Issue
BSGF - Earth Sci. Bull.
Volume 191, 2020
Special Issue Paleontology
Article Number 36
Number of page(s) 18
DOI https://doi.org/10.1051/bsgf/2020031
Published online 24 November 2020

© S. Crasquin et al., Published by EDP Sciences 2020

Licence Creative Commons
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1 Introduction

This is the second contribution on the LateTriassic ostracod fauna of the Mufara Formation outcropping in central eastern Sicily. Previously the ostracod fauna of the Tropites dilleri zone of the Tuvalian substage outcropping at Monte Scalpello has been analysed (Crasquin et al., 2018).

Now, a sedimentary level which is stratigraphically higher than the previous one and referable to the Tropites subbullatus/Anatropites spinosus zones of the Tuvalian substage, has been identified at the western side of the Monte Gambanera, nine kilometres south of Monte Scalpello (Fig. 1). The samples provided a rich and mostly well-preserved ostracod fauna.

thumbnail Fig. 1

Geographical location of Monte Gambanera, Sicily, Italy and sample locality.

2 Geological setting and studied samples

Monte Gambanera is a modest relief located in central eastern Sicily (F 269 III NE of the Carta d’Italia alla scala 1:25 000) to the southeast of the town of Castel di Iudica (EN), about 40 kilometres west of Catania (Fig. 1). Structurally Monte Gambanera is part of the “Monte Judica Units” (Lentini et al., 1987) and is inserted along the northern margin of the Gela Foredeep, in the geodynamic context of the southern end of the Maghrebian–Sicilian Southern Apennine nappes (Lentini et al., 1987; Grasso, 2001 inter alias).

In the Monte Gambanera area, the outcropping sediments are assigned to the Neo-Tethyan Mesozoic-Cenozoic complex which belongs to the so-called Imerese Succession (Lentini et al., 1987; Montanari, 1987; inter alias) or Imerese-Sicano Succession (Carrillat and Martini, 2009; Di Paolo et al., 2012). The Imerese Basin, where these sedimentary successions were deposited, was delimited by the Panormide Carbonate Platform to the west and the Trapanese Carbonate Platform to the east and south (Catalano and D’Argenio, 1982; Montanari, 1987; Speranza and Minelli, 2014). In this basin, therefore, occurs a transitional facies between the Panormide and Trapanese shelf facies, on the one hand, and a deep marine facies of the Neo-Tethys, on the other. The sedimentary succession of Monte Gambanera (Fig. 2) starts with the “Carnian Flysch” (Auct.) or the Mufara Formation (Schmidt di Friedberg and Trovò, 1962). This unit, outcropping in the southern slopes of the mount, mainly consists of dark grey pelites, which locally contain rare ammonites, with rare interbeds of fossiliferous calcarenites and fibrous calcite with Halobia spp. imprints. The Mufara Fm. has been analysed since the beginning of the nineteenth century by Calcara (1840, 1845), Nelli (1899a, b) and subsequently by Gemmellaro (1904), Scalia (1907a, b, 1909, 1910–1914), Maugeri Patanè (1934) and Lentini (1974). These latter authors attributed these sediments to the Carnian (Late Triassic).

Stratigraphically, the Mufara Fm. outcropping at Monte Scalpello, can be referred to the Tropites dilleri zones of the Tuvalian substage (Crasquin et al., 2018) due to the presence of Trachyceratidae (?Neoprotrachyceras, Trachysagenites, Pamphagosirenites) and Tropitidae. A foraminifera, conodont and palynomorph biostratigraphical analysis, allowed to attribute the levels of the Mufara Fm. outcropping at Monte Gambanera to the Tropites subbullatus/Anatropites spinosus zones of the Tuvalian substage (Fig. 3) (Carrillat, 2001; Carrillat and Martini, 2009). In this stratigraphic horizon, cropping out near masseria Balconere at the west side of Mount Gambanera, two levels consisting of slightly silty clays have been sampled (Fig. 1). As they are stratigraphicaly very close and the number of specimens is quite low, we consider here the ostracod assemblages of both samples in all. They represent the ostracod association of the present study.

Twenty kilograms of sediments were collected from each of the two stratigraphic levels. Sediments were routinely washed, dried in oven and sieved. Then, ostracod specimens were picked out from the 63 μm fraction. The ostracod specimens were examined and measured under a stereomicroscope, then photographed under an LMU Tescan Vega II SEM. The material is housed in the Palaeontological Museum of the University of Catania. The repository number of the specimens are given in the systematic descriptions and/or in plate explanations. Over 200 specimens have been picked out from the two samples. The specimens are silicified, quite well preserved and often consist of complete carapaces.

thumbnail Fig. 2

Stratigraphic series of Monte Gambanera, Sicily, Italy.

thumbnail Fig. 3

Carnian ammonoid zones in Monte Scalpello (Crasquin et al., 2018) and Monte Gambanera (present study) (after Lucas, 2010 modified).

3 Systematic palaeontology

Abbreviations. L: length; H: height; W: width; RV: right valve; LV: left valve; DB: dorsal border; VB: ventral border; AB: anterior border; PB: posterior border; PVB: postero-ventral border; AVB: antero-ventral border; PDB: postero-dorsal border; ADB: antero-dorsal border. We follow here the general classification of Moore (1961) and Horne et al. (2002).

Class Ostracoda Latreille (1806)

Subclass Podocopa Müller (1894)

Order Metacopida Sylvester-Bradley (1961)

Suborder Metacopina Sylvester-Bradley (1961)

Superfamily Healdioidea Harlton (1933)

Family Healdiidae Harlton (1933)

The systematics of Mesozoic Healdiidae is quite complicated and an important revision is necessary. We can’t do it here because we have not enough material and most of the discrimination between the genera were based on muscles scars which are not preserved in the present material. However, we try to establish a way to distinguish the Triassic Healdiidae genera when only the external characters of carapaces are available. Therefore we follow the work of Kristan-Tollmann (1973, 1979). The Palaeozoic forms are considered to belong to the subfamily Healdiinae Harlton (1933). The Triassic forms belong to Hungarellinae Kristan-Tollmann (1971) and Liassic ones to the subfamily Pseudohealdiinae Gründel (1964) (Kristan-Tollmann, 1971).

Subfamily Hungarellinae Kristan-Tollmann (1971)

In the Subfamily Hungarellinae, seven genera have been described so far: Triadiohealdia Kristan-Tollmann (1971); Aneisohealdia Kristan-Tollmann (1971); Labratella Gramm (1970); Hungarella Méhes (1911); Ogmoconchella Gründel (1964) emend Michelsen (1975); Signohealdia Kristan-Tollmann (1971); Torohealdia Kristan-Tollmann (1971).

A great confusion exists in the systematics of Late Permian – Triassic Healdiidae genera Hungarella – Ogmoconcha – Ogmoconchella. Some authors consider Hungarella Méhes (1911) (which has no type material – Gerry and Kozur (1973); but the Hungarian original material in under revision by E. Tóth, pers. com.) and Ogmoconcha Triebel (1941) as synonyms (Moore, 1961; Anderson, 1964). Shaver (in Moore 1961), Sohn (1968) and Kristan-Tollmann (1971, 1977a, b) don’t agree with this synonymy. In fact, the two genera are close but the valves are strongly dissymmetric in shape in Hungarella. The third genus, Ogmoconchella was introduced by Gründel (1964) and emended by Michelsen (1975) mainly due to the presence of a spine at PVB. In a recent revision, Forel and Crasquin (submitted) considered that until the relationship of Ogmoconcha and Hungarella is clarified, Hungarella should only been used for Triassic species to avoid artificially rooting Ogmoconcha down to the Triassic. Morphologically, the left and right valves of Hungarella are asymmetrical contrary to those of Ogmoconcha (Kristan-Tollmann, 1977a, b; Lord, 1982): in the absence of observable central muscle scars, all Triassic occurrences of Ogmoconcha and Ogmoconchella are re-attributed to the genus Hungarella.

Genus Hungarella Méhes (1911)

Type species Bairdia problematica Méhes (1911)

Hungarella forelae n.sp.

(Plate 1A)

2018 Ogmoconchella felsooersensis (Kozur, 1970) ; Crasquin et al. : 133, figs. 6A-B.

Etymology. Dedicated to Dr. Marie-Béatrice Forel, Muséum national d’Histoire naturelle, Paris.

Material. Four complete carapaces.

Holotype. One complete carapace, collection number PMC O 21 H 13/10/2019, Plate 1A

Paratype. One complete carapace, collection number PMC O 77 P 13/10/2019, Crasquin et al. (2018), fig. 6A.

Diagnosis. A species of Hungarella with triangular shape carapace, a posteroventral spine at RV, delicate flattening in blade shape at anterior border of RV.

Description. Massive carapace with a symmetric triangular shape; quite symmetric relative to H max; shape of left and right valves similar ; LV is significantly larger than RV and radius of curvature of PB smaller than anterior one; LV overlaps RV all around the carapace with minimum at PVB; maximum of H located in front of or at mid L; maximum of L at mid H or a little below; VB quite straight; presence of a very fine flattening all around the AB of RV in blade shape; small spine more or less distinct at PVB of RV; dorsal view biconvex with valves almost symmetric in shape and W max at or just behind mid L; surface seems to be smooth.

Dimensions. L = 706–919 μm; H = 529–622 μm (see Fig. 4).

Occurrence. Tuvalian– Carnian, Tropites dilleri zone (Crasquin et al., 2018) and Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Remarks. The present specimens are close to Ogmoconchella felsooersensis (Kozur, 1970) from the early Anisian of Hungary (Kozur, 1970, Monostori, 1995) and Romania (Sebe et al., 2013). In a previous paper (Crasquin et al., 2018) two of the present specimens were attributed to this O. felsooerensis. Based on the new material this determination was revised and they are attributed to Hungarella forelae. Here the carapace is more triangular with a smaller radius of curvature of PB; the blade at AB is also more expressed here. The specimens described by Forel et al. (2019b; Plate 4, particularly fig. E, K) as Hungarella gommerii Forel, 2019 from the Carnian of Sichuan (South China) are very close to our specimens. However, the Sichuan specimens are smaller (biggest one ≈ L = 600 μm, H = 400 μm) and show a smaller radius of curvature at both extremities. The largest specimen of H. forelae (Fig. 4) presents some morphological variability: overlap less important, at RV: the blade is located only at the ventral part of AB and occurrence of a small spine at the upper part of it, at LV: anteroventral blade seems to be also present. We consider that these morphological variations could be the expression of ontogenic variations but some doubt remains.

Hungarella siciliiensis n.sp.

(Plate 1B and 1C)

Etymology. The species name refers to Sicily where the locus typicus is located.

Material. Four complete carapaces.

Holotype. One complete carapace, collection number PMC O 22 H 13/10/2019, Plate 1B.

Paratype. One complete carapace, collection number PMC O 78 P 13/10/2019, Plate 1C.

Diagnosis. A species of Hungarella with triangular shape carapace, two posteroventral spines at RV, flattening in blade shape plus a spine at anterior border of RV, spine at AB of LV.

Description. Massive stocky carapace with a symmetric triangular shape; quite symmetric relative to H max; general shape of valves similar, but LV is significantly larger than RV and radius of curvature of PB smaller than anterior one; LV overlaps RV all around the carapace with minimum at PVB; maximum of H located at mid L or in front of mid L; maximum of L at mid H or a little below mid H; VB quite straight; presence of a very fine flattening at AB of RV in blade shape and a spine located near the maximum of convexity of AB; two more or less distinct spines at PVB of RV; one spine at AB of LV; dorsal view biconvex with valves almost symmetric in shape and W max at or just behind mid L; surface seems to be smooth.

Dimensions. L = 606–760 μm; H = 503–533 μm (see Fig. 4).

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this work).

