Open Access
| Issue |
BSGF - Earth Sci. Bull.
Volume 196, 2025
|
|
|---|---|---|
| Article Number | 20 | |
| Number of page(s) | 30 | |
| DOI | https://doi.org/10.1051/bsgf/2025011 | |
| Published online | 29 October 2025 | |
- Álvarez-Valero AM, Cesare B, Kriegsman LM. 2005. Formation of elliptical garnet in a metapelitic enclave by melt-assisted dissolution and reprecipitation. J Metamorph Geol, 23: 65–74. https://doi.org/10.1111/j.1525-1314.2005.00562.x [Google Scholar]
- Barbey P, Villaros A, Marignac C, Montel JM. 2015. Multiphase melting, magma emplacement and PT-time path in late-collisional context: the Velay example (Massif Central, France). Bull Soc Géol Fr, 186: 93–116. https://doi.org/10.2113/gssgfbull.186.2-3.93 [Google Scholar]
- Bellière J. 1958. Contribution à l’étude pétrogénétique des schistes cristallins du massif des Aiguilles Rouges. Ann Soc géol Bel 81: 1–198. [Google Scholar]
- Bellière J, Streel M. 1980. Roches d’âge viséen supérieur dans le massif des Aiguilles Rouges (Haute-Savoie). CR Acad Sci Paris 290: 1341–1343. [Google Scholar]
- Boutoux A, Bellahsen N, Nanni U, et al., 2016. Thermal and structural evolution of the external Western Alps: insights from (U-Th-Sm)/He Thermochronology and RSCM Thermometry in the Aiguilles Rouges/Mont Blanc Massifs. Tectonophysics 683: 10923. [Google Scholar]
- Buick IS, Hermann J, Williams IS, Gibson RL, Rubatto D. 2006. A SHRIM U–Pb and LA-ICP-MS trace element study of the petrogenesis of garnet-cordierite-orthoamphibole gneisses from the Central Zone of the Limpopo Belt, South Africa. Lithos 88 (1-4): 150–172. [Google Scholar]
- Burg JP, Matte PJ. 1978. A cross section through the French Massif Central and the scope of its Variscan geodynamic evolution. Z Dtsch Geol Ges, 129: 429–460. [Google Scholar]
- Bussien Grosjean D, Meisser N, May-Leresche S, Ulianov A, Vonlanthen P. 2017. The Morcles microgranite (Aiguilles Rouges, Swiss Alps): Geochronological and geochemical evidences for a common origin with the Vallorcine intrusion. Swiss J Geosci 110: 35–49. [Google Scholar]
- Bussy F, von Raumer JF. 1994. U-Pb geochronology of Palaeozoic magmatic events in the Mont-Blanc Crystalline Massif, Western Alps. Schweiz Miner Petrog 74: 514–515. [Google Scholar]
- Bussy F, Hernandez J, von Raumer JF. 2000. Bimodal magmatism as a consequence of the post-collisional re-adjustment of the thickened Variscan continental lithosphere (Aiguilles Rouges/Mont-Blanc Massifs, western Alps). T RSE Earth 91: 221–233. [Google Scholar]
- Bussy F, Péronnet V, Ulianov A, Epard JL, von Raumer J. 2011. Ordovician magmatism in the External French Alps: witness of a peri-Gondwanan active continental margin. In Gutiérrez-Marco JC, Rábano I, García-Bellido D, Eds, The Ordovician of the World: Madrid, Instituto Geológico y Minero de España, Cuadernos del Museo Geominero, v. 14, p. 75–82. [Google Scholar]
- Caddick MJ, Konopásek J, Thompson AB. 2010. Preservation of garnet growth zoning and the duration of prograde metamorphism. J Petrol 51: 2327–2347. [Google Scholar]
- Capuzzo N, Bussy F. 2000. High-precision dating and origin of synsedimentary volcanism in the late Carboniferous Salvan-Dorenaz basin (Aiguilles-Rouges Massif, western Alps). Schweiz Miner Petrog 80: 147–167. [Google Scholar]
- Chardon D, Gapais D, Cagnard F. 2009. Flow of ultra-hot orogens: a view from the Precambrian, clues for the Phanerozoic. Tectonophysics 477: 105–118. [CrossRef] [Google Scholar]
