Open Access
Issue |
BSGF - Earth Sci. Bull.
Volume 196, 2025
|
|
---|---|---|
Article Number | 7 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/bsgf/2025006 | |
Published online | 12 May 2025 |
- Alheib M, Nicolas M, Noirel JF, Wojtkowiak F. 2005. Residual subsidence analysis after the end of coalmine work. Example from Lorraine colliery, France. Symposium Post mining 2005, Nov 2005, Nancy, France. pp.NC. ineris-00972515. [Google Scholar]
- Amelung F, Galloway DL, Bell JW, et al. 1999. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27: 483–486. https://doi.org/10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2. [CrossRef] [Google Scholar]
- Bawden GW, Thatcher W, Stein RS, et al. 2001. Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature 412: 812–815. https://doi.org/10.1038/35090558. [CrossRef] [Google Scholar]
- Bekendam RF, Pöttgens JJ. 1995. Ground movements over the coal mines of southern Limburg, the Netherlands, and their relation to rising mine waters. In: Fifth International Symposium on Land Subsidence, The Hague, p. A377. [Google Scholar]
- Blachowski J, Kopec A, Milczarek W, Owczarz K. 2019. Evolution of secondary deformations captured by satellite radar interferometry: Case study of an abandoned coal basin in SW Poland. Sustainability 11: 884. https://doi.org/10.3390/su11030884. [CrossRef] [Google Scholar]
- Bürgmann R, Rosen PA, Fielding EJ. 2000. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annual Review of Earth and Planetary Sciences 28: 169–209. https://doi.org/10.1146/annurev.earth.28.1.169. [CrossRef] [Google Scholar]
- Caro Cuenca M, Hooper AJ, Hanssen RF. 2013. Surface deformation induced by water influx in the abandoned coal mines in Limburg, The Netherlands observed by satellite radar interferometry. Journal of Applied Geophysics 88: 1–11. https://doi.org/10.1016/j.jappgeo.2012.10.003. [CrossRef] [Google Scholar]
- Declercq P-Y., Walstra J, Gérard P, et al. 2017. A study of ground movements in Brussels (Belgium) monitored by Persistent Scatterer Interferometry over a 25-year period. Geosciences 7: 115. https://doi.org/10.3390/geosciences7040115. [CrossRef] [Google Scholar]
- Donsimoni M. 1981. Le bassin houiller lorrain. Synthèse géologique. BRGM [Google Scholar]
- Doubre C, Meghraoui M, Masson F, et al. 2021. Seismotectonics in Northeastern France and neighboring regions. Comptes Rendus Géoscience 353: 1–33. https://doi.org/10.5802/crgeos.80. [Google Scholar]
- Doumergue Y. 1962. Dans les houillères de Lorraine: une technique d’exploitation unique au monde, les «dressants» de Merlebach. Ingeo 26: 177–182. https://doi.org/10.3406/ingeo.1962.2179. [CrossRef] [Google Scholar]
- Du Z, Ge L, Ng AH-M., et al. 2018. Monitoring of ground deformation in Liulin district, China using InSAR approaches. International Journal of Digital Earth 11: 264–283. https://doi.org/10.1080/17538947.2017.1322151. [CrossRef] [Google Scholar]
- Dudek M, Tajduś K, Misa R, Sroka A. 2020. Predicting of land surface uplift caused by the flooding of underground coal mines − a case study. International Journal of Rock Mechanics and Mining Sciences 132: 104377. https://doi.org/10.1016/j.ijrmms.2020.104377. [CrossRef] [Google Scholar]
- Duro J, Albiol D, Sabater J. 2012. InSAR baseline ground motion study of the Surat and Bowen Basins. Tre Altamira. [Google Scholar]
- Farr TG, Kobrick M. 2000. Shuttle radar topography mission produces a wealth of data. Eos Transactions AGU 81: 583. https://doi.org/10.1029/EO081i048p00583. [CrossRef] [Google Scholar]
- Fleck S, Michels R, Izart A, et al. 2001. Palaeoenvironmental assessment of Westphalian fluvio-lacustrine deposits of Lorraine (France) using a combination of organic geochemistry and sedimentology. International Journal of Coal Geology 48: 65–88. https://doi.org/10.1016/S0166-5162(01)00048-9. [CrossRef] [Google Scholar]