Remarks. Hungarella siciliiensis n.sp. is very close to H. forelae n.sp.. The shapes of the valves are similar. The main differences between the two species is the presence of 2 spines at PVB of RV, presence of a spine at AB of booth valves and the less distinct “blade” at the AB of H. siciliiensis n.sp.. We can’t exclude that these differences are due to morphological variability of H. forelae n.sp. (sexual or ontogenic). However, for the time being we have not enough specimens to settle this question.

Hungarella sp. A

(Plate 1D)

Material. One complete carapace.

Dimensions. H = 538 μm; L = 775 μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Order Podocopida Sars (1866)

Suborder Bairdiocopina Gründel (1967)

Superfamily Bairdiodea Sars (1866)

Family Bairdiidae, Sars (1866)

Genus Bairdia McCoy (1844)

Type species Bairdia curta McCoy (1844)

Bairdia andrecrasquini n.sp.

(Plate 1E and 1F)

Etymology. In memory and honour of Dr. André Crasquin, father of the first author.

Material. Three complete carapaces and one broken carapace.

Holotype. One complete carapace, collection number PMC O 23 H 13/10/2019 (Plate 1E).

Paratype. One complete carapace, collection number PMC O 79 P 13/10/2019 (Plate 1F).

Diagnosis. A species of Bairdia with an elongated carapace, flattened AB and PB, and a ventral ridge along the posterior part of the VB and PB.

Description. Bairdioid carapace, quite elongated (H/L = 0.44); DB straight at RV and slightly convex at LV; ADB and PDB straight and quite symmetric with respect to DB; AB with large radius of curvature and maximum located above mid-H, AB strongly flattened laterally; VB slightly concave; PB slender and pointed, maximum of curvature located at lower 1/3 of H, strongly flattened laterally; presence of the ventral ridge which begins in posterior part of VB and runs along PB.

Remarks. This species is quite original and differs from all other ones by the specific characters (flattened AB and PB, and a ventral ridge along the posterior part of the VB and PB.). The shape of carapace is comparable to Bairdia sp. 4 sensu Forel et al. (2019b) from the Carnian of China and to Bairdia liviae Forel and Grădinaru (2018) from the Anisian of North Dobrogea, Romania (Forel and Grădinaru, 2018) but this last species does not show the specific characteristics.

Dimensions. H = 372–415 μm; L = 372–415μm.

Occurrence. Tuvalian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia gambaneraensis n.sp.

(Plate 1G and 1H)

2018 Bairdia cf. deformata Kollmann (1963); Crasquin et al.: 134, fig. 6K-L.

Etymology. Refering to the locus typicus Monte Gambanera, Sicily, Italy.

Material. Four complete carapaces.

Holotype. One carapace, collection number PMC O 24H 13/10/2019 (Plate 1G).

Paratype. One complete carapace, collection number PMC O 80 P 13/10/2019 (Plate 1H).

Diagnosis. A species of Bairdia with a very compact carapace, a continuously arched dorsal boarder and flattened and crenulated ventral parts of AB and PB

Description. Bairdioid carapace, quite short (H/L = 0.6–0.7), LV overlaps RV all around the carapace with minimum at AB and anterior part of VB; LV: all the dorsal part regularly arched; AB with large radius of curvature with maximum at mid-H, VB almost straight; BP with large radius of curvature with maximum at lower 1/3 of H; PDB arched; RV: DB straight, ADB straight with an angulation of 145°–150° against DB; AB with large radius of curvature; AVB and PVB flattened laterally in its very external part and with very fine crenulation; VB slightly concave; bairdioid beak quite absent; PDB straight with an angle of 125°–130° with DB; Presence of a shoulder on medio-dorsal part of LV; carapace biconvex and quite slender in dorsal view.

Dimensions. L = 886–910 μm; H = 600–643 μm.

Occurrence. Tuvalian, Tropites dilleri zone (Crasquin et al., 2018), Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this work).

Remarks. Bairdia gambaneraensis n.sp. is similar to Bairdia deformata Kollmann (1963) from the Rhaetian of Austria. The carapace of the present material is longer and presents a shoulder at LV. The new species has exactly the same general shape of valves as B. penovoidea Bolz (1971) from Late Norian–Rhaetian of Austria and differs from this species only by a larger AB, a longer DB and the ventral crenulation of AB and PB.

Bairdia cassiana (Reuss, 1869)

(Plate 1I)

1869 Cythere cassiana n.sp.; Reuss: 108.

1869 Bairdia cassiana (Reuss, 1869); Gümbel: 180, pl. 5, figs. 18-19.

1958 Bairdia cassiana (Reuss, 1869); Styk: 171, fig. 3/1.

1970 Bairdia cassiana (Reuss, 1869); Ulrichs: 705-706, pl. 1, figs. 1-2.

1978 Bairdia cassiana (Reuss, 1869); Kristan-Tollmann: 81, pl. 1, fig. 4; pl. 6, fig. 6.

1991 Bairdia cassiana (Reuss, 1869); Kristan-Tollmann et al.: 200, pl. 1, fig. 5.

1995 Bairdia cassiana rotundidorsata n.ssp.; Monostori: 42, Pl. 2, figs. 4-5.

1996 Bairdia (Rectobairdia) garciai n.sp.; Crasquin-Soleau and Grădinaru: 77-78, pl. 2, figs. 5, 8.

2013 Bairdia cassiana (Reuss, 1869); Monostori and Tóth: 310, pl. 2, figs. 7, 8, 10.

2014 Bairdia cassiana (Reuss, 1869); Mette et al.: pl. 2, fig. 1.

2014 Bairdia cassiana (Reuss, 1869); Monostori and Tóth: 26, pl. 1, fig. 14.

2018 Bairdia cassiana (Reuss, 1869) ; Crasquin et al.: 134, fig. 6M.

2019a Bairdia cassiana (Reuss, 1869), Forel et al., in press, figs. 4F–H.

Material. Four complete carapaces.

Dimensions. H = 486–533 μm; L = 840–948μm.

Occurrence. Early Carnian, Late Triassic, Southern Alps, Italy (Reuss, 1869; Gümbel, 1869; Ulrichs, 1970; Kristan-Tollmann, 1978); Carnian, Late Triassic, Święty Krzyż Mountain, Poland (Styk, 1958); Carnian, Late Triassic, Transdanubian Range, Hungary (Kristan-Tollmann, 1991); Late Anisian, Middle Triassic, Balaton Highland, Hungary (Monostori, 1995); Early Anisian, Middle Triassic, North Dobrogea, Romania (Crasquin-Soleau and Grădinaru, 1996); Ladinian, Middle Triassic, Balaton Highland, Hungary (Monostori and Tóth, 2013, 2014); Middle Anisian, Middle Triassic, Northern Calcareous Alps, Austria (Mette et al., 2014); Carnian, Late Triassic, Karavanke Mountains, Slovenia (Forel et al., 2019b); Tuvalian – Carnian, Tropites dilleri zone (Crasquin et al., 2018) and Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia cf. monostorii Forel and Grădinaru (2018)

(Plate 1J)

2018 Bairdia cf. humilis Monostori (1995) ; Crasquin et al.: 134, figs. 6i-j.

Material. One complete carapace and one broken carapace.

Dimensions. (complete carapace) H = 311 μm; L = 806μm.

Remarks. Forel and Grădinaru (2018) renamed Bairdia humilis Monostori (1995) in Bairdia monostorii nom. nov.

Occurrence. Tuvalian – Carnian, Tropites dilleri zone (Crasquin et al., 2018) and Tropites dilleri zones (Crasquin et al., 2018) and Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia sp.1 sensu Crasquin, Sciuto, Reitano, 2018

(Plate 1K)

2018 Bairdia sp. 1; Crasquin et al.: 134, fig. 6N-O

Material. One complete carapace and one right valve.

Dimensions. (complete carapace) H = 462 μm; L = 800μm.

Remarks. This species of Bairdia is characterized by the BD which is underlined by a blade, and by the reticulation of the carapace. The upper part of PB is quite horizontal and its radius of curvature is small. This could be a new species.

Occurrence. Tuvalian – Carnian, Tropites dilleri zone (Crasquin et al., 2018) and Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia sp. A

(Plate 1L)

Material. Two complete carapaces.

Dimensions. H = 400–440 μm; L = 785–882μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia sp. B

(Plate 1M)

Material. One complete carapace.

Dimensions. H = 600 μm; L = 1000μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia sp. C

(Plate 1N)

Material. One complete carapace.

Dimensions. H = 643 μm; L = 1147μm.

Remarks. This species is characterized by its triangular shape, the flattening of the ventral borders and the reticulated surface. The PB has a very small radius of curvature.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia sp. D

(Plate 1O)

Material. One complete carapace.

Dimensions. H = 496 μm; L = 1014 μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia sp. E

(Plate 1P)

Material. One complete carapace.

Dimensions. H = 476 μm; L = 953μm.

Remarks. This elongated species shows a blade underlying the BD.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this work).

Bairdia sp. F

(Plate 1Q)

Material. Two complete carapaces.

Dimensions. H = 600–615 μm; L = 885–953μm.

Remarks. This compact species (H/L = 0.64–0.67) has a flattened BP and AB and a shoulder at the dorsal part of the right valve.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Genus Hiatobairdia Kristan-Tollmann (1970)

Type species: Hiatobairdia subsymmetrica Kristan-Tollmann (1970)

Hiatobairdia subsymmetrica Kristan-Tollmann (1970)

(Plate 1R)

1970 Hiatobairdia subsymmetrica n. gen. n.sp.; Kristan-Tollmann: 268, pl. 35, figs. 1–3.

1976 Hiatobairdia subsymmetrica Kristan-Tollmann (1970); Tollmann: 276, pl. 163, fig. 14.

1978 Hiatobairdia subsymmetrica deformis n.sp.; Kristan-Tollmann: 83, pl. 4, figs. 1–7.

1979 Hiatobairdia subsymmetrica Kristan-Tollmann (1970); Kristan-Tollmann et al.: 147, pl. 6, fig. 4.

2018 Hiatobairdia subsymmetrica Kristan-Tollmann (1970); Crasquin et al.: 134, figs. 6F–H.

Material. Three left valves.

Dimensions. H = 412–569 μm; L = 812–969μm.

Occurrence. Early Carnian of South Tyrol, Italy (Tollmann, 1976; Kristan-Tollmann, 1978); Rhaetian of Austrian Alps (Kristan-Tollmann, 1970) and Central Iran (Kristan-Tollmann et al., 1979); Tuvalian – Carnian Tropites dilleri zone (Crasquin et al., 2018) and Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Hiatobairdia sp. A

(Plate 2A)

Material. One complete carapace and one right valve.

Dimensions. (complete carapace) H = 533 μm; L = 948 μm.

Remarks. This species has a straight DB and presents a ridge at the dorso-median part of the RV.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Genus Mirabairdia Kollmann (1963)

Type species Mirabairdia pernodosa Kollmann (1963)

Mirabairdia pernodosa Kollmann (1963)

(Plate 2B)

1963 Mirabairdia pernodosa n.sp.; Kollmann: 177-178, pl. 1, figs. 1-2, pl. 8, figs. 1–6.

1971a Triebelina (Mirabairdia) pernodosa illyrica n.spp.; Kozur: 17, fig. 1G.

1971a Triebelina (Mirabairdia) balatonica n.sp.; Kozur: 15-16, figs. 2I, 3C.

1971 Mirabairdia pernodosa Kollm.; Kristan-Tollmann: text-fig. 1/8.

1984 Triebelina (Mirabairdia) pernodosa illyrica Kozur; Salaj and Jendrejakova: pl. 2, figs. 1–4.

2014 Triebelina (Mirabairdia) pernodosa (Kollmann, 1963); Monostori and Tóth: 27-28, pl. 2, figs. 7-8.

Material. One complete carapace, 13 RV and 2 LV.

Dimensions. (complete carapace and LV) H (without spines) = 453–507 μm; L = 826–923μm.