- Cochelin B, Chardon D, Denèle Y, Gumiaux C, Le Bayon B. 2017. Vertical strain partitioning in hot Variscan crust: Syn-convergence escape of the Pyrenees in the Iberian-Armorican syntax. Bull Soc Géol Fr 188: 39. [CrossRef] [EDP Sciences] [Google Scholar]
- Connolly JAD. 2005. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236: 524–541. [CrossRef] [Google Scholar]
- Copley A, Weller O. 2022. The controls on the thermal evolution of continental mountain ranges. J Metamorph Geol, 40: 1235–1270. https://doi.org/10.1111/jmg.12664 [Google Scholar]
- Davy P, Gillet P. 1986. The stacking of thrust slices in collision zones and its thermal consequences. Tectonics 5: 913–929. [Google Scholar]
- de Hoÿm de Marien L, Pitra P, Poujol M, Cogné N, Cagnard F, Le Bayon B. 2023. Complex geochronological record of an emblematic Variscan eclogite (Haut-Allier, French Massif Central). J Metamorph Geol, 41(7):967-995. https://doi.org/10.1111/jmg.12733 [CrossRef] [Google Scholar]
- Didier A, Bosse V, Cherneva Z, et al., 2014. Syn-deformation fluid-assisted growth of monazite during renewed high-grade metamorphism in metapelites of the Central Rhodope (Bulgaria, Greece). Chem Geol 381: 206–222. [CrossRef] [Google Scholar]
- Dobmeier C. 1996. Geodynamische Entwicklung dessüdwestlichen Aiguilles-Rouges Massivs (West-alpen, Frankreich). Mém Géol Lausanne 29: 1–198. [Google Scholar]
- Dobmeier C. 1998. Variscan P-T deformation paths from the southwestern Aiguilles Rouges Massif (External massif, western Alps) and their implication for its tectonic evolution. Geol Rundsch 87: 107–123. [Google Scholar]
- Duesterhoeft E, Lanari P. 2020. Iterative thermodynamic modelling—Part 1: A theoretical scoring technique and a computer program (Bingo-Antidote). J Metamorph Geol 8: 527–551. [Google Scholar]
- England PC, Thompson A. 1986. Some thermal and tectonic models for crustal melting in continental collision zones. Geol Soc London Spec Publ 19: 83–94. [Google Scholar]
- Erickson TM, Pearce MA, Taylor RJM, et al., 2015. Deformed monazite yields high-temperature tectonic ages. Geology 43: 383–386. [Google Scholar]
- Faure M, Lardeaux JM, Ledru P. 2009. A review of the pre-Permian geology of the Variscan French Massif Central. C R Géosci, 341: 202–213. https://doi.org/10.1016/j.crte.2008.12.001 [Google Scholar]
- Fernandez A, Guillot S, Ménot RP, Ledru P. 2002. Late Paleozoic polyphased tectonics in the SW Belledonne massif (external crystalline massifs, French Alps). Geodinamica Acta, 15: 127–139. https://doi.org/10.1080/09853111.2002.10510746 [Google Scholar]
- Filippi M, Jouffray F, Lardeaux JM, Tiepolo M, Spalla MI. 2024. On the occurrence of a Variscan eclogite in the Argentera-Mercantour Massif, Western Alps: Implications for the evolution of the southern Variscan belt. Geol Soc Am Bull. https://doi.org/10.1130/B37010.1 [Google Scholar]
- Florence FP, Spear FS, Kohn MJ. 1993. PT paths from northwestern New Hampshire: metamorphic evidence for stacking in a thrust/nappe complex. Am J Sci, 293: 939–939 [Google Scholar]
- Foster G, Gibson HD, Parrish R, Horstwood M, Fraser J, Tindle A. 2002. Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chem Geol 191: 183–207. [Google Scholar]
