Special Issue L’Ambre
Open Access
Editorial
Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue L’Ambre
Article Number E1
Number of page(s) 4
DOI https://doi.org/10.1051/bsgf/2021001
Published online 23 February 2021

In memory to Gérard Breton

We wish to dedicate this special issue devoted to amber to the memory of our recently deceased colleague Gérard Breton. Associate professor in Natural Sciences, doctor of state “ès-science”, Gérard Breton first taught in secondary schools and then served for 32 years as director of the Museum of Natural History of Le Havre (1973–2005). As a true naturalist animated by a constant scientific curiosity, Gérard Breton, tackled many study themes in the field of paleontology. More particularly, its contribution to the knowledge of micro-inclusions of amber for over the past twenty years has been constant and rich in information and concepts. Following a few authors who have described and figured microorganisms contained in amber (e.g. Poinar, 1977, 1992; 1994; Waggoner, 1993, 1994; Poinar et al., 1993a, 1993b; Dörfelt and Schäfer, 1998; Schönborn et al., 1999), he was the first to tackle the difficult exercise of identifying these micro-inclusions in French ambers. In a first work, he thus mentioned the microflora contained in amber of Sparnacian age in the South of France (Breton et al., 1999). Aware of the difficulty of directly assimilating micro-inclusions to current microorganisms determined today on genomic bases, he developed a comparative taxonomy essentially based on morphology (Breton, 2010). He is the author of numerous new taxa of actinomycetes, bacteria, cyanobacteria and filamentous fungi (Breton and Tostain, 2005; Breton, 2010, 2012; Breton et al., 2013, 2014). From a taphonomic point of view, he first favored the trapping process, especially on the surface of resin flows, to explain the presence of real microbial mats (Breton and Tostain, 2005; Breton, 2007), then he integrated subsequently the colonization process by networks of centripetal growth microorganisms in the resin (Breton, 2010, 2011, 2012, Breton et al., 2013, 2014, 2018). Consequently, he considered the resin as a real culture medium (Breton, 2011). Thanks to his knowledge of amber microorganisms, he has also been able to provide his expertise and collaborate in numerous works (Girard et al., 2008, 2009a, 2009b; 2011; 2013; Adl et al., 2011; Néraudeau et al., 2020).

À la mémoire de Gérard Breton

Nous avons souhaité dédier ce numéro spécial consacré à l’ambre à la mémoire de notre collègue Gérard Breton récemment décédé. Titulaire de l’agrégation en Sciences Naturelles, docteur d’État es-sciences Gérard Breton a d’abord enseigné dans des établissements d’enseignement secondaire puis a exercé pendant 32 ans les fonctions de directeur du Muséum d’histoire naturelle du Havre (1973–2005). En véritable naturaliste animé d’une constante curiosité scientifique, Gérard Breton, a abordé de nombreux thèmes d’études dans le domaine de la paléontologie. Plus particulièrement, son apport pour la connaissance des micro-inclusions de l’ambre depuis un peu plus d’une vingtaine d’années a été constant et riche en informations et concepts. À la suite des auteurs qui ont décrit et figuré des microorganismes contenus dans des ambres d’âge et provenances variées (e.g. Poinar, 1977, 1992; 1994 ; Waggoner, 1993, 1994 ; Poinar et al., 1993a, 1993b ; Dörfelt and Schäfer, 1998 ; Schönborn et al., 1999), il a été le premier à aborder le difficile exercice d’identification de ces micro-inclusions dans les ambres de France. Il a ainsi évoqué dans un premier travail la microflore contenue dans l’ambre d’âge sparnacien du Sud de la France (Breton et al., 1999). Conscient de la difficulté d’assimiler directement les micro-inclusions à des microorganismes actuels déterminés aujourd’hui sur des bases génomiques, il a développé une taxonomie comparative essentiellement basée sur la morphologie (Breton, 2010). Il est ainsi l’auteur de nombreux nouveaux taxons d’actinomycètes, de bactéries, de cyanobactéries et de champignons filamenteux (Breton and Tostain, 2005 ; Breton, 2010, 2012 ; Breton et al., 2013, 2014). Du point de vue taphonomique, il a d’abord plutôt privilégié le processus de piégeage, surtout en surface des coulées de résine, pour expliquer la présence de véritables feutrages microbiens (Breton and Tostain, 2005 ; Breton, 2007), puis il a intégré par la suite le processus de colonisation par des réseaux de microorganismes à croissance centripète dans la résine (Breton, 2010, 2011, 2012 ; Breton et al., 2013, 2014, 2018). En conséquence il a considéré la résine comme un véritable milieu de culture (Breton, 2011). De par sa connaissance des microorganismes de l’ambre il a pu également apporter son expertise et collaborer à de nombreux travaux (Girard et al., 2008, 2009a, 2009b, 2011, 2013 ; Adl et al., 2011 ; Néraudeau et al., 2020).