Occurrence. Anisian, Western Carpathians, Slovakia (Salaj and Jendrejakova, 1984; Kozur, 1971a); Anisian, Balaton Highland, Hungary (Kozur, 1971a); Ladinian, Dolomites, South Tirol, Italy, (Kristan-Tollmann, 1971); Ladinian, Northern Calcareous Alps, Cassian beds, Austria (Kollmann, 1963); Ladinian E-Bakony, Hungary (Monostori and Tóth, 2014) ; Tuvalian– Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Genus Ptychobairdia Kollmann (1960)

Type species Ptychobairdia kuepperi Kollmann (1960)

Ptychobairdia iudicaensis n.sp.

(Plate 2C and 2D)

Etymology. From the locus typicus Castel di Iudica, Sicily, Italy.

Material. Four complete carapaces.

Holotype. One complete carapace, collection number PMC O 25 H 13/10/2019 (Plate 2C).

Paratype. One complete carapace, collection number PMC O 81 P 13/10/2019 (Plate 2D).

Diagnosis. A species of Ptychobairdia with a reticulated carapace which is flattened laterally all around except at the ventral part; LV significantly higher than RV, presence of vertical sulci at antero-dorsal part of the carapace.

Description. Carapace massive, high (H/L = 0.6); surface reticulated;

LV: Flattened laterally all around with maximum at DB and PB; BD strongly arched; AB with quite large radius of curvature and maximum at mid H; VB almost straight; BP with a very small curvature; two vertical sulci in dorsal part; LV strongly overlapping RV all around with maximum at BD.

RV: Strongly flattened all around except in ventral part; presence of a sulcus in AD part; BD long; AB with quite small radius of curvature; VB gently concave at its anterior part; BP very slender; DB, ADB, AVB, PVB, PDB straight.

Remarks. Ptychobairdia iudicaensis n.sp. is comparable with P. oberhauseri Kollmann (1960) from the Rhaetian of Austria (Kollmann, 1960) and the Carnian – Norian of Queen Charlotte Island, Canada (Arias and Lord, 2000). The latter species is longer, has a smaller AB and shows a horizontal sulcus. P. iudicaensis n.sp. differs from P. kristanae Kollmann (1960) from the Rhaetian – Early Jurassic of Austria (Kollmann, 1960, 1963) and the late Carnian of Sicily (Crasquin et al., 2018) by its reticulated carapace and the RV being clearly smaller than LV.

Dimensions. L = 720–1083 μm; H = 480–667 μm (see Fig. 5).

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Ptychobairdia leonardoi n.sp.

(Plate 2E and 2F)

Etymology. Dedicated to Leonardo Reitano, son of Agatino Reitano.

Material. Six right valves, eight left valves.

Holotype. One right valve, collection number PMC O 26 H 13/10/2019 (Plate 2E).

Paratype. One left valve, collection number PMC O 82 P 13/10/2019 (Plate 2F).

Diagnosis. A species of Ptychobairdia with a short coarse reticulated carapace, strongly compressed and finely reticulated AB and PB and a central node.

Description. Carapace with massive coarse reticulation, flattened laterally at AB and PB; DB straight at both valves and parallel to VB; ontogenic modifications of DB: at RV with nodules or blade at biggest specimens, at LV development of shoulders at each extremities in largest specimens; AB and PB with small radius of curvature, flattened laterally and covered by a fine reticulation; VB straight to slightly concave, with development of adventral structure; presence of a big node in median part of the carapace.

Remarks. Ptychobairdia leonardoi n.sp. differs from other species by the specific characters. Margarobairdia zapfei Kristan-Tollmann (1983) from the Anisian of South China (Kristan-Tollmann, 1983) has a similar valve shape but a different ornamentation.

Dimensions. L = 610–776 μm; H = 362–553 μm (see Fig. 6).

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Genus Petasobairdia Chen and Shi (1982)

Type species Petasobairdia bicornuta Chen and Shi (1982)

Petasobairdia jeandercourti n.sp.

(Plate 2G and 2H)

Etymology. Dedicated to past Pr. Jean Dercourt, who was the mentor of the first author.

Material. One broken carapace and three left valves.

Holotype. One broken carapace, collection number PMC O 27 H 13/10/2019 (Plate 2G).

Paratype. One left valve, collection number PMC O 83 P 13/10/2019 (Plate 2H).

Diagnosis. A species of Petasobairdia with a long reticulated carapace and elongated nodes at ADB and PDB of both valves.

Description. Carapace long (H/L ≈ 0.4), reticulated, strongly laterally compressed along AB, AVB, VB, PVB, PB; DB long and straight at both valves; presence of an elongated node at ADB and PDB of both valves; LV with two big horns with large base at each extremities of DB.

Dimensions. (holotype and paratype without spines) H = 348–373 μm; L = 826–853μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Remarks. Petasobairdia jeandercourti n.sp. is comparable to P. bicornuta Chen and Shi (1982) from the Late Permian of Hubei Province (Chen and Shi, 1982) which has a much shorter DB. P. longispinosa (Kozur, 1971a, b, c) from Anisian of Slovakia (Kozur, 1971a), Anisian and Middle Triassic of Romania (Salaj and Jendrejakova, 1984; Crasquin-Soleau and Grădinaru, 1996; Sebe et al., 2013), Anisian of Austria (Mette et al., 2014), Ladinian of Hungary (Monostori and Tóth, 2013) and Carnian of Southern Turkey (Forel et al., 2017) has a shorter DB and doesn‘t have AD and PD nodes.

Genus Urobairdia Kollmann (1963)

Typse species: Urobairdia austriaca Kollmann (1963)

Urobairdia angusta Kollmann (1963)

(Plate 2I)

1963 Urobairdia angusta n.g. n.sp.; Kollmann: 167, pl. 6, figs. 1–4.

1965 Urobairdia angusta Kollmann (1963); Széles: 414, pl. 6, fig. 5.

1995 Bairdia (Urobairdia) angusta recta n.sp.; Monostori: 43, pl.3, figs. 3-4.

2010 Urobairdia angusta Kollmann (1963); Zorn: 271-272, pl. 6, figs. 12–15.

2013 Bairdia (Urobairdia) angusta Kollmann (1963); Monostori and Tóth: 7, pl. 1, figs. 10–12.

2014 Bairdia (Urobairdia) angusta Kollmann (1963); Monostori and Tóth: 25-26, Pl. 1, fig. 14.

Material. Two complete carapaces

Dimensions. H = 440–500 μm; L = 826–871 μm.

Occurrence. Late Norian, Zlambach Formation, Austria (Kollmann, 1963; Zorn, 2010); Anisian, Felsőörs, Hungary (Monostori, 1995); Carnian, Nosztori Valley, Hungary (Széles, 1965); Ladinian-Carnian, Balaton Highland, Hungary (Monostori and Tóth, 2013, 2014); Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Genus Bairdiacypris Bradfield (1935)

Type species: Bairdiacypris deloi Bradfield (1935).

Bairdiacypris triassica Kozur (1971a, b, c)

(Plate 2J)

1911 ?Bairdia silicula Jones; Méhés: 16-17, pl. 1, figs. 19–21

1971 Bairdiacypris triassica n.sp.; Kozur: 5-6, figs. 2H–L

2013 Bairdiacypris triassica Kozur (1971a, b, c); Monostori and Tóth: 313-314, pl. 3, figs. 7-8

2014 Bairdiacypris triassica Kozur (1971a, b, c); Monostori and Tóth: 25, pl. 1, fig. 12

2017 Bairdiacypris triassica Kozur (1971c); Forel et al.: fig. 10U

Material. Two complete carapaces

Dimensions. H = 361–374 μm; L = 774–812μm

Occurrence. Early Carnian, Balaton highland, Hungary (Méhes, 1911; Kozur, 1971c), Ladinian, Nosztori Valley, Hungary (Monostori and Tóth, 2013); Ladinian – Carnien, Balaton Highland (Monostori and Tóth, 2014), Carnian, Mersin, Turkey (Forel et al., 2017); Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Family Bythocyprididae Maddocks (1969)

Genus Bythocypris Brady (1880)

Type species: Bythocypris reniformis Brady (1880)

Bythocypris sp. A

(Plate 2K)

Material. Two complete carapaces and two LV.

Dimensions. H = 433–500 μm; L = 775–1090 μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Family Acratiidae Gründel (1962)

Genus Acratia Delo (1930)

Type species: Acratia typica Delo (1930).

Acratia maugerii Crasquin et al. (2018)

(Plate 2L)

1991 Acratia sp.; Kristan-Tollmann: 196, pl. 1, fig. 1.

2013 Acratia goemoeryi (Kozur, 1970); Monostori and Tóth: 6-7, pl. 4, only fig. 2.

2018 Acratia maugerii n.sp.; Crasquin et al.: 137-138, fig. 7H–J.

Material. One complete carapace and two LV.

Dimensions. H = 373–464 μm; L = 866–1066μm.

Occurrence. Late Ladinian of NE Iran (Kristan-Tollmann, 1991), Balaton Highland, Hungary (Monostori and Tóth, 2013); Tuvalian– Carnian, Tropites dilleri zone (Crasquin et al., 2018) and Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Superfamily Cytheroidea Baird (1850)

Family Cytheruridae Müller (1894)

Subfamily Cytherurinae Müller (1894)

Genus Kerocythere Kozur and Nicklas (1970)

Type species Cythere raibliana Gümbel (1869)

Kerocythere dittainoensis n.sp.

(Plate 2M and 2N)

Etymology. Referring to the Dittaino river which flows near to the locus typicus.

Material. Four complete carapaces.

Holotype. One complete carapace, collection number PMC O 28 H 13/10/2019 (Plate 2M).

Paratype. One complete carapace, collection number PMC O 84 P 13/10/2019 (Plate 2N).

Diagnosis. A species of Kerocythere Kozur and Nicklas (1970) with a subrectangular reticulate carapace, presence of a lateral thick ridge which ascends at PB and occurrence of ventral ridges, one thick and several thinner ones parallel to VB.

Description. Carapace subrectangular, almost equivalve; BD long and straight, presence of a ridge on each side of hinge; presence of an eye spot; AB with large radius of curvature with maximum located below mid-H, flattened laterally and smooth; VB almost straight; PB with small radius of curvature with maximum around mid H, upper and lower part quite straight; H max at anterior angle; L max at PB; sulcus more or less developed in anterior 1/3 of L; surface reticulated and ornamented with possible pustules and ridges: one lateral, thick, reaching from antero-ventral part of the carapace up to PB, ascending in posterior part; group of ventral ridges, one thick parallel to VB and several (at least three) below.

Dimensions. L = 651–731 μm; H = 309–376 μm.

Occurrence. Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Remarks. Kerocythere dittainoensis n.sp. could be compared to Kerocythere reticulata Kristan-Tollmann (1972) from early Carnian of the Dolomites (Italy). This species doesn’t show the ventral group of ridges but has one ridge at the AD part of the carapace following the AB. The new species is also close to Kerocythere tricostata Forel, 2017 from the middle Carnian of southern Tauride-Anatolide platform (Turkey; Forel et al., 2017). At the present material the lateral ridge is longer, ascends at its posterior part and the surface is reticulated.

Family indet.

Genus Renngartenella Schneider 1957 (in Mandelstam et al., 1957)

Renngartenella sanctaecrusis Kristan-Tollmann (1973)

(Plate 2O)

1973 Renngartenella sanctaecrucis Kristan-Tollmann; Kristan-Tollmann and Hamedani: 215, 217–219, pl. 8, figs. 1–6; pl. 11, figs. 1, 3, 5, 6; pl. 12, fig. 10.

1979 Renngartenella sanctaecrucis Kristan-Tollmann (1973); Liebermann: 215, pl. 5, fig. 2.

1982 Renngartenella sanctaecrucis Kristan-Tollmann (1973); Basha: pl. 1, fig. 15.

1990 Renngartenella sanctaecrucis Kristan-Tollmann (1973); Gerry et al.: 96, pl. 1, figs 11–13.

1994 Renngartenella sanctaecrucis Kristan-Tollmann (1973); Monostori: 320, 322, figs 5/5–7.

2001 Renngartenella sanctaecrucis Kristan-Tollmann (1973); Keim et al.: fig. 8C.

2014 Renngartenella sanctaecrucis Kristan-Tollmann (1973); Monostori and Tóth: 29-30, pl.3, figs. 10–12.

2019a Renngartenella sanctaecrucis Kristan-Tollmann (1973); Forel et al.: fig. 7T-U, in press.