- Foster G, Parrish R, Horstwood MS, Chenery S, Pyle J, Gibson HD. 2004. The generation of prograde P-T-t points and paths; a textural, compositional, and chronological study of metamorphic monazite. Earth Planet Sci Lett 228: 125–142. [Google Scholar]
- Franke W, Cocks LRM, Torsvik TH. 2017. The Palaeozoic Variscan oceans revisited. Gondwana Res 48: 257–284. [CrossRef] [Google Scholar]
- Fréville K, Trap P, Faure M, Melleton J, Li XH, Lin W, Blein O, Bruguier O, Poujol M. 2018. Structural, metamorphic and geochronological insights on the Variscan evolution of the Alpine basement in the Belledonne Massif (France). Tectonophysics 726: 14–42. [CrossRef] [Google Scholar]
- Fréville K, Trap P, Vanardois J, Melleton J, Faure M, Bruguier O, Poujol M, Lach P. 2022. Carboniferous tectono-metamorphic evolution of the Variscan crust in the Belledonne-Pelvoux area. Bull Géol Fr 193: 13. [Google Scholar]
- Fréville K, Jacob JB, Vanardois J, Trap P, Melleton J, Faure M et al. 2024. Protracted magmatism and crust-mantle interaction during continental collision: insights from the Variscan granitoids of the external western Alps. Int J Earth Sci 113: 1165–1196. [Google Scholar]
- Forshaw JB, Pattison DR. 2023. Bulk compositional influence on diverse metapelitic mineral assemblages in the Whetstone Lake area, Ontario. J Petrol 64:egad071. [Google Scholar]
- Gerbi CC, Johnson SE, Koons PO. 2006. Controls on low‐pressure anatexis. J Metamorph Geol 24: 107–118. [Google Scholar]
- Genier F, Bussy F, Epard JL, Baumgartner L. 2008. Water-Assisted Migmatization of Metagraywackes in a Variscan Shear Zone, Aiguilles-Rouges Massif, Western Alps. Lithos 102: 575–597. [Google Scholar]
- Gibson HD, Carr SD, Brown RL, Hamilton MA. 2004. Correlations between chemical and age domains in monazite, and metamorphic reactions involving major pelitic phases: an integration of ID-TIMS and SHRIMP geochronology with Y-Th-U X-ray mapping. Chem Geol 211: 237–60. [Google Scholar]
- Guillot S, di Paola S, Ménot RP, et al., 2009. Suture zones and importance of strike-slip faulting for Variscan geodynamic reconstructions of the external crystalline massifs of the Western Alps. Bull Soc géol Fr 180: 483–500. [Google Scholar]
- Gunia M, Cordier C, Janots E, Vezinet A, Milloud V, Jacob JB, Guillot S. 2025. The Chamrousse Ophiolite (Western Alps, France): Relict of a Devono‐Carboniferous Ocean. Terra Nova 0: 1–6. [Google Scholar]
- Hawkins DP, Bowring SA. 1997. U-Pb systematics of monazite and xenotime: case studies from the Paleoproterozoic of the Grand Canyon, Arizona. Contrib Mineral Petrol 127: 87–103. [Google Scholar]
- Hellstrom J, Paton C, Woodhead J, Hergt J. 2008. Iolite: software for spatially resolved LA-(quad and MC) ICPMS analysis. Mineralogical Association of Canada Short Course Series 40: 343–348. [Google Scholar]
- Henry DJ, Guidotti CV, Thomson JA. 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. Am Mineralog 90: 316–328. [Google Scholar]
- Hermann J, Rubatto D. 2003. Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. J Metamorph Geol 21: 833–852. [Google Scholar]
- Hillenbrand IW, Williams ML. 2022. Geochemical evidence for diachronous uplift and synchronous collapse of the high elevation Variscan hinterland. Geophys Res Lett, 49(21), e2022GL100435. https://doi.org/10.1029/2022GL100435 [Google Scholar]
- Holland TJB, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29: 333–383. [Google Scholar]
