaeghe O, Hibsch C, Siebenaller L, Duchêne S, de St Blanquat M, Kruckenberg S, Fotiadis A, Martin L. 2007. Penrose Conference − Extending a Continent − Naxos Field Guide. J. Virtual Explor. 27. https://doi.org/10.3809/jvirtex.2007.00175 [Google Scholar]
  • Vanderhaeghe O, Kruckenberg SC, Gerbault M, Martin L, Duchêne S, Deloule E. 2018. Crustal-scale convection and diapiric upwelling of a partially molten orogenic root (Naxos dome, Greece). Tectonophysics 746: 459–469. [CrossRef] [Google Scholar]
  • Vanderhaeghe O, Medvedev S, Fullsack P, Beaumont C, Jamieson RA. 2003. Evolution of orogenic wedges and continental plateaux: insights from crustal thermal-mechanical models overlying subducting mantle lithosphere. Geophys J Int 153: 27–51. [CrossRef] [Google Scholar]
  • Vanderhaeghe O, Teyssier C. 2001. Partial melting and flow of orogens. Tectonophysics 342: 451–472. [CrossRef] [Google Scholar]
  • Vielzeuf D, Holloway JR. 1988. Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98: 257–276. [CrossRef] [Google Scholar]
  • Vigneresse JL, Barbey P, Cuney M. 1996. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. J Petrol 37: 1579–1600. [CrossRef] [Google Scholar]
  • Weinberg RF. 1997. Diapir-driven crustal convection: decompression melting, renewal of the magma source and the origin of nested plutons. Tectonophysics 271: 217–229. [CrossRef] [Google Scholar]
  • Weinberg RF, Hasalová, P. 2015. Water-fluxed melting of the continental crust: a review. Lithos 212-215: 158–188. [CrossRef] [Google Scholar]
  • Weinberg RF, Schmeling H. 1992. Polydiapirs: multiwavelength gravity structures. J Struct Geol 14: 425–436. [CrossRef] [Google Scholar]
  • Whitney DL, Teyssier C, Vanderhaeghe O. 2004. Gneiss domes and crustal flow. Gneiss Domes Orogeny 380: 15. [Google Scholar]
  • Wijbrans JR, McDougall I . 1988. Metamorphic evolution of the Attic Cycladic Metamorphic Belt on Naxos (Cyclades, Greece) utilizing 40Ar/39Ar age spectrum measurements. J Metamorph Geol 6: 571–594. [CrossRef] [Google Scholar]
  • Yin A. 2004. Gneiss domes and gneiss dome systems, in: Gneiss Domes in Orogeny. Geological Society of America. https://doi.org/10.1130/0-8137-2380-9.1 [Google Scholar]
  • Zhou Y, Zhang H, Yao W, Dang J, He C. 2017. An experimental study on creep of partially molten granulite under high temperature and wet conditions. J Asian Earth Sci 139: 15–29. [CrossRef] [Google Scholar]
  • Zuza A, Cao W. 2023. Metamorphic core complex dichotomy in the North American Cordillera explained by Buoyant upwelling in variably thick crust. GSA Today 33: 4–11. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.