Open Access
Issue |
BSGF - Earth Sci. Bull.
Volume 196, 2025
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/bsgf/2025001 | |
Published online | 29 May 2025 |
- Arnold, M., Merchel, S., Bourl`es, D. L., Braucher, R., Benedetti, L., Finkel, R. C., Aumaitre, G., Gottdang, A., and Klein, M. 2010. The French Accelerator Mass Spectrometry ASTER: Improved Performance and Developments. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Material and Atoms 268: 1954–59. https://doi.org/10.1016/j.nimb.2010.02.107 [Google Scholar]
- Baljinnyam I, Bayasgalan A, Borisov BA, Cisternas A, Dem’yanovich MG, Ganbaatar L, et al. 1993. Ruptures of major earthquakes and active deformation in Mongolia and its surroundings. Geol Soc Am Mem 181: 1–60. Geological Society of America. https://doi.org/10.1130/MEM181-p1 [Google Scholar]
- Balco G, Stone JO, Lifton NA, Dunai TJ. 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol 3 (3): 174–195. https://doi.org/10.1016/j.quageo.2007.12.001 [CrossRef] [Google Scholar]
- Calais E, Vergnolle M, San’kov V, Lukhnev A, Miroshnitchenko A, Amarjargal S, et al. 2003. GPS measurements of crustal 682deformation in the Baikal-Mongolia area (1994-2002): Implications for current kinematics of Asia. Journal of Geophysical Research, 108, 2501-2513. https://doi.org/10.1029/2002JB002373 [CrossRef] [Google Scholar]
- Chéry J, Carretier S, Ritz J-F. 2001. Postseismic stress transfer explains time clustering of large earthquakes in Mongolia. Earth Planet Sci Lett 194(1‑2): Art. 1–2. https://doi.org/10.1016/S0012-821X(01)00552-0 [CrossRef] [Google Scholar]
- Choi J, Klinger Y, Ferry M, Ritz J, Kurtz R, Rizza M, et al. 2018. Geologic Inheritance and earthquake rupture processes: The 1905 M ≥ 8 Tsetserleg‐Bulnay strike‐slip earthquake sequence, Mongolia. J Geophys Res: Solid Earth 123 (2): 1925–1953. https://doi.org/10.1002/2017JB013962 [CrossRef] [Google Scholar]
- Cunningham D. 2005. Active intracontinental transpressional mountain building in the Mongolian Altai: Defining a new class of orogen. Earth Planet Sci Lett 240 (2): Art. 2. https://doi.org/10.1016/j.epsl.2005.09.013 [Google Scholar]
- Cunningham D, Dijkstra Arjan H, Howard J, Quarles A, Badarch G. 2003. Active intraplate strike-slip faulting and transpression uplift in the Mongolian Altai. Geol Soc Spec Publ 210: 65–87. [CrossRef] [Google Scholar]
- Cunningham D, Windley BF, Dorjnamjaa D, Badamgarov G, Saandar M. 1996. A structural transect across the Mongolian Western Altai: Active transpressional mountain building in central Asia. Tectonics 15: 142–156. https://doi.org/10.1029/95TC02354 [CrossRef] [Google Scholar]
- Davaasambuu B, Ferry M, Ritz J-F, Munkhuu U. 2023. The Ar-Hötöl surface rupture along the Khovd fault (Mongolian Altay), Journal of Maps, 19(1), 2132884. https://doi.org/10.1080/17445647.2022.2132884 [CrossRef] [Google Scholar]
- De Grave J, Buslov MM, haute P. 2007. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology. J Asian Earth Sci 29: 188–204. https://doi.org/10.1016/j.jseaes.2006.03.001 [CrossRef] [Google Scholar]