- Hurai V, Paquette JL, Huraiová M, Konečný P. 2010. Age of deep crustal magmatic chambers in the intra-Carpathian back-arc basin inferred from LA-ICPMS U-Th-Pb dating of zircon and monazite from igneous xenoliths in alkali basalts. J Volcanol Geotherm Res 198: 275–287. [Google Scholar]
- Iaccarino S, Montomoli C, Carosi R, Massonne HJ, Langone A, Visonà D. 2015. Pressure-temperature-time-deformation path of kyanite-bearing migmatitic paragneiss in the Kali Gandaki valley (Central Nepal): Investigation of Late Eocene-Early Oligocene melting processes. Lithos 231: 103–121. [Google Scholar]
- Jacob JB, Guillot S, Rubatto D, Janots E, Melleton J, Faure M. 2021. Carboniferous high-pressure metamorphism and deformation in the Belledonne Massif (Western Alps). J Metamorph Geol https://doi.org/10.1111/jmg.12600 [Google Scholar]
- Jacob JB, Janots E, Guillot S, Rubatto D, Fréville K, Melleton J, Faure M. 2022. HT overprint of HP granulites in the Oisans-Pelvoux massif: implications for the dynamics of the Variscan collision in the external western Alps. Lithos 416: 106650. [Google Scholar]
- Jacob JB, Janots E, Cordier C, Guillot S. 2023. Discovery of Variscan orogenic peridotites in the Pelvoux massif (western Alps, France). Bull Soc Geol Fr 194: 2. [Google Scholar]
- Jouffray F, Spalla MI, Lardeaux JM, et al., 2020. Variscan eclogites from the Argentera-Mercantour Massif (External Crystalline Massifs, SW Alps): a dismembered cryptic suture zone. Int J Earth Sci 109: 1273–1294. [CrossRef] [Google Scholar]
- Joye JB. 1989. L’évolution pression-température-déformation dans le massif des Aiguilles Rouges, massif externe alpin (Doctoral dissertation). Retrieved from HAL (https://tel.archives-ouvertes.fr/tel-00822947/). Fribourg, Switzerland, Université de Fribourg. [Google Scholar]
- Kohn MJ. 2016. Metamorphic chronology—a tool for all ages: past achievements and future prospects. Am Mineral 101: 25–42. [Google Scholar]
- Kohn MJ. 2020. A refined zirconium-in-rutile thermometer. Am Mineral 105: 963–971. [Google Scholar]
- Kohn MJ, Spear F. 2000. Retrograde net transfer reaction insurance for pressure-temperature estimates. Geology 28: 1127–1130. [Google Scholar]
- Krenn E, Janak M, Finger F, Broska I, Konecny P. 2009. Two types of metamorphic monazite with contrasting La/Nd, Th, and Y signatures in an ultrahigh-pressure metapelite from the Pohorje Mountains, Slovenia: indications for pressure-dependent REE exchange between apatite and monazite? Am Mineral 94: 801–815. [Google Scholar]
- Lanari P, Engi M. 2017. Local bulk composition effects on metamorphic mineral assemblages. Rev Mineral Geochem 83: 55–102. [Google Scholar]
- Lanari P, Vidal O, de Andrade V, et al., 2014. XMapTools: a MATLAB-based program for electron microprobe X-ray image processing and geothermobarometry. Comput Geosci 62: 227–240. [Google Scholar]
- Lanari P, Vho A, Bovay T, Airaghi L, Centrella S. 2019. Quantitative compositional mapping of mineral phases by electron probe micro-analyser. Geol Soc London SP 478: 39–63. [Google Scholar]
- Ledru P, Lardeaux JM, Santallier D, et al., 1989. Où sont les nappes dans le Massif central français?. Bull Soc Géol Fr, 3: 605–618. [Google Scholar]
- Lotout C, Pitra P, Poujol M, Anczkiewicz R, Van Den Driessche J. 2018. Timing and duration of Variscan high-pressure metamorphism in the French Massif Central: A multimethod geochronological study from the Najac Massif. Lithos, 308:381-394. https://doi.org/10.1016/j.lithos.2018.03.022 [CrossRef] [Google Scholar]