- Foumelis M, Delgado Blasco JM, Desnos Y-L, et al. 2018. ESA SNAP − StaMPS integrated processing for Sentinel-1 Persistent Scatterer Interferometry. In: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia. IEEE, pp. 1364–1367. [Google Scholar]
- Garthwaite MC, Hazelwood M, Nancarrow S, et al. 2015. A regional geodetic network to monitor ground surface response to resource extraction in the northern Surat Basin, Queensland. Australian Journal of Earth Sciences 62: 469–477. https://doi.org/10.1080/08120099.2015.1040073. [CrossRef] [Google Scholar]
- Gee D, Bateson L, Sowter A, et al. 2017. Ground motion in areas of abandoned mining: application of the Intermittent SBAS (ISBAS) to the Northumberland and Durham Coalfield, UK. Geosciences 7: 85. https://doi.org/10.3390/geosciences7030085. [CrossRef] [Google Scholar]
- Grigg KM, Katzenstein KW, Davis AD. 2012. Using InSAR technology and groundwater pumping data to model land subsidence from coal bed methane production in the Powder River Basin, Wyoming. In: Rocky Mountain Section Meeting, Geological Societyof America, Albuquerque, p. 67 [Google Scholar]
- Guéguen Y, Deffontaines B, Fruneau B, et al. 2009. Monitoring residual mining subsidence of Nord/Pas-de-Calais coal basin from differential and Persistent Scatterer Interferometry (Northern France). Journal of Applied Geophysics 69: 24–34. https://doi.org/10.1016/j.jappgeo.2009.02.008 [CrossRef] [Google Scholar]
- Hamm V, Bazargan Sabet B. 2010. Modelling of fluid flow and heat transfer to assess the geothermal potential of a flooded coal mine in Lorraine, France. Geothermics 39: 177–186. https://doi.org/10.1016/j.geothermics.2010.03.004. [CrossRef] [Google Scholar]
- Heimlich C, Gourmelen N, Masson F, et al. 2015. Uplift around the geothermal power plant of Landau (Germany) as observed by InSAR monitoring. Geothermal Energy 3: 2. https://doi.org/10.1186/s40517-014-0024-y. [CrossRef] [Google Scholar]
- Hooper A, Bekaert D, Spaans K, Arıkan M. 2012. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514-517: 1–13. https://doi.org/10.1016/j.tecto.2011.10.013. [CrossRef] [Google Scholar]
- Hooper A, Segall P, Zebker H. 2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research 112: B07407. https://doi.org/10.1029/2006JB004763. [CrossRef] [Google Scholar]
- Hooper A, Zebker HA. 2007. Phase unwrapping in three dimensions with application to InSAR time series. Journal of the Optical Society of America A 24: 2737. https://doi.org/10.1364/JOSAA.24.002737. [CrossRef] [Google Scholar]
- Hummel N, Rai UB, Dudley JW, et al. 2021. Unlocking methane desorption effects in reservoir compaction and subsidence computations for a coal seam gas development. In: 82nd EAGE Annual Conference & Exhibition, European Association of Geoscientists & Engineers, Amsterdam, The Netherlands, pp. 1–5. [Google Scholar]
- Izart A, Palain C, Malartre F, et al. 2005. Paleoenvironments, paleoclimates and sequences of Westphalian deposits of Lorraine coal basin (Upper Carboniferous, NE France). Bulletin de la Société Géologique de France 176: 301–315. https://doi.org/10.2113/176.3.301. [CrossRef] [Google Scholar]
- Katzenstein KW. 2012. InSAR identifies subsidence resulting from coalbed methane production in the San Juan Basin, Colorado and New Mexico. In: Rocky Mountain Section Meeting, Geological Society of America, Albuquerque, p. 95. [Google Scholar]
- Ketelaar VBH. 2009. Satellite radar interferometry: subsidence monitoring techniques. Springer Science + Business Media, New York, 266 p. [Google Scholar]
- Korsch RJ, Schäfer A. 1995. The Permo-Carboniferous Saar-Nahe Basin, south-west Germany and north-east France: basin formation and deformation in a strike-slip regime. Geologische Rundschau 84: 293–318. https://doi.org/10.1007/BF00260442. [CrossRef] [Google Scholar]