2 Amber: deposits and biodiversity

The interest in the exceptional fossil material of amber has continued to grow along the time as testified by the large number of articles devoted to this theme. Classically, the inclusions of arthropods constitute the main topic in the majority of the work devoted to amber. Several scientific journals have thus proposed special issues, some dedicated more particularly to amber from France and their inclusions (Perrichot and Néraudeau, 2009; Girard and Néraudeau, 2013; Perrichot and Néraudeau, 2014; Wang et al., 2020). However, new data is constantly providing more information in the various fields of investigation concerning amber. This is what motivated this special issue devoted to different aspects of amber research. So, the various articles in this special issue reflect three major concerns:

  1. the highlighting of fossil biodiversity revealed by amber due to these remarkable qualities as a preservation medium;

  2. the reconstitution of the paleoenvironments that accompanied the production of resin at the origin of amber and of the environments and processes of deposits;

  3. the question of the botanical origin of amber and its possible evolution through the data provided by the amber-bearing deposits and by the inclusions themselves.

The revival in recent decades of the study of amber, its characteristics and its inclusions has been the result of numerous investigations in the field. This research was based in part on the already old knowledge of certain deposits, but also on discoveries of hitherto unlisted deposits. All amount of this work has enabled to clearly define the geological, stratigraphic, palaeontological and palaeoenvironmental framework of amber deposits. This prerequisite is particularly important in order to best link the inclusions, privileged objects of the studies, to a well-defined context. Several regions of France are concerned by these new data. In western France, several lower Cenomanian amber deposits have been discovered around the town of Chatellerault (department of Vienne) thanks to public works (roads, boreholes). In addition to amber, a whole faunistic and floristic association is revealed (Valentin et al., 2020), thus completing the data provided by the deposit of the same age of Jaunay-Clan, located in the same sector (Valentin et al., 2014; Polette et al., 2019) and containing some pieces of amber. Further west, in the department of Mayenne, a new amber deposit dated from the Cenomanian has yielded a whole rich floristic association, including spores and wood fragments preserved in amber, which confers a unique character of the discovery (Néraudeau et al., 2020). In the South-East of France, several new deposits presented in this special issue also enabled to address the palaeoenvironmental and sedimentological context of the formation of amber deposits. The presence of amber in the Santonian sediments (Upper Cretaceous) was thus noted throughout the Sainte Baume massif (Frau et al., 2020) in association with faunas of variable character, from brackish to open marine. More broadly throughout Provence, in several departments, a review of amber deposits based on many new discoveries, allows us to outline a vision of the evolution of the phenomenon of amber production from the Lower Cretaceous to the Miocene (Saint Martin et al., 2020). On the largest scale of a continent, the first synthesis of African deposits yielding copal and amber brings up a picture of a potential source of informations, until now quite unknown, especially concerning the botanical origin of resins, (Bouju and Perrichot, 2020).

Due to a remarkable conservation quality of inclusions, amber is sometimes considered an example of Konservat-laggerstäte. (Nudds and Selden, 2008; Briggs, 2014; Labandeira, 2014). Obiously the inclusions of arthropods represent the vast majority of work devoted to amber. In this special issue, several works present the description of new taxa of arthropods: Ferwer and Nel (2020) propose a new genus and a new species of Odonates from Baltic amber; Chény et al. (2020) describe a new species of Eocene amber hymenoptera from Oise (France); concerning spiders, Carbuccia et al. (2020) describe a new species of spider from the Archaeidae family represented for the first time by a male specimen in Eocene amber from Oise (France). The plant inclusions in amber are also a source of information about the environments of ancient forests and resin-producing trees. The discovery in the Cenomanian amber of Charente Maritime (France) of meso-relains of Cheirolepidiaceae conifers attributed to the genus Plagiophyllum allows to trace the environmental conditions of flora adapted to coastal environments (Moreau et al., 2020). From a quantitative point of view, the inclusions most frequently observed in Cretaceous ambers are represented by microorganisms. Resulting from trapping and/or colonization processes, micro-inclusions can sometimes completely invade amber grains (Frau et al., 2020; Néraudeau et al., 2020; Saint Martin et al., 2020). In other very rare cases the amber may have trapped marine microorganisms. The presence of marine diatoms was therefore first reported in Cretaceous amber from Vendée and Charente-Maritime in France (Girard et al., 2008, 2009; Saint Martin et al., 2015). Another exceptional case of inclusion of a marine diatom attributed to the genus Hemiaulus is described in Late Jurassic amber from Thailand (Girard et al., 2020), thus significantly going back in time the known fossil record of this genus. Among the micro-inclusions, the detection of spermatozoa constitutes an unexpected exceptional case of the preservation of organic structures rarely observed in the fossil record (Poinar and Breton, 2020).