- Lotout C, Poujol M, Pitra P, Anczkiewicz R, Van Den Driessche J. 2020. From burial to exhumation: emplacement and metamorphism of mafic eclogitic terranes constrained through multimethod petrochronology, case study from the Lévézou Massif (French Massif Central, Variscan Belt). J Petrol, 61(4), egaa046. https://doi.org/10.1093/petrology/egaa046 [Google Scholar]
- Ludwig KR. 2001. User manual for Isoplot/Ex rev. 2.49. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1a: 1–56. [Google Scholar]
- Martínez-Catalán JR, Schulmann K, Ghienne JF. 2021. The Mid-Variscan Allochthon: keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth-Sci Rev 220: 103700. [CrossRef] [Google Scholar]
- McDonough WF, Sun SS. 1995. The composition of the Earth. Chem Geol 120: 223–253. [CrossRef] [Google Scholar]
- Paquette JL, Piro JL, Devidal JL, Bosse V, Didier A. 2014. Sensitivity enhancement in LA-ICP-MS by N2 addition to carrier gas: application to radiometric dating of U-Th-bearing minerals. Agilent ICP-MS J 58: 4–5. [Google Scholar]
- Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. 2011. Iolite: freeware for the visualisation and processing of mass spectrometer data. J Anal Atom Spectrom 26:508e2518. [Google Scholar]
- Pin C, Paquette JL. 1997. A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France). Contrib Mineral Petrol, 129: 222–238. https://doi.org/10.1007/s004100050334 [CrossRef] [Google Scholar]
- Pin C, Paquette JL. 2002. Le magmatisme basique calcoalcalin d'âge dévono-dinantien du nord du Massif Central, témoin d'une marge active hercynienne: arguments géochimiques et isotopiques Sr/Nd: Sr-Nd isotope and trace element evidence for a Late Devonian active margin in northern Massif-Central (France). Geodinamica Acta, 15: 63–77. https://doi.org/10.1080/09853111.2002.10510739 [Google Scholar]
- Pyle JM, Spear FS, Rudnick RL, McDonough WF. 2001. Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J Petrol 42: 2083–2107. [Google Scholar]
- Rabin M, Trap P, Carry N, Fréville K, Cenki-Tok B, Lobjoie C, et al. 2015. Strain partitioning along the anatectic front in the Variscan Montagne Noire massif (Southern French Massif Central). Tectonics 34: 1709–1735. [CrossRef] [Google Scholar]
- Regis D, Warren CJ, Young D, Roberts NM. 2014. Tectono-metamorphic evolution of the Jomolhari massif: variations in timing of syn-collisional metamorphism across western Bhutan. Lithos 190: 449–466. [Google Scholar]
- Rey PF, Mondy L, Duclaux G, Teyssier C, Whitney DL, Bocher M, Prigent C. 2017. The origin of contractional structures in extensional gneiss domes. Geology 45: 263–266. [Google Scholar]
- Roger F, Teyssier C, Respaut JP, Rey PF, Jolivet M, Whitney DL et al. 2015. Timing of formation and exhumation of the Montagne Noire double dome, French Massif Central. Tectonophysics 640: 53–69. [Google Scholar]
- Roger F, Teyssier C, Whitney DL, Respaut JP, Paquette JL, Rey PF. 2020. Age of metamorphism and deformation in the Montagne Noire dome (French Massif Central): Tapping into the memory of fine-grained gneisses using monazite U-Th-Pb geochronology. Tectonophysics 776. https://doi.org/10.1016/j.tecto.2019.228316 [Google Scholar]