Material. Ten carapaces.

Dimensions. H = 316–439 μm; L = 567–900 μm.

Occurrence. Julian, early Carnian, Heiligkreuz Formation, Italy (Kristan-Tollmann and Hamedani, 1973); Carnian, Late Triassic, Italian Alps (Lieberman, 1979); Cordevolian, Carnian, Jordan (Basha, 1982); Carnian, Israel (Gerry et al., 1990); Carnian, Balaton Highland, Hungary (Monostori 1994; Monostori and Tóth, 2014); Carnian, Dolomites, Northern Italy (Keim et al., 2001); Carnian, Karavanke Mountains, Slovenia (Forel et al., 2019b); Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Superfamily Cypridoidea Baird (1845)

Family Limnocytheridae Klie (1938)

Genus Mockella Bunza and Kozur (1971)

Type species: Mockella muelleri Bunza and Kozur (1971); subsequent designation (Kozur, 1973)

Mockella barbroae n.sp.

(Plate 2P and 2Q)

2018 Mockella muelleri Bunza and Kozur (1971), Crasquin et al.: 139, figs. 7O-P.

Etymology. Personal dedication of the first author to Mrs. Barbro Lamy, in token of friendship and affection.

Material. Seven complete carapaces and two carapaces from Crasquin et al. (2018)

Holotype. One complete carapace, collection number PMC O 29 H 13/10/2019 (Plate 2P).

Paratype. One complete carapace, collection number PMC O 85 P 13/10/2019 (Plate 2Q).

Diagnosis. A species of Mockella with a long subrectangular carapace and a well-developed rib all around the carapace.

Description. Carapace sub rectangular, long (H/L = 0.535); eye spot well developed; AB with maximum of curvature located low between mid-H and lower 1/3 of H; VB straight; PB equivalent to AB in heteromorphs and smaller in tecnomorphs with maximum of curvature located above mid-H; anteromedian sulcus located in front of mid-L; posterior lobe well developed; anterior lobe less distinct; presence of a distinct ridge all around the carapace including BD; presence of additional ridges on lateral surface of the valves:

  • a median ridge which begins at maximum of curvature of AB and precedes on the posterior lobe; this ridge is high and stands out on the surface;

  • a lateral ridge below the lobes parallel to VB;

  • a small ridge in upper part of AB and below the eye spot.

The valve surface is reticulated with 4 small pustules distributed parallel to AB; in dorsal view, the flanks are parallel. Sexual dimorphism present, expressed by the thickness of the posterior part of the carapace in heteromorphs.

Dimensions. L = 270–492 μm; H = 150–275 μm (see Fig. 7).

Occurrence. Late Carnian (Tropites dilleri zone), Mufara Formation, Sicily, Italy Tuvalian – Carnian (Crasquin et al., 2018) and Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Remarks. Mockella barbroae n.sp. is very close to M. muelleri Bunza and Kozur (1971) from the late Carnian of Tyrol, Austria (Bunza and Kozur, 1971) and the Carnian of Monte Cammarata, Sicily (Cafiero and De Capoa Bonardi, 1982). In the study on the Mufara Formation (Crasquin et al., 2018) we attributed the specimens to the latter species. The very well preserved present material enabled us to review our attribution. At the present specimens the BP is larger, the median ridge ends at the posterior lobe and doesn’t reach the BP; an additional ridge is present below the lobes and the flanks are parallel in dorsal view.

Genus Simeonella Sohn (1968)

Type species: Simeonella brotzenorum Sohn (1968).

Simeonella brotzenorum Sohn (1968)

(Plate 2R)

1968 Simeonella brotzenorum n.sp.; Sohn: 23-24, pl. 2, figs. 1–4, 6–8, 12–22.

1971 Simeonella brotzenorum alpina n.sp.; Bunza and Kozur: 4-5, pl. 1, figs. 5–7, 13.

1971 Simeonella brotzenorum norica n.sp.; Bunza and Kozur: 5-6, pl. 1, fig. 3.

1973 Simeonella brotzenorum Sohn (1968); Kristan-Tollmann and Hamedani: text-fig. 13/2.

1974 Simeonella brotzenorum Sohn (1968); Hirsch and Gerry: pl. 2, figs. 1-2.

1979 Simeonella brotzenorum Sohn (1968); Lieberman: 103, pl. 5, figs. 6-7.

1979 Simeonella brotzenorum alpina Bunza and Kozur (1971); Styk: 119, pl. 28, figs. 9-10.

1982 Simeonella brotzenorum Sohn (1968); Basha: pl. 1, fig. 11.

1990 Simeonella brotzenorum Sohn (1968); Gerry et al.: 95, pl. 1, figs. 3–5.

1994 Simeonella brotzenorum nostorica n.sp.; Monostori: 324-325, text-fig. 6/1–6.

2001 Simeonella brotzenorum nostorica Monostori (1994); Keim et al.: fig. 8B.

Material. Two carapaces.

Dimensions. H = 269–296 μm; L = 446–488 μm.

Occurrence. Ladinian to Carnian, Makhtesh Ramon, Israel (Sohn, 1968; Hirsch and Gerry, 1974; Gerry et al., 1990); Carnian, Northern Calcareous Alps, Austria (Bunza and Kozur, 1971; Kristan-Tollmann and Hamedani, 1973); Carnian, Julian Alps, Italy (Lieberman, 1979; Keim et al., 2001); Carnian, Poland (Styk, 1958), Carnian, Jordan Valley, Jordan (Basha, 1982); Carnian, Balaton Highland, Hungary (Monostori, 1994; Monostori and Tóth, 2014); Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this work).

Family Candonidae Kaufmann (1900)

Genus Paracypris Sars (1866)

Paracypris? cf. redcarensis (Blake, 1876)

(Plate 3A)

Material. One complete carapace.

Dimensions. H = 257 μm; L = 561μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte

Gambanera, Central-Eastern Sicily, Italy (this study).

Paracypris? sp. A

(Plate 3B)

Material. One carapace.

Dimensions. H = 442 μm; L = 631 μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Order Platycopida Sars (1866)

Suborder Platycopina Sars (1866)

Superfamily Cavellinoidea Egorov (1950)

Family Cavellinidae Egorov (1950)

Genus Bektasia Özdikmen (2010)

Type species: Reubenella avnimelechi Sohn (1968).

Bektasia sp. A

(Plate 3C)

Material. One carapace.

Dimensions. H = 477 μm; L = 787 μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bektasia sp. B

(Plate 3D)

Material. One carapace.

Dimensions. H = 545 μm; L = 763 μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Order, genus and species indet.

Podocopida gen. sp. indet.

(Plate 3E)

Material. One carapace.

Dimensions. H = 188 μm; L = 364 μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Subclass Myodocopa Sars (1866)

Order Myodocopida Sars (1866)

Superfamily Polycopidea Sars (1866)

Family Polycopidae Sars (1866)

Genus Polycope Sars (1866)

Polycope baudi Crasquin-Soleau and Grădinaru (1996)

(Plate 3F)

1996 Polycope baudi n.sp.; Crasquin and Grădinaru: 15-16, figs. 1–3.

2013 Polycope baudi Crasquin and Grădinaru 1996; Sebe et al.: pl. 1, fig. 1.

Material. Two carapaces.

Dimensions. H = 330–328 μm; L = 357–376 μm.

Occurrences. Early – middle Anisian, Uzum Bair, Dobrogea, Roumania (Crasquin-Soleau and Grădinaru, 1996; Sebe et al., 2013); Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

?Polycope densoreticulata Monostori and Tóth (2013)

(Plate 3G)

2013 Polycope densoreticulata n.sp.; Monostori and Tóth: 5, pl. 1, figs. 4–7.

Material. Three carapaces.

Dimensions. H = 204–293 μm; L = 231–306 μm.

Occurrence. Ladinian, Balaton Highland, Hungary (Monostori and Tóth, 2013); Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Polycope sp. A

(Plate 3H)

Material. One carapace.

Dimensions. H = 289 μm; L = 278 μm.

Occurrences. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Order Halocyprida Dana (1853)

Suborder Halocypridina Dana (1853)

Superfamily Thaumatocypridoidea Müller (1906)

Family Thaumatocyprididae Müller (1906)

Genus Thaumatomma Kornicker and Sohn (1976)

Type species: Thaumatomma piscifrons Kornicker and Sohn (1976)

Thaumatomma ? sp.A

(Plate 3I)

Material. Two carapaces.

Dimensions. H = 525–600 μm; L = 575–600 μm.

Occurrence. Tuvalian– Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

thumbnail Plate 1

Ostracods from Late Triassic (Tuvalian-Carnian) of Monte Gambanera, Sicily, Italy. All the specimens are stored in the Palaeontological Museum of the University of Catania. The repository numbers are given as PCM (Palaeontological Museum Catania) O (Ostracods) X H (number of holotype) or X P (number of paratype) or FS X (Figured Specimen number) registration date. Scale bars = 200 µm. A: Hungarella forelae n.sp. A: holotype, right lateral view of a complete carapace, PMC O 21 H13/10/2019; paratype figured in Figure 6A (Crasquin et al., 2018). B-C: Hungarella siciliiensis n.sp. B: holotype, right lateral view of a complete carapace, PMC O 22 H 13/10/2019; C: paratype, right lateral view of a complete carapace, PMC O 78 P 13/10/2019. D: Hungarella sp. A: right lateral view of a complete carapace, PCM O FS49. E-F: Bairdia andrecrasquini n.sp. E: holotype right lateral view of a complete carapace, PMC O 23 H 13/10/2019; F: paratype, right lateral view of a complete carapace, PMC O 79 P 13/10/2019. G-H: Bairdia gambaneraensis n.sp. G: holotype, right lateral view of a complete carapace, PMC O 24 H 13/10/2019; H: paratype, right lateral view of a complete carapace, PMC O 80 P 13/10/2019. I: Bairdia cassiana (Reuss, 1869). Right lateral view of a complete carapace, PCM O FS50. J: Bairdia cf. monostorii Forel and Grădinaru (2018). Right lateral view of a complete carapace, PCM O FS51. K: Bairdia sp.1 sensu Crasquin et al. (2018). Right lateral view of a complete carapace, PCM O FS52. L: Bairdia sp. A. Right lateral view of a complete carapace, PCM O FS53. M: Bairdia sp. B. Right lateral view of a complete carapace, PCM O FS54. N: Bairdia sp. C. Right lateral view of a complete carapace, PCM O FS55. O: Bairdia sp. D. Right lateral view of a complete carapace, PCM O FS56. P: Bairdia sp. E. Right lateral view of a complete carapace, PCM O FS57. Q: Bairdia sp. F. Right lateral view of a complete carapace, PCM O FS58. R: Hiatobairdia subsymmetrica Kristan-Tollmann (1970). Lateral view of a left valve, PCM O FS59.

thumbnail Fig. 4

Height (H)/length (L) diagram of figured specimens of the two new Hungarella species. In blue: H. forelae n.sp.; in orange: H. siciliiensis n.sp.