Acknowledgements

We would particularly like to thank the Société Géologique de France, and its president Sylvain Charbonnier, for inviting us to prepare this special issue devoted to amber.

References

  • Adl SM, Girard V, Breton G, Lak M, Maharning A, Mills A, et al. 2011. Reconstructing the soil food web of a 100 million-year-old forest: the case of the mid-Cretaceous fossils in the amber of Charentes (SW France). Soil Biology and Biochemistry 43: 726–735. [Google Scholar]
  • Bouju V, Perrichot V. 2020. A review of amber and copal occurrences in Africa and their paleontological significance. Bulletin de la Société Géologique de France − Earth Sciences Bulletin 191: 17. https://doi.org/10.1051/bsgf/2020018. [Google Scholar]
  • Breton G. 2007. La bioaccumulation de micro-organismes dans l’ambre : analyse comparée d’un ambre cénomanien et d’un ambre sparnacien et de leurs tapis algaires et bactériens. Comptes rendus Palevol 6: 125–133. [Google Scholar]
  • Breton G. 2010. Les Actinomycétales de l’ambre sparnacien des Corbières (Aude, France) : taphonomie et diversité. Annales de la Société géologique du Nord 17(2è sér.): 3–22. [Google Scholar]
  • Breton G. 2011. L’ambre, un milieu de culture fossilisé. Bulletin de la Société d’Etudes et des Sciences Naturelles d’Elbeuf (2è trim). 28–29. [Google Scholar]
  • Breton G. 2012. L’ambre des Corbières (Aude − France). Carcassonne: SESA, 96 p. [Google Scholar]
  • Breton G, Bilotte M, Eychenne G. 2013. L’ambre campanien du Mas d’Azil (Ariège, France) : gisement, micro-inclusions, taphonomie. Annales de Paléontologie 99: 317–337. [Google Scholar]
  • Breton G, Champion S, Bilotte M. 2018. L’ambre turonien du ruisseau des Tarquès (Commune de Duilhac-sous-Peyrepertuse, Aude, France). Bulletin de la Société d’Histoire Naturelle de Toulouse 154: 161–176. [Google Scholar]
  • Breton G, Gauthier C, Vizcaïno D. 1999. Land and freshwater microflora in a Sparnacian amber from the Corbières (South France): first observations. Estudios del Museo de Ciencias naturales de Álava 14(núm. espc. 2): 161–166. [Google Scholar]
  • Breton G, Serrano-Sánchez M de L, Vega FJ. 2014. Filamentous micro-organisms, inorganic inclusions and pseudo-fossils in the Miocene amber from Totolapa (Chiapas, Mexico): taphonomy and systematics. Boletín de la Sociedad Geológica Mexicana 66(1): 199–214 [Google Scholar]
  • Breton G, Tostain F. 2005. Les micro-organismes de l’ambre cénomanien d’Ecommoy (Sarthe, France). Comptes rendus Palevol 4: 31–46. [Google Scholar]
  • Briggs DEG. 2014. Konservat-lagerstatten 40 years on: the exceptional becomes mainstream. The Paleontological Society Papers 20: 1–13. [Google Scholar]
  • Carbuccia B, Wood HM, Rollard C, Nel A, Garrouste R. 2020. A new Myrmecarchaea (Araneae: Archaeidae) species from Oise amber (earliest Eocene, France). Bulletin de la Société Géologique de France − Earth Sciences Bulletin 191: 24. https://doi.org/10.1051/bsgf/2020023. [Google Scholar]
  • Chény C, Guillam E, Nel A, Perrichot V. 2020. A new species of Ampulicomorpha Ashmead from Eocene French amber, with a list of fossil and extant Embolemidae (Insecta: Hymenoptera) of the world. Bulletin de la Société Géologique de France − Earth Sciences Bulletin 191: 20. https://doi.org/10.1051/bsgf/2020020. [Google Scholar]
  • Dörfelt H, Schäfer U. 1998. Fossile Pilze in Bernstein der alpischen Trias. Zeitschrift für Mykologie 64(2): 141–151. [Google Scholar]