- De Grave J, Van den Haute P. 2002. Denudation and cooling of the Lake Teletskoye Region in the Altai Mountains (South Siberia) as revealed by apatite fission-track thermochronology. Tectonophysics 349 (1): 145–159. https://doi.org/10.1016/S0040-1951(02)00051-3 [CrossRef] [Google Scholar]
- Dunai T. 2010. Cosmogenic nuclides. Principles, concepts and applications in the earth surface sciences. Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences, 1–187. https://doi.org/10.1017/CBO9780511804519 [CrossRef] [Google Scholar]
- Fan J, Xu H, Shi W, Guo Q, Zhang S, Wei X, et al. 2022. A ̃28-kyr continuous lacustrine paleoseismic record of the intraplate, slow-slipping Fuyun fault in Northwest China. Front Earth Sci 10. https://www.frontiersin.org/articles/10.3389/feart.2022.828801 [Google Scholar]
- Frankel KL, Wegmann KW, Bayasgalan A, Carson RJ, Bader NE, Adiya T, et al. 2010. Late Pleistocene slip rate of the Höh Serh-Tsagaan Salaa fault system, Mongolian Altai and intracontinental deformation in central Asia: Mongolian Altai late Pleistocene slip rate. Geophys J Int 183 (3): Art. 3. https://doi.org/10.1111/j.1365-246X.span>2010.04826.x [Google Scholar]
- Gosse JC, Phillips FM. 2001. Terrestrial in situ cosmogenic nuclides: Theory and application. Quat Sci Rev 20 (14): 1475–1560. https://doi.org/10.1016/S0277-3791(00)00171-2 [CrossRef] [Google Scholar]
- Gregory LC. 2012. Active faulting and deformation of the Mongolian Altai Mountains [Ph.D., University of Oxford]. http://ora.ox.ac.uk/objects/uuid:4bbed5b2-4597-4faa-b08c-c182d148c152 [Google Scholar]
- Gregory LC, Thomas AL, Walker RT, Garland R, Mac Niocaill C, Fenton CR, et al. 2014. Combined uranium series and 10Be cosmogenic exposure dating of surface abandonment: A case study from the Ölgiy strike-slip fault in western Mongolia. Quat Geochronol 24: 27–43. https://doi.org/10.1016/j.quageo.2014.07.005 [CrossRef] [Google Scholar]
- Gregory LC, Mac Niocaill C, Walker RT, Bayasgalan G, Craig TJ. 2018. Vertical axis rotation (or lack thereof) of the eastern Mongolian Altai Mountains: Implications for far-field transpressional mountain building. Tectonophysics 736: 31–46. https://doi.org/10.1016/j.tecto.2018.03.020 [CrossRef] [Google Scholar]
- Ha, S., Seong, Y. B., & Son, M. (2023). Tectonic geomorphology and Quaternary fault slip rates in the Tsambagarav Massif, Mongolian Altai. Earth Surface Processes and Landforms, 48 (2023), pp. 1428-1449. https://doi.org/10.1002/esp.5558 [CrossRef] [Google Scholar]
- Howard JP, Cunningham WD, Davies SJ. 2006. Competing processes of clastic deposition and compartmentalized inversion in an actively evolving transpressional basin, Western Mongolia. J Geol Soc 163 (4): 657–670. https://doi.org/10.1144/0016-764904-073 [CrossRef] [Google Scholar]
- Howard JP, Cunningham WD, Davies SJ, Dijkstra AH, Badarch G. 2003. The stratigraphic and structural evolution of the Dzereg Basin, western Mongolia: Clastic sedimentation, transpressional faulting and basin destruction in an intraplate, intracontinental setting. Basin Res 15 (1): 45–72. https://doi.org/10.1046/j.1365-2117.2003.00198.x [CrossRef] [Google Scholar]