thumbnail Plate 2

Ostracods from Late Triassic (Tuvalian-Carnian) of Monte Gambanera, Sicily, Italy. All the specimens are stored in the Palaeontological Museum of the University of Catania. The repository numbers are given as PMC (Palaeontological Museum Catania) O (Ostracods) X H (number of holotype) or X P (number of paratype) or FS X (Figured Specimen number) registration date. Scale bars = 200 μm except P-Q, R = 100 µm. A: Hiatobairdia sp. A. Right lateral view of a complete carapace, PMC O FS60. B: Mirabairdia pernodosa Tollmann, 1963. Right lateral view of a complete carapace, PMC O FS61. C-D: Ptychobairdia iudicaensis n.sp. C: holotype, right lateral view of a complete carapace, PMC O25 H 13/10/2019; D: paratype, right lateral view of a complete carapace, PMC O 81 P 13/10/2019. E-F: Ptychobairdia leonardoi n.sp. E: holotype, lateral view of a right valve, PMC O 26 H 13/10/2019; F: paratype, lateral view of a left valve, PMC O 82 P 13/10/2019. G-H: Petasobairdia jeandercourti n.sp. G: holotype, right lateral view of a complete carapace, PMC O 27 H 13/10/2019; H: paratype, left lateral view of a complete carapace, PMC O 83 P 13/10/2019. I: Urobairdia angusta Kollmann (1963). Right lateral view of a complete carapace, PCM O FS62. J: Bairdiacypris triassica Kozur (1971c). Right lateral view of a complete carapace, PCM O FS63. K: Bythocypris sp. A. Left lateral view of a complete carapace, PCM O FS64. L: Acratia maugerii Crasquin et al. (2018). Left lateral view of a complete carapace, PCM O FS65. M-N: Kerocythere dittainoensis n.sp. M: holotype, lateral view of a right valve, PMC O 28 H 13/10/2019; N: paratype, lateral view of a left valve, PMC O 84 P 13/10/2019. O: Renngartenella sanctaecrusis Kristan-Tollmann (1973) (♂). Right lateral view of a complete carapace, PCM O FS66. P-Q: Mockella barbroae n.sp. P: holotype, right lateral view of a complete carapace, PMC O 29 H 13/10/2019; Q: paratype, right lateral view of a complete carapace, number PMC O 85 P13/10/2019. R: Simeonella brotzenorum Sohn (1968). Lateral view of a right valve, PCM O FS67.

thumbnail Fig. 5

Height (H)/length (L) diagram for Ptychobairdia iudicaensis n.sp. In red: right valves; in blue left valves.

thumbnail Fig. 6

Height (H)/length (L) diagram for Ptychobairdia leonardoi n.sp. In blue: left valves; in red: right valves.

thumbnail Fig. 7

Height (H)/length (L) diagram for Mockella barbroae n.sp.

thumbnail Plate 3

Ostracods from Late Triassic (Tuvalian-Carnian) of Monte Gambanera, Sicily, Italy. All the specimens are stored in the Palaeontological Museum of the University of Catania. The repository numbers are given as PCM (Palaeontological Museum Catania) O (Ostracods) FS X (Figured Specimen number) registration date. A, B, C, D: Scale bars = 200 μm; E, F, G, H, I: scale bars = 100µm. A: Paracypris? cf. redcarensis (Blake, 1876). Lateral view of a right valve, PCM O FS68. B: Paracypris? sp. A. Right lateral view of a complete carapace, PCM O FS68. C: Bektasia sp. A. Right lateral view of a complete carapace, PCM O FS69. D: Bektasia sp. B. Right lateral view of a complete carapace, PCM O FS70. E: Podocopida gen. sp. indet. Lateral view of a right valve, PCM O FS71. F: Polycope baudi Crasquin-Soleau and Grădinaru (1996). Lateral view of a complete carapace, PCM O FS72. G: ?Polycope densoreticulata Monostori and Tóth (2013). Lateral view of a complete carapace, PCM O FS73. H: Polycope sp. A. Lateral view of a complete carapace, PCM O FS74. I: Thaumatomma? sp. A. Right lateral view of a complete carapace, PCM O FS75.

6 Assemblage analysis

The assemblage is composed of 200 specimens belonging to 10 families (plus two undetermined families), 19 genera and 37 species. The 10 determined families present are: Healdiidae, Bairdiidae, Bythocyprididae, Acratiidae, Cytheruridae, Limnocytheridae, Candonidae, Cavellinidae, Polycopidae, Thaumatocyprididae. The relative abundance of the different families expressed by the numbers of genera and species is given in Figure 8.

The Bairdiidae, the most abundant family in number of species (53%) and genera (37%) (Fig. 8), are present in marine environments ranging from very shallow waters up to deep seas. The morphology of the family changes from massive thick-shelled forms in nearshore environments to elongate thin-shelled forms beyond continental slope (particularly in genus Bairdia). In the same way, the carapaces of Acratiidae lengthen with depth (as example: Acratia goemeryi Kozur (1970) from Early-Smithian- to Late-Carnian-Triassic; see Forel et al., 2017). Here these two families present thick and ornamented shells (Plates 1E1R and 2A2L) which testify an open marine environment with moderate energy. The Healdiidae do also show a change of morphology with depth. The specimens with massive shells and small spines are neritic inhabitants (Plate 1A1D) of relatively nearshore muddy conditions. In the deep sea, the specimens are thin shelled, elongate with long spines (e.g. Palaeozoic genus Timorhealdia Bless, 1987). In other families, some genera also show different morphological adaptation from neritic to deep sea environments (Healdia, Microcheilinella etc. see synthesis Tab. 1 in Crasquin and Horne). The ratios between these different morphologies have been used to characterize the depth of ate Palaeozoic and Early Mesozoic environments since quite a long time (model of Lethiers and Raymond, 1991). The present assemblage doesn’t include any unequivocal deep water taxa such as those discovered recently in the Carnian of Southern Turkey for example (Forel et al., 2017) or of Sichuan, South China (Forel et al., 2019b). Although the number of specimens is very low, the diversity is quite high with 10 determined families (plus 2 undetermined), 17 genera and 37 species. This biodiversity testifies normal marine conditions and absence of environmental stress. The taxon Simeonella brotzenorum Sohn (1968) which is characteristic of brackish – hypersaline conditions (Gerry et al., 1990; Monostori, 1994) is present but with only 2 carapaces. Quite all the specimens are preserved with the complete carapace. After the death of the specimens, the carapaces tend to open in a few hours (Guernet and Lethiers, 1989). This could suggest a rapid burial in the sediments due to a high sedimentation rate. Similar taphonomic characteristics were also found by Pokorny (1964) and Oertli (1971) for pelitic layer associations deposited in basins with extremely rapid distal sedimentation. We compare the results of the Tropites subbullatus/Anatropites spinosus zones (this study), with the data obtained in levels just below in Tropites dilleri zone (Crasquin et al., 2018) (Fig. 9). Through time, the assemblage became more diversified as recorded by the increasing number of families (8 to 12), genera (14 to 18) and species (23 to 36). The percentage of Bairdiidae decreases in favour of two families being absent before, Cytheruridae and Limnocytheridae which include typical genera of nearshore environments such as Simeonella, Mockella and Kerocythere. We observe also the presence of the brackish – hypersaline species Renngartenella sanctaecrusis Kristan-Tolmann, which was suggested by Gerry et al. (1990) to be a stenohaline ostracod.

For Monostori (1994), the dominance of three genera Kerocythere – Renngartenella – Simeonella seems to be a signal of salinity variability. Although these genera are not dominant here, their presence testifies a shallowing of environment from the Tropites dilleri zone to the Tropites subbullatus/Anatropites spinosus zones. The genus Acratia is a typical Palaeozoic form present both in Eifelian (neritic) and Thuringian (deep) mega-assemblages (see synthesis in Crasquin and Horne, 2018). Nevertheless, this genus survived the Permian – Triassic extinction events. In 2013, Crasquin and Forel mentioned the last occurrence of neritic Acratia in the Spathian and of deep marine Acratia in the Anisian (Crasquin-Soleau and Grădinaru, 1996). Since then, some deep marine forms were also found in the Ladinian of Balaton Highland (Monostori and Tóth, 2013), in the Carnian of Turkey (Forel et al., 2017) and Slovenia (Forel et al., 2019b). In 2013, Monostori and Tóth, described Acratia goemeryi from Ladinian neritic sediments of a borehole in Hungary. Three species of Acratia from the Carnian of Karavanke Mountains, Solvenia, are figured in Forel et al. (2019b). The occurrence of Acratia maugerii in the present material confirms that Acratia occurs in neritic environments of the Carnian.

thumbnail Fig. 8

Diversity of ostracod families from the Tropites subbullatus/Anatropites spinosus zones represented by number of genera (A) and species (B) in the samples of Mount Gambanera.

thumbnail Fig. 9

Diversity of ostracod families from the Tropites dilleri zone represented by the number of genera (A) and species (B) in the samples of Mount Scalpello (data from Crasquin et al., 2018).

7 Conclusion

The palaeoecological interpretation of the sedimentary facies of the Mufara Formation is extremely difficult due to the absence of intact outcrops. The original stratification and the sedimentary structures have been completely destroyed because of continuous agricultural processing of the pelitic soils and their very consistency which determines frequent drifts and landslides. In very few and limited locations parallel laminations and sandy levels were observed. The only useful palaeoecologic data are those obtained from the palaeontological analysis. The results of the ostracod fauna analysis allow the following conclusions:

  1. The ostracod assemblage doesn’t yield any evidence of deep marine taxa both at Mt. Scalpello (Crasquin et al., 2018) and at Mt. Gambanera. The Mufara Basin, therefore, can be interpreted as a shallow marine basin (Fig. 10) within the deepest and most distal part of a vast continental shelf where the carbonate platforms Panormide, Trapanese, Saccense were located. The deep marine ostracod fauna discovered recently in the Carnian of Southern Turkey (Forel et al., 2017) or in the South China (Forel et al., 2019a) suggests a deepening of the Neo-Tethys basin towards the more eastern areas.

    thumbnail Fig. 10

    Palaeogeographic reconstruction of Tethyan (left) and central Mediterranean (right) areas during Late Triassic (after Di Stefano et al., 2015, modified).

  2. The Mufara Basin was a site of rapid and intense sedimentation probably linked to rapid bottom currents which, sometimes, displaced and transported (also in vivo) microfaunas from more superficial neighbouring environments. It is pointed out here that the sediments of the Mufara Basin at Monte Gambanera do not show vortex structures which were recognized in the Mufara Basin at Monte Scapello. This suggests, that the sediment environment of the Mufara Formation outcrops at Monte Gambanera (Fig. 11) was more distal and less turbulent than that of Mt which was effected by strong bottom traction and swirling currents (Crasquin et al., 2018).

    thumbnail Fig. 11

    Schematic palaeoenvironmental model for the late Carnian Mufara Formation basin (see also Fig. 10).

  3. According to many authors, the Mufara basin is located in a transitional position between the bathyal Neotethys facies to the south and southeast and the carbonate platforms that surround it (Figs. 10 and 11).

Taxa registration

Hungarella forelae : urn:lsid:zoobank.org:act:DE0CE7FE-10E0-4F8E-8DC8-C829D3D5485B

Hungarella siciliiensis : urn:lsid:zoobank.org:act:942B09CB-1014-4CD3-A244-4EC52F0633B9

Bairdia andrecrasquini : urn:lsid:zoobank.org:act:B42972B5-54DF-4435-9C2B-E3DD46610140

Bairdia gambaneraensis : urn:lsid:zoobank.org:act:DAB3F723-F5D1-40B1-B6BD-CC37BC92DD82

Ptychobairdia iudicaensis : urn:lsid:zoobank.org:act:FF7725BE-043C-4295-AD53-9023B9321380

Ptychobairdia leonardoi : urn:lsid:zoobank.org:act:FC93D70B-B0C0-4898-85BC-A4F3DA21E560

Petasobairdia jeandercourti : urn:lsid:zoobank.org:act:84DA8AAD-D794-4F58-A432-531D6DE12EBF

Kerocythere dittainoensis : urn:lsid:zoobank.org:act:E47E2789-5811-4B0E-B05C-9C5E6AAC6216

Mockella barbroae : urn:lsid:zoobank.org:act:4ADD818E-6B13-4162-B348-1A807B0CF100

Acknowledgements

The authors are grateful to the reviewers and the editors for detailed suggestions and comments to the manuscript. Thanks are due to Mr. Alfio Viola (Electronic Microscopy Laboratory, University of Catania) for SEM photos assistance. Catania Palaeoecological Research Group contribution no 456.