  • Ferwer W, Nel A. 2020. A new damselfly genus and species from Baltic amber (Odonata: Zygoptera: Euphaeidae). Bulletin de la Société Géologique de France − Earth Sciences Bulletin 191: 12. https://doi.org/10.1051/bsgf/2020015. [Google Scholar]
  • Frau C, Saint Martin J-P, Saint Martin S, Mazières B. 2020. An overview of the Santonian amber-bearing deposits of the Sainte-Baume Massif, southeastern France. Bulletin de la Société Géologique de France − Earth Sciences Bulletin 191. [Google Scholar]
  • Girard V, Néraudeau D. 2013. Ambres de France nouveaux ou peu connus. Annales de Paléontologie 99 : 285–288. [Google Scholar]
  • Girard V, Schmidt AR, Saint Martin S, Struwe S, Perrichot V, Saint Martin JP, et al. 2008. Evidence for marine microfossils from amber. Proceedings of the National Academy of Sciences of the USA 105: 17426–17429. [Google Scholar]
  • Girard V, Schmidt AR, Struwe S, Perrichot V, Breton G, Néraudeau D. 2009. Taphonomy and palaeoecology of mid-Cretaceous French amber-preserved microorganisms from South-western France. Geodiversitas 31: 153–162. [Google Scholar]
  • Girard V, Néraudeau D, Breton G, Saint Martin S, Saint Martin J-P. 2009a. Contamination of amber samples by recent microorganisms and remediation evidenced by mid-Cretaceous amber of France. Geomicrobiology Journal 26(1): 21–30. [Google Scholar]
  • Girard V, Saint Martin S, Saint Martin J-P, Schmidt AR, Struwe S, Perrichot V, et al. 2009b. Exceptional preservation of marine diatoms in upper Albian amber. Geology 37: 83–86. [Google Scholar]
  • Girard V, Néraudeau D, Adl SM, Breton G. 2011. Protist-like inclusions in amber, as evidenced by Charentes amber. European Journal of Protistology 47(2): 59–66. [Google Scholar]
  • Girard V, Breton G, Perrichot V, Bilotte M, Le Loeuff J, Nel A, et al. 2013. The Cenomanian amber of Fourtou (Aude, Southern France): taphonomy and palaeoecological implications. Annales de Paléontologie 99: 301–315. [Google Scholar]
  • Girard V, Néraudeau D, Breton G, Morel N. 2013. Palaeoecology of the Cenomanian amber forest of Sarthe (western France). Geologica Acta 11(3): 321–330. [Google Scholar]
  • Girard V, Saint Martin S, Buffetaut E, Saint Martin JP, Néraudeau D, Peyrot D, et al. 2020. Thai amber: insights into early diatom history ? Bulletin de la Société Géologique de France − Earth Sciences Bulletin 191: 23. https://doi.org/10.1051/bsgf/2020028. [Google Scholar]
  • Labandeira CC. 2014. Amber. The Paleontological Society Papers 20: 163–215. [Google Scholar]
  • Moreau J-D, Néraudeau D, Perrichot V. 2020. Conifers from the Cenomanian amber of Fouras (Charente-Maritime, western France). Bulletin de la Société Géologique de France − Earth Sciences Bulletin 191: 16. https://doi.org/10.1051/bsgf/2020014. [Google Scholar]
  • Néraudeau D, Vullo R, Bénéfice P, Breton G, Dépré E, Gaspard D, et al. 2020. The paralic Albian-Cenomanian Puy-Puy Lagerstätte (Aquitaine Basin, France): an overview and new data. Cretaceous Research 111: 104124. [Google Scholar]
  • Néraudeau D, Saint Martin J-P, Saint Martin S, Moreau J-D, Philippe M, Polette F, et al. 2020. Amber and plant-bearing deposits from the Cenomanian of Neau (Mayenne, northern France). Bulletin de la Société Géologique de France − Earth Sciences Bulletin 191. https://doi.org/10.1051/bsgf/2020039. [Google Scholar]
  • Nudds J, Selden P. 2008. Fossil-Lagerstätten. Geology Today 24(4): 153–158. [Google Scholar]
  • Perrichot V, Néraudeau D, 2014. Introduction to thematic volume “Fossil arthropods in Late Cretaceous Vendean amber (northwestern France)”. Paleontological contributions 10A: 1–4. [Google Scholar]