- Rolland Y, Cox S, Boullier AM, Pennacchioni G, Mancktelow N. 2003. Rare earth and trace element mobility in mid-crustal shear zones: Insights from the Mont Blanc Massif (western Alps). Earth Planet Sci Lett 214: 203–219. [Google Scholar]
- Rossi M, Rolland Y, Vidal O, Cox S. 2005. Geochemical variations and element transfer during shear zone development and related episyenites at middle crust depths: Insights from the Mont-Blanc granite (French-Italian Alps) In D. Brunh and L. Burlini (Eds.), High Strain Zones: Structure and Physical Properties, Geological Society, London, Special Publication 245, 373–396. [Google Scholar]
- Rubatto D, Hermann J, Buick IS. 2006. Temperature and bulk composition control on the growth of monazite and zircon during low-pressure anatexis (Mount Stafford, central Australia). J Petrol 47 (10): 1973–1996. [Google Scholar]
- Rubatto D, Ferrando S, Compagnoni R, Lombardo B. 2010. Carboniferous high-pressure metamorphism of Ordovician protolith in the Argentera Massif (Italy), Southern European Variscan Belt. Lithos 116: 65–76. [CrossRef] [Google Scholar]
- Schulmann K, Konopásek J, Janoušek V, et al., 2009. An Andean type Palaeozoic convergence in the Bohemian massif. C R Géosci, 341: 266–286. https://doi.org/10.1016/j.crte.2008.12.006 [Google Scholar]
- Schulz B, von Raumer JF. 1993. Syndeformational Uplift of Variscan High-pressure Rocks (Col de Bérard, Aiguilles Rouges Massif, Western Alps). Z Dtsch Geol Ges 144: 104–120. [Google Scholar]
- Schulz B, von Raumer JF. 2011. Discovery of Ordovician-Silurian metamorphic monazite in garnet metapelites of the Alpine External Aiguilles Rouges Massif. Swiss J Geosci 104: 67–79. [Google Scholar]
- Shrestha S, Larson KP, Duesterhoeft E, Soret M, Cottle JM. 2019. Thermodynamic modelling of phosphate minerals and its implications for the development of PTt histories: a case study in garnet-monazite bearing metapelites. Lithos 334: 141–160. [Google Scholar]
- Simonetti M, Carosi R, Montomoli C, Cottle JM, Law RD. 2020. Transpressive Deformation in the Southern European Variscan Belt: new Insights From the Aiguilles Rouges Massif (Western Alps). Tectonics 39. https://doi.org/10.1029/2020TC006153 [Google Scholar]
- Sizova E, Hauzenberger C, Fritz H, Faryad SW, Gerya T. 2019. Late orogenic heating of (ultra) high pressure rocks: slab rollback vs. slab breakoff. Geosciences, 9: 499. https://doi.org/10.3390/geosciences9120499 [Google Scholar]
- Skrzypek E, Schulmann K, Tabaud AS, Edel JB. 2014. Palaeozoic evolution of the Variscan Vosges Mountains. Geol Soc Lond Spec Publ 405: 45–75. https://doi.org/10.1144/SP405.8. [Google Scholar]
- Spear FS, Pyle JM. 2010. Theoretical modeling of monazite growth in a low Ca metapelite. Chem Geol 273: 111–119. [Google Scholar]
- Stacey JS, Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26: 207–226. [CrossRef] [Google Scholar]
- Townsend KJ, Miller CF, D’Andrea JL, Ayers JC, Harrison TM, Coath CD. 2000. Low temperature replacement of monazite in the Ireteba granite, Southern Nevada: geochronological implications. Chem Geol 172: 95–112. [Google Scholar]
- Trap P, Faure M, Lin W, Augier R, Fouassier A. 2011. Syn-collisional channel flow and exhumation of Paleoproterozoic high pressure rocks in the Trans-North China Orogen: the critical role of partial-melting and orogenic bending. Gondwana Res, 20: 498–515. https://doi.org/10.1016/j.gr.2011.02.013 [Google Scholar]