We thanks the two reviewers Emőke Tóth from Eötvös Loránd University, Budapest, Hungary and Wolfgang Mette from Innsbruck University, Austria for their fruitful comments to improve our paper.

Palaeoecological Research Group contribution no 456. This research was supported by the University of Catania “Piano della Ricerca 2016/2018 (code no. 227221132118)” and “PiaCeRi – Piano Incentivi per la Ricerca di Ateneo 2020-22 linea di intervento 2”.

References

  • Anderson FW. 1964. Rhaetic Ostracoda. Bulletin of the Geological Survey of Great Britain 21: 133–174. [Google Scholar]
  • Arias C, Lord A. 2000. Upper Triassic marine Ostracoda from the Queen Charlotte Islands British Columbia Canada. Revista Española de Micropaleontologia 32: 175–192. [Google Scholar]
  • Baird W. 1845. Arrangement of the British Entomostraca, with a list of species, particularly noticing those which have as yet been discovered within the bounds of the club. Transactions of Berwicks Naturalist Club 2: 145–158. [Google Scholar]
  • Baird W. 1850. The Natural History of the British Entomostraca. London: Ray Society, 364 p. [Google Scholar]
  • Basha SHS. 1982. Microfauna from the Triassic rocks of Jordan. Revue de Micropaléontologie 25: 3–11. [Google Scholar]
  • Blake JE. 1876. Subclass Entomostraca. In: Late R, Blake JR, eds. The Yorkshire Lias, pp. 429–435. [Google Scholar]
  • Bless MJM. 1987. Lower Permian ostracodes from Timor (Indonesia). Proceedings of Koninklijke Nederlandse Akademie van Wetenschappen 90: 1–13. [Google Scholar]
  • Bolz H. 1971. Die Zlambach-Schichten (alpine Obertrias) unter besonderer Berücksichtigung der Ostrakoden, 1: Ostrakoden der Zlambach-Schichten, besonders Bairdiidae. Senckenbergiana Lethaea 52: 129–283. [Google Scholar]
  • Bradfield HH. 1935. Pennsylvanian ostracods of the Ardmore Basin, Oklahoma. Bulletin of American Paleontology 22: 1–145. [Google Scholar]
  • Brady GS. 1880 Report on the Ostracoda dredged by H.M.S. Challenger during the Years 1873–1876. Report on the Scientific Results of the Voyage of H.M.S. Challenger during the years 1873–76. Zoology 1(Part 3): 1–184. [Google Scholar]
  • Bunza G, Kozur H. 1971. Beiträge zur Ostracodenfauna der tethyalen Trias. Geologisch Paläontologische Mitteilungen Innsbruck 1: 1–76. [Google Scholar]
  • Cafiero B, De Capoa Bonardi P. 1982. Biostratigrafia del Trias pelagico della Sicilia. Bollettino della Società Paleontologica Italiana 21(1): 35–71. [Google Scholar]
  • Calcara P. 1840. Monografie dei generi Clausilia e Bulimo, coll’aggiunta di alcune nuove specie di conchiglie siciliane esistenti nella collezione della Sig. Teresa Gargotta in Salinas, 54 p. [Google Scholar]
  • Calcara P. 1845. Cenno sui molluschi viventi e fossili della Sicilia da servire di supplemento ed insieme di critiche osservazioni all’opera di R.A. Philippi. Reale stamperia e Libreria Palermo, 65 p. [Google Scholar]
  • Carrillat A. 2001. Palaeoenvironmental reconstruction of the Mufara Formation (Upper Triassic, Sicily): biostratigraphy, organic facies, sedimentological and geochemical approach. Thèse Université de Genève, Terre et Environnement 27: 269 p. [Google Scholar]
  • Carrillat A, Martini R. 2009. Palaeoenvironmental reconstruction of the Mufara Formation (Upper Triassic, Sicily): High resolution sedimentology, biostratigraphy and sea-level changes. Palaeogeography, Palaeoclimatology, Palaeoecology 283: 60–76. [CrossRef] [Google Scholar]
  • Catalano R, D’Argenio B. 1982. Schema geologico della Sicilia occidentale. In: Catalano R, D’Argenio B, eds. Guida alla geologia della Sicilia occidentale. Guide geologiche regionali. Memorie della Società Geologica Italiana suppl. A2: 9–41. [Google Scholar]
  • Chen DQ, Shi CG. 1982. Latest Permian ostracoda from Nantong, Jiangsu and from Miannyang, Hubei. Bulletin of the Nanjing Institute of Geology and Palaeontology. Academia Sinica 4: 105–152 (in Chinese). [Google Scholar]
  • Crasquin S, Horne DJ. 2018. The palaeopsychrosphere in the Devonian. Lethaia 51: 547–563. [CrossRef] [Google Scholar]
  • Crasquin S, Sciuto F, Reitano A. 2018. Late Carnian (Tuvalian, Tropites dilleri zone) ostracods (Crustacea) from the Mufara Formation (Monte Scalpello, Central-Eastern Sicily, Italy. Annales de Paléontologie 104: 129–142. [CrossRef] [Google Scholar]
  • Crasquin-Soleau S, Grădinaru E. 1996. Early Anisian ostracode fauna from the Tulcea unit (Cimmerian Notrh Dobrogean orogeny, Romania). Annales de Paléontologie 82: 59–116. [Google Scholar]
  • Dana J. 1853. Tribe III: Cyproidea, Ostracoda. In: Crustacea of United States Exploring Expedition during the Years 1838, 1839, 1840, 1841, 1842, under the Command of Charles Wilkes, U.S.N., with Atlas of 96 plates, 13(2), 1277–1304. Philadelphia: C. Sherman. [Google Scholar]
  • Delo DM. 1930. Some Upper Carboniferous ostracods from the Shale Basin of Western Texas. Journal of Paleontology 4: 152–178. [Google Scholar]
  • Di Paolo L, Aldega L, Corrado S, Mastalerz M. 2012. Maximum burial and unroofing of Mt. Judica recess area in Sicily: implication for the Apenninic–Maghrebian wedge dynamics. Tectonophysics 530-531: 193–207. [CrossRef] [Google Scholar]
  • Di Stefano P, Favara R, Luzio D, Renda P, Cacciatore MS, Calò M, et al. 2015. A regional-scale discontinuity in western Sicily revealed by a multidisciplinary approach: A new piece for understanding the geodynamic puzzle of the southern Mediterranean. Tectonics 34: 1–19. [CrossRef] [Google Scholar]
  • Drexler E. 1958. Foraminiferen und Ostracoden aus dem Lias von Siebeldingen/Pfalz. Geologisches Jahrbuch 75: 475–554. [Google Scholar]
  • Egorov VG. 1950. Ostrakody franskogo iarusa Russkoi platformy, 1. Kloedenellidae: Moscow-Leningrad Vses. Neft. Nauchno-Issled. Geol. Razved. Inst., Moscov, Filial, 140 p. [Google Scholar]
  • Forel M-B, Crasquin S. submitted. Bounded by crises: an updated view of the evolution of marine ostracods during the Triassic. Marine Micropalaeontology. [Google Scholar]
  • Forel M-B, Grădinaru E. 2018. First report of Ostracods (Crustacea) associated with Bithynian (Anisian, Middle Triassic) Tubiphytes-microbial reef in the North Dobrogean Orogen (Romania). Papers in Palaeontology 4(2): 211–244. [CrossRef] [Google Scholar]
  • Forel M-B, Tekin UK, Okuyucu C, Bedi Y, Tuncer A, Crasquin S. 2017. Discovery of a long-term refuge for ostracods (Crustacea) after the end Permian extinction: a unique Carnian (Late Triassic) fauna from the Mersin Melange, southern Turkey. Journal of Systematic Palaeontology 17(1): 9–58. [CrossRef] [Google Scholar]
  • Forel M-B, Kolar-Jurkovsek T, Jurkovsek B. 2019a. Ostracods from the “Raibl Beds” (Carnian, Late Triassic) of Belca section in Karavanke Mountains, Northwestern Slovania. Geodiversitas, in press. [Google Scholar]
  • Forel M-B, Thuy B, Wisshak M. 2019b. Digging into the ancestral stocks of Jurassic lineages: ostracods (Crustacea) from Carnian (Late Triassic) sponge mounds from the Maantang Formation (South China). Bulletin de la Société Géologique de France 190(9): 29. [Google Scholar]
  • Gemmellaro GG. 1904. I Cefalopodi del Trias Superiore della regione occidentale della Sicilia. Giornale di Scienze Naturali ed Economiche di Palermo 24: 319. [Google Scholar]
  • Gerry E, Honigstein A, Rosenfeld A, Hirsch F, Eshet Y. 1990. The Carnian salinity crisis: ostracods and palynomorphs as indicators of palaeoenvironment. In: Whatley R, Maybury C, eds. Ostracoda and global events. London: Chapman & Hall, pp. 87–99. [CrossRef] [Google Scholar]
  • Gramm MN. 1970. Otpechatki adduktora Triasovykh cytherellid (Ostracoda) Primor’ya i nekotorye teorii filembriogeneza. Paleontologicheskii Zhurnal 1: 88–103. [Google Scholar]
  • Grasso M. 2001. The apenninic-Maghrebian orogen in southern Italy, Sicily and adjacent areas. In: Vai GB, Martini IP, eds. Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins. Kluver Academic Publication GB, pp. 255–286. [CrossRef] [Google Scholar]
  • Gründel J. 1962. Zur Taxionomie der Ostracoden der Gattendorfia Stufe Thüringens. Freiderger Forschungchelfe C 151: 51–105. [Google Scholar]
  • Gründel J. 1964. Zur Gattung Healdia (Ostracoda) und zu einigen verwandten Formen aus dem unter Jura. Geologie 13: 1–469. [Google Scholar]
  • Gründel J. 1967. Zur Grossgliederung der Ordnung Podocopida G.W. Müller, 1894. Neues Jahrbuch für Geologie and Palaontologie, Monatshefte 6: 321–332. [Google Scholar]
  • Guernet C, Lethiers F. 1989. Ostracodes et recherche des milieux anciens : possibilités et limites. Bulletin de la Société Géologique de France 8(5): 577–588. [CrossRef] [Google Scholar]
  • Gümbel CW. 1869. Uber Foraminiferen, Ostracoden und mikroskopische Tier-Uberreste in den St. Cassianer und Raibler Schichten. Jahrbuch Geologischen Reichsanstalt 19: 175–186. [Google Scholar]
  • Harlton BH. 1933. Micropaleontology of the Pennsylvanian Johns Valley Shale of Ouachita Mountains, Oklahoma and its relationships to the Mississippian Caney Shale. Journal of Paleontology 7: 3–29. [Google Scholar]
  • Hirsch F, Gerry E. 1974. Conodont and Ostracode-biostratigraphy of the Triassic in Israel. Schriftenreihe der Erdwissenschaftlichen Kommissionen, Österreichische Akademie der Wissenschaften 2: 107–112. [CrossRef] [Google Scholar]
  • Horne DJ, Cohen A, Martens K. 2002. Taxonomy, morphology and biology of Quaternary and living Ostracoda. In: Holmes JA, Chiva AR, eds. The Ostracoda: Applications in Quaternary Research. American Geophysical Union, Geophysical Monograph 131: 5–36. [CrossRef] [Google Scholar]
  • Kaufmann A. 1900. Über zwei neue Candona-Arten aus der Schweiz. Zoologischer Anzeiger 23: 108–110. [Google Scholar]
  • Keim L, Brandner R, Krystyn L, Mette W. 2001. Termination of carbonate slope progradation: An example from the Carnian of the Dolomites, Northern Italy. Sedimentary Geology 143: 303–323. [CrossRef] [Google Scholar]
  • Klie W. 1938. Ostracoda, Muschelkrebse. In: Dahl, Die Tierwelt Deutschlands. Jena 34(3): 1–230. [Google Scholar]
  • Kollmann K. 1960. Ostracoden aus der alpinen Trias Österreichs. I Parabairdia n. g.und Ptychobairdia n. g. (Bairdiidae). Jahrbuch der Geologischen Bundesanstalt 5: 79–105. [Google Scholar]
  • Kollmann K. 1963. Ostracoden aus der alpinenTrias. II. –Weitere Bairdiidae. Jahrbuch der Geologischen Bundesanstalt Wien 106: 121–203. [Google Scholar]
  • Kornicker LS, Sohn IG, 1976. Phylogeny, ontogeny, and morphology of living and fossil Thaumatocypridacea (Myodocopa: Ostracoda). Smithsonian Contribution to Zoology 219: 1–124 [Google Scholar]
  • Kozur H. 1970. Neue Ostracoden-Arten aus dem Obersten Anis des Bakonyhochlandes (Ungarn). Berichte des naturwissenschaftlich-medizinischen Vereins in Innsbruck 58: 384–428. [Google Scholar]
  • Kozur H. 1971a. Die Bairdiacea des Trias. Teil. 1: Skulpturierte Bairdiidae aus Mitteltriassischen Flachwasse ablagerungen. Geologisch Paläontologische Mitteilungen Innsbruck 1: 1–27. [Google Scholar]
  • Kozur H. 1971b. Die Bairdiacea der Trias. Teil 2: Skulpturierte Bairdiidae aus Mitteltriassischen tiefschelfablagerungen. Geologisch Paläontologische Mitteilungen Innsbruck 1(5): 1–21. [Google Scholar]
  • Kozur H. 1971c. Die Bairdiacea der Trias. Teil 3: Einige neue Arten triassischer Bairdiacea und Bemerkungen zur Herkunft der Macrocyprididae (Cypridacea). Geologisch Paläontologische Mitteilungen Innsbruck 1: 1–18. [Google Scholar]
  • Kozur H. 1973. Beitrage zur ostracodenfauna der Trias. Geologisch Paläontologische Mitteilungen Innsbruck 3(5): 1–41. [Google Scholar]