  • Perrichot V, Néraudeau D. 2009. Cretaceous ambers from southwestern France: geology, taphonomy, and palaeontology). Geodiversitas 31(1): 7–11. [Google Scholar]
  • Poinar GO Jr. 1977. Fossil nematods from Mexican amber. Nematologica 23: 232–238. [Google Scholar]
  • Poinar GO Jr. 1992. Life in amber. Stanford University Press, 321 p. [Google Scholar]
  • Poinar GO Jr. 1994. Fossils in amber. Current Sciences 66(6): 417–420. [Google Scholar]
  • Poinar GO Jr, Breton G. 2020. Synopsis of rare fossil animal spermatozoa in amber and sedimentary deposits. Bulletin de la Société Géologique de France − Earth Sciences Bulletin 191: 31. https://doi.org/10.1051/bsgf/2020014. [Google Scholar]
  • Poinar GO Jr, Waggoner BM, Bauer UC. 1993a. Terrestrial soft-bodies protists and other micro-organisms in Triassic amber. Science 259: 222–224. [Google Scholar]
  • Poinar GO Jr, Waggoner BM, Bauer UC. 1993b. Description and paleoecology of a Triassic amoeba. Naturwisenschaften 80: 566–568. [Google Scholar]
  • Polette F, Licht A, Cincotta A, Batten DJ, Depuydt P, Neraudeau D, et al. 2019. Palynological assemblage from the lower Cenomanian plant-bearing Lagerstätte of Jaunay-Clan-Ormeau-Saint-Denis (Vienne, western France): stratigraphic and paleoenvironmental implications. Review of Palaeobotany and Palynology 271: 104102. https://doi.org/10.1016/j.revpalbo.2019.104102. [Google Scholar]
  • Saint Martin J-P, Dutour Y, Ebbo L, Frau C, Mazières B, et al. 2020. Reassessment of amber-bearing deposits of Provence, southeastern France. Bulletin de la Société Géologique de France − Earth Sciences Bulletin 191. https://doi.org/10.1051/bsgf/2020048. [Google Scholar]
  • Saint-Martin S, Saint Martin J-P, Schmit AR, Girard V, Néraudeau D, Pérrichot V. 2015. The intriguing marine diatom genus Corethron in Late Cretaceous amber from Vendée (France). Creataceous Research 52: 64–72. [Google Scholar]
  • Schönborn W, Dörfelt H, Foissner OW, Krienitz L, Schäfer U. 1999. A fossilized microcenosis in Triassic amber. Journal of Eukaryotic Microbiology 46: 571–584. [Google Scholar]
  • Valentin X, Gomez B, Daviero-Gomez V, Charbonnier S, Ferchaud P, Kirejtshuk A, et al. 2014. Plant-dominated assemblage and invertebrates from the lower Cenomanian of Jaunay-Clan, western France. Comptes Rendus Palevol 13(5): 443–454. [Google Scholar]
  • Valentin X, Garcia G, Gomez B, Daviero Gomez V, Boiteau J, Saint Martin S, et al. 2020. New fossil assemblage with amber, plants and vertebrates from the lower Cenomanian near Châtellerault (Vienne, western France). Bulletin de la Société Géologique de France − Earth Sciences Bulletin 191 (1): 29. https://doi.org/10.1051/bsgf/2020034. [Google Scholar]
  • Waggoner BM. 1993. Fossil actinomycetes and other bacteria in Eocene amber from Washington State, USA. Tertiary Research 14: 155–160. [Google Scholar]
  • Waggoner BM. 1994. Fossil actinomycete in Eocene-Oligocene Dominican amber. Journal of Paleontology 68: 398–401. [Google Scholar]
  • Wang B, Perrichot V, Jarzembowski E. 2020 in progress. Cretaceous ecosystems trapped in amber. Cretaceous Research. [Google Scholar]

Cite this article as: Saint Martin J-P, Saint Martin S. 2021. Amber, from deposit to inclusions: new data, BSGF - Earth Sciences Bulletin 192: E1.


© J.-P. Saint Martin and S. Saint Martin , Published by EDP Sciences 2021

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.