- Trap P, Roger F, Cenki-Tok B, Paquette JL. 2017. Timing and duration of partial melting and magmatism in the Variscan Montagne Noire gneiss dome (French Massif Central). Int J Earth Sci 106: 453–476. [Google Scholar]
- van Achterbergh E, Ryan CG, Jackson SE, Griffin WL. 2001. Data reduction software for LA-ICP-MS. In Laser ablation-ICPMS in the earth science. P. Sylvester ed. Mineralogical Association of Canada 29: 239–243. [Google Scholar]
- Vanardois J, Roger F, Trap P, et al., 2022a. Variscan eclogites from Aiguilles-Rouges Massif (Western Alps): Witnesses of exhumation of deep crust through strike-slip shear zone. J Metamorph Geol 40: 1087–1120. [Google Scholar]
- Vanardois J, Trap P, Roger F, et al., 2022b. Deformation, crustal melting and magmatism in the crustal-scale East-Variscan Shear Zone (Aiguilles-Rouges and Mont-Blanc massifs, Western Alps). J Struct Geol 163: 104724. [Google Scholar]
- Vanardois J, Lahfid A, Trap P, et al., 2022c. Pre-collision high thermal gradient recorded in a Variscan orogenic basin (Servoz basin, Western Alps). Swiss J Geosci 115: 23. [Google Scholar]
- Vanardois J, Trap P, Marquer D. 2024a. Crucial role of water-present melting in metagranite: implications for the instigation of crustal-scale shear zones. Geology 52: 199–204. [Google Scholar]
- Vanardois J, Trap P, Teyssier C, Whitney DL. 2024. A reappraisal of nappe structures and strain patterns in the core of the Variscan orogen (French Massif Central). Tectonics 43:e2024TC008366. [Google Scholar]
- von Raumer JF. 1983. Die Metapelite von Emosson (Aiguilles-Rouges-Massiv) als Beispiel spätkaledonisch-frühvariszicher Metamorphose im Altkristallin des helvetischen Bereichs. Schweiz Miner Petrog 63: 421–455. [Google Scholar]
- von Raumer JF, Bussy F. 2004. Mont-Blanc and Aiguilles-Rouges: Geology of their polymetamorphic basement (External massifs, France-Switzerland). Mém Géol Lausanne 42: 1–203. [Google Scholar]
- Warr LN. 2021. IMA-CNMNC approved mineral symbols. Mineral Mag, 85: 291–320. https://doi.org/10.1180/mgm.2021.43 [Google Scholar]
- White RW, Powell R, Holland TJB, Worley BA. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. J Metamorph Geol 18: 497–511. [CrossRef] [Google Scholar]
- White RW, Powell R, Clarke GL. 2002. The interpretation of reaction textures in Fe‐rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. J Metamorph Geol 20: 41–55. [CrossRef] [Google Scholar]
- White RW, Powell R, Holland TJB, Johnson TE, Green ECR. 2014a. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32: 261–286. [Google Scholar]
- White RW, Powell R, Johnson TE. 2014b. The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese‐bearing minerals. J Metamorph Geol 32: 809–828. [Google Scholar]
- Whitney DL, Roger F, Teyssier C, Rey PF, Respaut JP. 2015. Syncollapse eclogite metamorphism and exhumation of deep crust in a migmatite dome: The P-T-t record of the youngest Variscan eclogite (Montagne Noire, French Massif Central). Earth Planet Sci Lett 430: 224–234. [CrossRef] [Google Scholar]
- Woodhead JD, Hellstrom J, Hergt JM, Greig A, Maas R. 2007. Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma‐mass spectrometry. Geostand Geoanal Res 31: 331–343. [Google Scholar]
- Yardley BWD. 1977. An empirical study of diffusion in garnet. Am Mineral 62: 793–800. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