- Hu G, Liu-Zeng J, Shao Y, Qin K, Gao Y. 2024. The applications of optically stimulated luminescence dating in active fault and paleo-earthquake studies: A review. Quat Int 688, 53-62. https://doi.org/10.1016/j.quaint.2024.01.016 [CrossRef] [Google Scholar]
- Khil’ko, S. D., R. A. Kurushin, V. M. Kochetkov, I. Balzhinnyam, and D. Monkoo (1985), Strong earthquakes, paleoseismogeological and macroseismic data, in Earthquakes and the bases for seismic zoning of Mongolia, Transactions, vol. 41, pp. 19{83, The Joint Soviet-Mongolian Scientic Geological Research Expedition: Moscow, Nauka. [Google Scholar]
- Klinger Y, Etchebes M, Tapponnier P, Narteau C. 2011. Characteristic slip for five great earthquakes along the Fuyun fault in China. Nat Geosci 4: 389–392. https://doi.org/10.1038/ngeo1158 [CrossRef] [Google Scholar]
- Kurtz R, Klinger Y, Ferry M, Ritz J-F. 2018. Horizontal surface-slip distribution through several seismic cycles: The Eastern Bogd fault, Gobi-Altai, Mongolia. Tectonophysics 734–735: 167–182. https://doi.org/10.1016/j.tecto.2018.03.011 [CrossRef] [Google Scholar]
- Kurushin RA, Bayasgalan A, Ölziybat M, Enhtuvshin B, Molnar P, Bayarsayhan Ch, et al. 1997. The surface rupture of the 1957 Gobi-Altai, Mongolia, Earthquake. In Kurushin RA, Bayasgalan A, Ölziybat M, Enhtuvshin B, Molnar P, Bayarsayhan Ch, Hudnut KW, Lin J. eds. The Surface Rupture of the 1957 Gobi-Altai, Mongolia, Earthquake. Geological Society of America. Vol. 320, p. 0. https://doi.org/10.1130/0-8137-2320-5.1 [Google Scholar]
- Lal D. 1991. Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth Planet Sci Lett 104 (2): 424–439. https://doi.org/10.1016/0012-821X(91)90220-C [CrossRef] [Google Scholar]
- Marechal A, Ritz J-F., Ferry M, Mazzotti S, Blard P-H., Braucher R, et al. 2018. Active tectonics around the Yakutat indentor: New geomorphological constraints on the eastern Denali, Totschunda and Duke River Faults. Earth Planet Sci Lett 482: 71–80. https://doi.org/10.1016/j.epsl.2017.10.051 [CrossRef] [Google Scholar]
- Marrero SM, Phillips FM, Borchers B, Lifton N, Aumer R, Balco G. 2016. Cosmogenic nuclide systematics and the CRONUScalc program. Quat Geochronol 31: 160–187. https://doi.org/10.1016/j.quageo.2015.09.005 [CrossRef] [Google Scholar]
- Nissen E, Walker RT, Bayasgalan A, Carter A, Fattahi M, Molor E, et al. 2009a. The late quaternary slip-rate of the Har-Us-Nuur fault (Mongolian Altai) from cosmogenic 10Be and luminescence dating. Earth Planet Sci Lett 286(3–4): Art. 3–4. https://doi.org/10.1016/j.epsl.2009.06.048 [Google Scholar]
- Nissen E, Walker R, Molor E, Fattahi M, Bayasgalan A. 2009b. Late quaternary rates of uplift and shortening at Baatar Hyarhan (Mongolian Altai) with optically stimulated luminescence. Geophys J Int 177 (1): 259–278. https://doi.org/10.1111/j.1365-246X 2008.04067.x [CrossRef] [Google Scholar]
- Prentice CS, Kendrick K, Berryman K, Bayasgalan A, Ritz JF, Spencer JQ. 2002. Prehistoric ruptures of the Gurvan Bulag fault, Gobi Altai, Mongolia. J Geophys Res: Solid Earth 107(B12): Art. B12. https://doi.org/10.1029/2001JB000803 [CrossRef] [Google Scholar]