- Kratzsch H. 1983. Mining subsidence engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, 543 p. [Google Scholar]
- Liu S, Harpalani S. 2013. A new theoretical approach to model sorption-induced coal shrinkage or swelling. Bulletin 97: 1033–1049. https://doi.org/10.1306/12181212061. [CrossRef] [Google Scholar]
- Massonnet D, Feigl KL. 1998. Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics 36: 441–500. https://doi.org/10.1029/97RG03139. [CrossRef] [Google Scholar]
- Modeste G, Doubre C, Masson F. 2021. Time evolution of mining-related residual subsidence monitored over a 24-year period using InSAR in southern Alsace, France. International Journal of Applied Earth Observation and Geoinformation 102: 102392. https://doi.org/10.1016/j.jag.2021.102392. [CrossRef] [Google Scholar]
- Moghaddam NF, Nourollah H, Vasco DW, et al. 2021. Interferometric SAR modelling of near surface data to improve geological model in the Surat Basin, Australia. Journal of Applied Geophysics 194: 104444. https://doi.org/10.1016/j.jappgeo.2021.104444. [CrossRef] [Google Scholar]
- Moghaddam NF, Samsonov SV, Rüdiger C, Baillie C, Garthwaite M, Smyley R. 2016. Multi-temporal SAR observations of the Surat Basin in Australia for deformation scenario evaluation associated with man-made interactions. Environ Earth Sci 75: 282. https://doi.org/10.1007/s12665-015-4864-y. [CrossRef] [Google Scholar]
- Pijnenburg RPJ, Verberne BA, Hangx SJT, Spiers CJ. 2019. Inelastic deformation of the Slochteren Sandstone: Stress‐strain relations and implications for induced seismicity in the Groningen Gas Field. J Geophys Res Solid Earth 124: 5254–5282. https://doi.org/10.1029/2019JB017366. [CrossRef] [Google Scholar]
- Raucoules D, Colesanti C, Carnec C. 2007. Use of SAR interferometry for detecting and assessing ground subsidence. Comptes Rendus Geoscience 339: 289–302. https://doi.org/10.1016/j.crte.2007.02.002. [CrossRef] [Google Scholar]
- Samsonov S, d’Oreye N, Smets B. 2013. Ground deformation associated with post-mining activity at the French-German border revealed by novel InSAR time series method. Int. J. Appl. Earth Obs. Geoinf. 23: 142–154. https://doi.org/10.1016/j.jag.2012.12.008. [Google Scholar]
- Smith JD, Avouac J, White RS, et al. 2019. Reconciling the long‐term relationship between reservoir pore pressure depletion and compaction in the Groningen region. J. Geophys. Res. Solid Earth 124: 6165–6178. https://doi.org/10.1029/2018JB016801. [CrossRef] [Google Scholar]
- Vervoort A. 2021a. Uplift of the surface of the earth above abandoned coal mines. Part A: Analysis of satellite data related to the movement of the surface. Int. J. Rock Mech. Min. Sci. 104896. https://doi.org/10.1016/j.ijrmms.2021.104896. [CrossRef] [Google Scholar]
- Vervoort A. 2021b. Uplift of the surface of the earth above abandoned coal mines. Part B: Framework to understand and explain uplift. Int. J. Rock Mech. Min. Sci. 104947. https://doi.org/10.1016/j.ijrmms.2021.104947. [CrossRef] [Google Scholar]
- Vervoort A, Declercq P-Y. 2018. Upward surface movement above deep coal mines after closure and flooding of underground workings. Int. J. Min. Sci. Technol. 28: 53–59. https://doi.org/10.1016/j.ijmst.2017.11.008. [CrossRef] [Google Scholar]
- White CM, Smith DH, Jones KL, et al. 2005. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery — A review. Energy Fuels 19: 659–724. https://doi.org/10.1021/ef040047w. [CrossRef] [Google Scholar]
- Whittaker BN, Reddish DJ. 1989. Subsidence: occurrence, prediction and control. Amsterdam: Elsevier Science, 528 p. [Google Scholar]
- Zhao J, Konietzky H. 2020. Numerical analysis and prediction of ground surface movement induced by coal mining and subsequent groundwater flooding. Int. J. Coal Geol. 229: 103565. https://doi.org/10.1016/j.coal.2020.103565. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.