  • Kozur H, Nicklas L. 1970. Ostrakoden aus dem Plattenkalk-Niveau des Haupt Dolomites (Rheatikon). In: Mostler H, ed. Beitrage zur Mikrofazies und Stratigraphie von Tirol und Vorarlberg. Festband des Geologischen Institutes, 300-Jahr-Feier Universitat Innsbruck, pp. 309–320. [Google Scholar]
  • Kristan-Tollmann E. 1970. Einige neue Bairdien (Ostracoda) aus der alpinen Trias. Neues Jahrbuch für Geologie und Paläontologie 135: 268–310. [Google Scholar]
  • Kristan-Tollmann E. 1971. Weitere Beobachtungen an skulptierten Bairdiidae (Ostracoda) der alpinen Trias. Neues Jahrbuch für Geologie und Paläontologie 139: 57–87. [Google Scholar]
  • Kristan-Tollmann E. 1972. Die obertriadischen Arten der Ostracodengattung Kerocythere Kozur and Nicklas 1970, und ihr stratigraphischer weit. Erdoel-Erdgas-Zeitschrift 88: 43–49. [Google Scholar]
  • Kristan-Tollmann E. 1973. Zur phylogenetischen und stratigraphischen Stellung der triadischen Healdiiden (Ostracoda) II. Erdoel-Erdgas-Zeitschrift 89: 150–155. [Google Scholar]
  • Kristan-Tollmann E. 1977a. On the development of the muscle-scar patterns in Triassic Ostracoda. In: Löffler H, Danielopol D, eds. In: Proceedings of the Sixth International Symposium on Ostracoda (Saalfelden, Salzburg), pp. 133–143. [Google Scholar]
  • Kristan-Tollmann E. 1977b. Zur Evolution des SchlieBmuskelfeldes bei Healdiidae und Cytherellidae (Ostracoda). Neues Jahrbuch für Geologie und Paläontologie 10: 621–639. [Google Scholar]
  • Kristan-Tollmann E. 1978. Bairdiidae (Ostracoda) aus den obertriadischen Cassianer Schichten der Ruones-Wiesen bei Corvara in Südtirol. Schriftenreiheder Erdwissenschaftlichen Kommissionen. Österreichische Akademie der Wissenschaften 4: 77–104. [Google Scholar]
  • Kristan-Tollmann E. 1983. Ostracoden aus dem Oberanis von Leidapo bei Guiyang in Süd China. Neue Beiträge zur Biostratigraphie der Tethys-Trias 121–176. [Google Scholar]
  • Kristan-Tollmann E. 1991. Ostracods from the Middle Triassic Sina Formation (Aghdarband Group) in NE-lran. Abhandlungen der Geologischen Bundesanstalt 38: 195–200. [Google Scholar]
  • Kristan-Tollmann E, Hamedani A. 1973. Eine spezifische Mikrofaunen-Vergesellschaftung aus den Opponitzer Schichten der Oberkarn der niederoesterreichischen Kalkvoralpen. Neues Jahrbuch fuer Geologie und Palaeontologie 143(2): 193–222. [Google Scholar]
  • Kristan-Tollmann E, Tollmann A, Hamedani A. 1979. Beitrage zur Kenntnis der Trias von Persien. I. Revision der Triasgliederung, Rhäfazies im Raum von Isfahan und Kössener Fazieseinschlag bei Waliabad SE Abadeh. Mitteilungen der Gesellschaft der Geologie und Bergbaustudenten in Osterreich 70: 119–186. [Google Scholar]
  • Latreille PA. 1806. Genera crustaceorum et insectorum secundum ordinem naturalem in familias disposita, iconibus exemplisque plurimis explicata. Parisiis et Argentorati, 303 p. [Google Scholar]
  • Lentini F. 1974. Caratteri stratigrafici e strutturali della zona di Monte Judica (Sicilia Orientale). Rivista Mineraria Siciliana 145-147: 71–96. [Google Scholar]
  • Lentini F, Grasso M, Carbone S. 1987. Introduzione alla geologia della Sicilia e guida all’escursione. Convegno della Società Geologica Italiana su sistemi avanfossa-avanpaese lungo la Catena Appenninico-Maghrebide, 22–25 aprile, Naxos-Pergusa, Catania, 60 p. [Google Scholar]
  • Lethiers F, Raymond D. 1991. Les crises du Dévonien supérieur par l’étude des faunes d’ostracodes dans leur cadre paléogéographique. Palaeogeography, Palaeoclimatology, Palaeoecology 88: 133–146. [CrossRef] [Google Scholar]
  • Lieberman HM. 1979. Die Bivalven- und Ostracodenfauna von Raibl und ihr stratigraphischer. Verhandlungen der Geologischen Bundesanstalt 2: 85–131. [Google Scholar]
  • Lord AR. 1982. Metacopine ostracods in the Lower Jurassic. In: Bannar ET, Lord AR, eds. Aspects of Micropalaeontology. London: Allen & Unwin, pp. 262–277. [CrossRef] [Google Scholar]
  • Lucas SG. 2010. The Triassic timescale: an introduction. In: Lucas SG, ed. The Triassic Timescale, 334. Geological Society, London, Special Publications, pp. 1–16. [Google Scholar]
  • Maddocks RF. 1969. Revision of Recent Bairdiidae. Bulletin of the United States National Museum 295: 1–126. [CrossRef] [Google Scholar]
  • Mandelstam NI, Schneider GF, Kuznetsova ZV, Kats FI. 1957. [New genera of Ostracoda in the families Cypridae and Cytheridae]. All −Union Palaeontological Society, Annual. Palentologiche-skogo Obshchestva Ezhegodnik 16: 182–183 [in Russian]. [Google Scholar]
  • Maugeri Patanè G. 1934. Sopra alcuni coralli del Trias superiore di M. Scalpello (Enna). Relationes Consessuum Societatis Gioieniae Catinensis Natururalium Scientiarum 67: 9. [Google Scholar]
  • McCoy F. 1844. A synopsis of the characters of the Carboniferous Limestone fossils of Ireland. Dublin: Dublin University Press, 207 p. [CrossRef] [Google Scholar]
  • Méhes G. 1911. Über Trias-Ostrakoden aus dem Bakony. Magyar Földrajzi Társaság, Budapest, Palaton-bizottsag, pp. 1–38. [Google Scholar]
  • Mette W, Mohtat-Aghai P. 1999. Ostracods and foraminifera from Upper Triassic intrashelf basin deposits in the Northern Calcareous Alps. Geologisch Paläontologische Mitteilungen Innsbruck (unpublished manuscript). [Google Scholar]
  • Mette W, Honigstein A, Crasquin S. 2014. Deep-water ostracods from the Middle Anisian (Reifling Formation) of the Northern Calcareous Alps (Austria). Journal of Micropalaeontology 34: 71–91. [CrossRef] [Google Scholar]
  • Michelsen O. 1975. Lower Jurassic biostratigraphy and ostracods of the Danish Embayment. Danmarks Geologiske Undersoegelse, Raekke 2(104): 1–287. [Google Scholar]
  • Monostori M. 1994. Ostracod evidence of the Carnian salinity crisis in the Balaton Highland, Hungary. Neues Jahrbuch für Geologie und Palaeontologie 193: 311–331. [Google Scholar]
  • Monostori M. 1995. Environmental significance of the Anisian Ostracoda fauna from the Forras Hill near Felsoors (Balaton Highland, Transdanubia, Hungary). Acta Geologica Hungarica 39: 37–56. [Google Scholar]
  • Monostori M, Tóth E. 2013. Ladinian (Middle Triassic) silicified ostracod faunas from the Balaton Highland (Hungary). Rivista Italiana di Paleontologia e Stratigrafia 119: 303–323. [Google Scholar]
  • Monostori M, Tóth E. 2014. Additional Middle to Upper Triassic ostracod faunas from the boreholes of Transdanubian Central Range (Hungary). Hantkeniana 9: 21–43. [Google Scholar]
  • Montanari L. 1987. Lineamenti stratigrafico-paleogeografici della Sicilia durante il Ciclo Alpino. Memorie della Società Geologica Italiana 38: 361–406. [Google Scholar]
  • Moore RC. 1961. Treatise of Invertebrate Paleontology. Part Q. Arthropoda 3, Crustacea, Ostracoda. Geological Society of America and University of Kansas Press, 442 p. [Google Scholar]
  • Müller GW. 1894. Die Ostracoden des Golfes von Neapel und der angrenzenden Meere Abschnilte. Fauna und Flora des golfes von Neapel 21: 1–404. [Google Scholar]
  • Müller GW. 1906. Die Ostracoden der Siboga–Expedition. In: Max W, ed. Siboga-Expeditie, Uitkomsten op Zoologisch, Botanisch, Oceanographisch en H.M. Siboga. Monographien 30, EJ Brill, Leiden, 40 p. [Google Scholar]
  • Nelli B. 1899a. Il Raibliano del Monte Judica nella provincia di Catania. Atti della Reale Accademia Nazionale dei Lincei, Rendiconti della Classe di Scienze fisiche, matematiche e naturali s. 5, 8(1): 91–92. [Google Scholar]
  • Nelli B. 1899b. Il Raibl nei dintorni di M. Judica. Bollettino della Società Geologica Italiana 18(2): 211–223. [Google Scholar]
  • Oertli HJ. 1971. The aspect of ostracode faunas – A possible new tool in petroleum sedimentology. Bulletin du Centre de Recherches de Pau 5(suppl.): 137–151. [Google Scholar]
  • Özdikmen H. 2010. Substitute names for three genera of Ostracoda (Crustacea). Munis Entomology and Zoology 5: 315–316. [Google Scholar]
  • Pokorny V. 1964. Some paleoecological problems in marine ostracode faunas, demonstrated on the Upper Cretaceous ostracodes of Bohemia, Czechoslovakia. Pubblicazioni della Stazione Zoologica di Napoli 33(Suppl.): 462–479. [Google Scholar]
  • Reuss AE. 1869. Zur fossilen Fauna der Oligocänschichten von Gaas. Sitzungsberichte der österreichischen. Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse Abt.1. 59(3): 446–488. [Google Scholar]
  • Salaj J, Jendrejakova O. 1984. Ecology and facial relation of some groups of Triassic foraminifers and ostracods of stratigraphic importance. Geologickÿ Zbornĭk-Geologica Carpathica 35(2): 231–240. [Google Scholar]
  • Sars GO. 1866. Oversight af Norges marine Ostracoder. Forhandlinger i Videnskabs-Selskabet I Christiania 1865, pp. 1–130. [Google Scholar]
  • Scalia S. 1907a. I fossili del Trias superiore dell’Acquanova e di Paraspora. Bollettino dell’Accademia Gioenia di Scienze Naturali in Catania s. 2(1-2): 10–12. [Google Scholar]
  • Scalia S. 1907b. La fauna del Trias superiore del gruppo montuoso di Judica. Bollettino dell’Accademia Gioenia di Scienze Naturali in Catania s. 2(3-4): 17–25. [Google Scholar]
  • Scalia S. 1909. Il gruppo di M. Judica. Bollettino della Società Geologica Italiana 28: 269–340. [Google Scholar]
  • Scalia S. 1910–1914. La fauna del Trias superiore del gruppo del M. Judica: Parti 1–3. Atti dell’Accademia Gioenia di Scienze Naturali in Catania s. 5 (3-5-7): 51+58+25. [Google Scholar]
  • Schmidt di Friedberg P, Trovò A. 1962. Contribution à l’étude structurale du groupe du Monte Judica (Sicile orientale). Bulletin de la Société Géologique de France 4(5): 754–759. [CrossRef] [Google Scholar]
  • Sebe O, Crasquin S, Grădinaru E. 2013. Early and Middle Anisian (Triassic) deep-water ostracods (Crustacea) from North Dobrogea (Romania). Revue de Paléobiologie 32: 509–529. [Google Scholar]
  • Sohn IG. 1968. Triassic Ostracodes from Makhtesh Ramon, Israel. Bulletin of the Geological Survey of Israel 44: 1–71. [Google Scholar]
  • Speranza F, Minelli L. 2014. Ultrathick Triassic dolomites control the rupture behavior of the central Apennine seismicity: Evidence from magnetic modeling of the L’Aquila fault zone. Journal of Geophysical Research: Solid Earth 119: 1–15. [CrossRef] [Google Scholar]
  • Styk O. 1958. Triassic microfauna in the neighbourhood of Chrzanow and the northwestern part of the Mesozoic periphery of the Swiety Kryzyz Mts. Bulletin Poland Instytut Geologiczny 121, Micropalaeontological researches in Poland 3: 163–176. [Google Scholar]
  • Sylvester-Bradley PC. 1961. Suborder Metacopina Sylvester-Bradley, n. suborder. Q358–359. In: Moore RC, ed. Treatise of invertebrate paleontology. Part Q, Arthropoda 3, Crustacea, Ostracoda. Lawrence, KS: The Geological Society of America, Boulder, CO and University of Kansas Press, 442 p. [Google Scholar]
  • Széles M. 1965. Ostracodåk a Bakonyi Nosztori-Volgy felsokarni rétegeibol. Földtani közlöny 45: 412–417. [Google Scholar]
  • Tollmann A. 1976. Analyse des klasschen nordalpinen Mesozoikums. Monographie des Nördlichen Kalkalpen 2: 1–580. [Google Scholar]
  • Triebel E. 1941. Zur Morphologie und Okologie der fossilen Ostracoden. Mit Beschreibung einiger neuer Gattungen und Arten. Senckenbergiana 23: 294–400. [Google Scholar]
  • Ulrichs M. 1970. Variability of some Ostracods from the Cassian beds (Alpine Triassic) depending on the ecology. Bulletin du Centre Recherches de Pau – SNPA 5: 695–715. [Google Scholar]
  • Zorn I. 2010. Ostracodal Type Specimens Stored in the Paleontological Collection of the Geological Survey of Austria. Jahrbuch der Geologischen Bundesanstalt 150: 263–299. [Google Scholar]