- Ritz JF, Brown ET, Bourlès DL, Philip H, Schlupp A, Raisbeck GM, et al. 1995. Slip rates along active faults estimated with cosmic-ray-exposure dates: Application to the Bogd fault, Gobi-Altaï, Mongolia. Geology 23 (11): 1019–1022. https://doi.org/10.1130/0091-7613(1995)023<1019:SRAAFE>2.3.CO;2 [CrossRef] [Google Scholar]
- Ritz J-F., Bourlès D, Brown ET, Carretier S, Chéry J, Enhtuvshin B, et al. 2003. Late Pleistocene to Holocene slip rates for the Gurvan Bulag thrust fault (Gobi-Altai, Mongolia) estimated with 10Be dates. J Geophys Res: Solid Earth 108(B3). https://doi.org/10.1029/2001JB000553 [Google Scholar]
- Ritz J-F., Vassallo R, Brown E, Carretier S, Bourlès D. 2006. Using in situ-produced 10 Be to quantify active tectonics in the Gurvan Bogd mountain range (Gobi-Altai, Mongolia). In: Situ-Produced Cosmogenic Nuclides and Quantification of Geological Processes, 415. https://doi.org/10.1130/2006.2415(06) [Google Scholar]
- Rizza M, Ritz J‐F, Prentice C, Vassallo R, Braucher R, Larroque C, et al., & ASTER Team. 2015. Earthquake geology of the Bulnay fault (Mongolia). Bull Seismol Soc Am 105 (1): Art. 1. https://doi.org/10.1785/0120140119 [Google Scholar]
- Rizza M, Ritz J-F., Braucher R, Vassallo R, Prentice C, Mahan S, et al. 2011. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia). Geophys J Int 186 (3): 897. https://doi.org/10.1111/j.1365-246X.2011.05075.x [CrossRef] [Google Scholar]
- Ruszkiczay-Rüdiger, Z., Kern, Z., Urdea, P., Madarász, B., & Braucher, R. (2021). Limited glacial erosion during the last glaciation in mid-latitude cirques (Retezat Mts, Southern Carpathians, Romania). Geomorphology, 384, 107719. https://doi.org/10.1016/j.geomorph.2021.107719 [CrossRef] [Google Scholar]
- Tapponnier P, Molnar P. 1979. Active faulting and cenozoic tectonics of the Tien Shan, Mongolia, and Baykal Regions. J Geophys Res: Solid Earth 84(B7): 3425–3459. https://doi.org/10.1029/JB084iB07p03425 [CrossRef] [Google Scholar]
- Vassalo R. 2006. Chronologie et évolution des reliefs dans la région Mongolie-Sibérie: Approche morphotectonique et géochronologique. [Google Scholar]
- Walker RT, Bayasgalan A, Carson R, Hazlett R, McCarthy L, Mischler J, et al. 2006. Geomorphology and structure of the Jid right-lateral strike-slip fault in the Mongolian Altai mountains. J Struct Geol 28 (9): 1607–1622. https://doi.org/10.1016/j.jsg.2006.04.007 [CrossRef] [Google Scholar]
- Wu C, Huang K, Yin A, Zhang J, Zuza AV, Haproff PJ, et al. 2024. Tectonic geomorphology and Quaternary slip history of the Fuyun fault, southwestern Altai Mountains, central Asia. Geosphere 20 (3): 735–748. https://doi.org/10.1130/GES02737.1 [CrossRef] [Google Scholar]
- Xu X, Sun X-Z., Tan X, Li K, Yu G, Etchebes M, et al. 2012. Fuyun fault: Long-term faulting behavior under low crustal strain rate. Dizhen Dizhi 34: 606–617. https://doi.org/10.3969/j.issn.0253-4967.2012.04.007 [Google Scholar]
- Yuan W, Carter A, Dong J, Bao Z, An Y, Guo Z. 2006. Mesozoic Tertiary exhumation history of the Altai Mountains, northern Xinjiang, China: New constraints from apatite fission track data. Tectonophysics 412: 183–193. https://doi.org/10.1016/j.tecto.2005.09.007 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.