Cite this article as: Crasquin S, Sciuto F, Reitano A, Coco RM. 2020. Late Triassic (Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones) ostracods from Monte Gambanera (Castel di Iudica, Central-Eastern Sicily, Italy), BSGF - Earth Sciences Bulletin 191: 36.

All Figures

thumbnail Fig. 1

Geographical location of Monte Gambanera, Sicily, Italy and sample locality.

In the text
thumbnail Fig. 2

Stratigraphic series of Monte Gambanera, Sicily, Italy.

In the text
thumbnail Fig. 3

Carnian ammonoid zones in Monte Scalpello (Crasquin et al., 2018) and Monte Gambanera (present study) (after Lucas, 2010 modified).

In the text
thumbnail Plate 1

Ostracods from Late Triassic (Tuvalian-Carnian) of Monte Gambanera, Sicily, Italy. All the specimens are stored in the Palaeontological Museum of the University of Catania. The repository numbers are given as PCM (Palaeontological Museum Catania) O (Ostracods) X H (number of holotype) or X P (number of paratype) or FS X (Figured Specimen number) registration date. Scale bars = 200 µm. A: Hungarella forelae n.sp. A: holotype, right lateral view of a complete carapace, PMC O 21 H13/10/2019; paratype figured in Figure 6A (Crasquin et al., 2018). B-C: Hungarella siciliiensis n.sp. B: holotype, right lateral view of a complete carapace, PMC O 22 H 13/10/2019; C: paratype, right lateral view of a complete carapace, PMC O 78 P 13/10/2019. D: Hungarella sp. A: right lateral view of a complete carapace, PCM O FS49. E-F: Bairdia andrecrasquini n.sp. E: holotype right lateral view of a complete carapace, PMC O 23 H 13/10/2019; F: paratype, right lateral view of a complete carapace, PMC O 79 P 13/10/2019. G-H: Bairdia gambaneraensis n.sp. G: holotype, right lateral view of a complete carapace, PMC O 24 H 13/10/2019; H: paratype, right lateral view of a complete carapace, PMC O 80 P 13/10/2019. I: Bairdia cassiana (Reuss, 1869). Right lateral view of a complete carapace, PCM O FS50. J: Bairdia cf. monostorii Forel and Grădinaru (2018). Right lateral view of a complete carapace, PCM O FS51. K: Bairdia sp.1 sensu Crasquin et al. (2018). Right lateral view of a complete carapace, PCM O FS52. L: Bairdia sp. A. Right lateral view of a complete carapace, PCM O FS53. M: Bairdia sp. B. Right lateral view of a complete carapace, PCM O FS54. N: Bairdia sp. C. Right lateral view of a complete carapace, PCM O FS55. O: Bairdia sp. D. Right lateral view of a complete carapace, PCM O FS56. P: Bairdia sp. E. Right lateral view of a complete carapace, PCM O FS57. Q: Bairdia sp. F. Right lateral view of a complete carapace, PCM O FS58. R: Hiatobairdia subsymmetrica Kristan-Tollmann (1970). Lateral view of a left valve, PCM O FS59.

In the text
thumbnail Fig. 4

Height (H)/length (L) diagram of figured specimens of the two new Hungarella species. In blue: H. forelae n.sp.; in orange: H. siciliiensis n.sp.

In the text
thumbnail Plate 2

Ostracods from Late Triassic (Tuvalian-Carnian) of Monte Gambanera, Sicily, Italy. All the specimens are stored in the Palaeontological Museum of the University of Catania. The repository numbers are given as PMC (Palaeontological Museum Catania) O (Ostracods) X H (number of holotype) or X P (number of paratype) or FS X (Figured Specimen number) registration date. Scale bars = 200 μm except P-Q, R = 100 µm. A: Hiatobairdia sp. A. Right lateral view of a complete carapace, PMC O FS60. B: Mirabairdia pernodosa Tollmann, 1963. Right lateral view of a complete carapace, PMC O FS61. C-D: Ptychobairdia iudicaensis n.sp. C: holotype, right lateral view of a complete carapace, PMC O25 H 13/10/2019; D: paratype, right lateral view of a complete carapace, PMC O 81 P 13/10/2019. E-F: Ptychobairdia leonardoi n.sp. E: holotype, lateral view of a right valve, PMC O 26 H 13/10/2019; F: paratype, lateral view of a left valve, PMC O 82 P 13/10/2019. G-H: Petasobairdia jeandercourti n.sp. G: holotype, right lateral view of a complete carapace, PMC O 27 H 13/10/2019; H: paratype, left lateral view of a complete carapace, PMC O 83 P 13/10/2019. I: Urobairdia angusta Kollmann (1963). Right lateral view of a complete carapace, PCM O FS62. J: Bairdiacypris triassica Kozur (1971c). Right lateral view of a complete carapace, PCM O FS63. K: Bythocypris sp. A. Left lateral view of a complete carapace, PCM O FS64. L: Acratia maugerii Crasquin et al. (2018). Left lateral view of a complete carapace, PCM O FS65. M-N: Kerocythere dittainoensis n.sp. M: holotype, lateral view of a right valve, PMC O 28 H 13/10/2019; N: paratype, lateral view of a left valve, PMC O 84 P 13/10/2019. O: Renngartenella sanctaecrusis Kristan-Tollmann (1973) (♂). Right lateral view of a complete carapace, PCM O FS66. P-Q: Mockella barbroae n.sp. P: holotype, right lateral view of a complete carapace, PMC O 29 H 13/10/2019; Q: paratype, right lateral view of a complete carapace, number PMC O 85 P13/10/2019. R: Simeonella brotzenorum Sohn (1968). Lateral view of a right valve, PCM O FS67.

In the text
thumbnail Fig. 5

Height (H)/length (L) diagram for Ptychobairdia iudicaensis n.sp. In red: right valves; in blue left valves.

In the text
thumbnail Fig. 6

Height (H)/length (L) diagram for Ptychobairdia leonardoi n.sp. In blue: left valves; in red: right valves.

In the text
thumbnail Fig. 7

Height (H)/length (L) diagram for Mockella barbroae n.sp.

In the text
thumbnail Plate 3

Ostracods from Late Triassic (Tuvalian-Carnian) of Monte Gambanera, Sicily, Italy. All the specimens are stored in the Palaeontological Museum of the University of Catania. The repository numbers are given as PCM (Palaeontological Museum Catania) O (Ostracods) FS X (Figured Specimen number) registration date. A, B, C, D: Scale bars = 200 μm; E, F, G, H, I: scale bars = 100µm. A: Paracypris? cf. redcarensis (Blake, 1876). Lateral view of a right valve, PCM O FS68. B: Paracypris? sp. A. Right lateral view of a complete carapace, PCM O FS68. C: Bektasia sp. A. Right lateral view of a complete carapace, PCM O FS69. D: Bektasia sp. B. Right lateral view of a complete carapace, PCM O FS70. E: Podocopida gen. sp. indet. Lateral view of a right valve, PCM O FS71. F: Polycope baudi Crasquin-Soleau and Grădinaru (1996). Lateral view of a complete carapace, PCM O FS72. G: ?Polycope densoreticulata Monostori and Tóth (2013). Lateral view of a complete carapace, PCM O FS73. H: Polycope sp. A. Lateral view of a complete carapace, PCM O FS74. I: Thaumatomma? sp. A. Right lateral view of a complete carapace, PCM O FS75.

In the text
thumbnail Fig. 8

Diversity of ostracod families from the Tropites subbullatus/Anatropites spinosus zones represented by number of genera (A) and species (B) in the samples of Mount Gambanera.

In the text
thumbnail Fig. 9

Diversity of ostracod families from the Tropites dilleri zone represented by the number of genera (A) and species (B) in the samples of Mount Scalpello (data from Crasquin et al., 2018).

In the text
thumbnail Fig. 10

Palaeogeographic reconstruction of Tethyan (left) and central Mediterranean (right) areas during Late Triassic (after Di Stefano et al., 2015, modified).

In the text
thumbnail Fig. 11

Schematic palaeoenvironmental model for the late Carnian Mufara Formation basin (see also Fig. 10).

In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.