Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue L’Ambre
Article Number 18
Number of page(s) 14
DOI https://doi.org/10.1051/bsgf/2021005
Published online 05 April 2021

© C. Frau et al., Published by EDP Sciences 2021

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1 Introduction

Upper Cretaceous amber-bearing deposits of southeastern France have been reported in the late XIXth century (Collot, 1890; Vasseur, 1890, 1894). Three main sites of the Bouches-du-Rhône department − namely Martigues, Ensuès-la-Redonne and Belcodène – yield amber grains in Santonian lignite horizons. These amber grains were the object of sedimentological, palaeontological, and geochemical studies in the recent years (Guiliano et al., 2006; Onoratini et al., 2009; Saint Martin et al., 2012, 2013; 2018).

In the nearby Var department, the presence of Upper Cretaceous amber, named as “succin”, was reported by Coquand (1860, 1864) and Collot (1890) at Plan d’Aups, a village located at the foothill of the Sainte-Baume Massif. Subsequent contributions of the XXth century lack mention of amber-bearing deposits in this area (e.g. Philip, 1970 and references therein). More recently Onoratini et al. (2009) reported a single amber fragment at Plan d’Aups (La Brasque Farm) but its stratigraphic position remains unclear. Further, Saint Martin and Saint Martin (2018) described micro-inclusion in amber grains from the nearby Mazaugues area (Glacières de Pivaut).

Therefore, a start has been made on examining localities of the Sainte-Baume Massif, allowing the identification of new amber-bearing sites in the Plan d’Aups–Mazaugues area. The present contribution aims at:

  • describing the Mazaugues section and precising the stratigraphic position of the amber grains;

  • stressing the in situ sedimentological context and giving the main characteristics of the amber harvested;

  • providing a description of the micro-inclusions contained in the amber grains;

  • placing these findings in the late Cretaceous regional palaeoenvironmental context.

2 Geographical and geological settings

The Sainte-Baume Massif, in southeastern France (Fig. 1A), has become a world-class site for geologists all around the world since it is the cradles of the overthrusting faulting concept which has given rise to one of the best-known French geological controversies (e.g. Philip, 2012 and references therein). The massif is now interpreted as a 35-km long, northverging thrust sheet cut by several ENE-WSW trending normal faults of Oligocene or Miocene age (Bestani et al., 2015) (Fig. 1B). The footwall of the Sainte-Baume thrust sheet is formed by the Plan d’Aups syncline in the south and the Lare anticline in the north (Bestani et al., 2015). As noticed by those authors, the Plan d’Aups syncline is a narrow structure characterised by a 80° south-dipping overturned southern limb and a 80° south-dipping northern limb.

The core of Plan d’Aups syncline is composed of Upper Cretaceous deposits that rest on lower Cretaceous rocks which are topped by a bauxitic horizon (Philip, 1970) (Fig. 1C). This bauxitic horizon results from a low amplitude, large-scale deformation − the so-called Durancian uplift (Masse and Philip, 1976) – occurring during mid-Cretaceous times (Guyonnet-Benaize et al., 2010). The Durancian uplift caused the North Provence domain to be exposed to subaerial erosion during the latest Early Cretaceous and earliest Late Cretaceous (Marchand, 2019, and references therein).

Above, the Upper Cretaceous deposits are composed of upper Turonian to Santonian transgressive marine platform carbonates evolving into a general lacustrine (“Valdo-Fuvélien” regional stages in litt.) and then continental breccias environments (“Bégudo-Rognacien” local stages in litt.) during latest Cretaceous and early Cenozoic times (Philip, 1970; Fig. 1B). The continental breccias, which occurred up to the Eocene, reflect the initial growth of the Sainte-Baume thrust during the northward propagation of the Pyrenean–Provence deformation front (Bestani et al., 2015).

Three Santonian amber-bearing sites were found in the Plan d’Aups syncline: Mazaugues (point 1 in Fig. 1B), Glacières de Pivaut (point 2 in Fig. 1B) and Plan d’Aups (point 3 in Fig. 1B).

thumbnail Fig. 1

A: situation map of the Saint Baume Massif in southern France; B: Google Earth satellite view and sketchy geological map of the Plan d’Aups, and Mazaugues study areas, including the three amber-bearing sites (Pt. 1: Equireuil quarry, Pt. 2: Glacières de Pivaut, and Pt. 3: Plan d’Aups-La Brasque Farm) and C: schematic sedimentary succession of the Sainte-Baume Massif (modified from Bestani et al., 2015).

3 Amber-bearing occurrences in the Plan d’Aups syncline

3.1 Mazaugues

The abandoned Equireuil quarry is located at 3.2 km northeast of the Mazaugues village (Fig. 1B). There, the sedimentary succession measured along the low-mural quarry face can be divided into seven lithological units, from bottom to top (Fig. 2 and Fig. 3A):

  • unit 1 consists of a decametric lenticular body made of soft sandstone sediments with lamellar, branched corals, and bryozoans (Fig. 3B, D, E). A thin clayed lens containing lignite remains and amber grains has been identified at its top (WGS 84 coordinate: 43°21’43.19"N, 5°57’14.08"E);

  • unit 2 comprises 4 to 5-m thick variegated clays and silty marls;

  • unit 3 is characterised by a prominent 3-m thick bed (Fig. 3C), containing at its base sandy-clay sediment rich in bryozoans and finely branched and lamellar corals (Fig. 3F), grading upward into a rudist biostrome made of dense aggregate of Hippurites and large Vaccinites beaussetensis and Radiolites galloprovincialis;

  • unit 4 (thickness ∼12 m with a 4-m gap at its base) starts with soft coarse sandstone sediments changing upward into silty variegated clays and silty marls;

  • unit 5 (thickness ∼20 m) is dominated by detrital, locally coarse, prograding channels (Fig. 3G) characterised by irregular basal surfaces and contains hydraulic dunes and oblique stratifications. Lenses of variegated silty clays are interfingered with the channels;

  • unit 6 exhibits a 5-m thick ledge of silty marls (Fig. 3H). The associated fauna includes Cunnolites solitary corals, scaphopods, gastropods, and bivalves of shallow-marine significance (Fig. 4). This marly ledge yields abundant amber grains (WGS 84 coordinate: 43°21’39.61"N, 5°57’23.80"E). Diverse imprints of plant cuticles were found near the top of the marly ledge (Garrouste and Gomez, personal communication);

  • unit 7 starts with a limestone bed made of rudist and coral debris eroding the unit 6 marly ledge (Fig. 3H) and it disappears eastward. It is overlain by overgrown silty marls ending the section.

thumbnail Fig. 2

Lithological succession of the Equireuil Quarry section (Mazaugues), main lithological units (units 1 to 7), and the two collected amber grain spot occurrences (units 1 and 6).

thumbnail Fig. 3

Field photographs from the Equireuil Quarry section. A: East-West panorama of the Equireuil Quarry and location of the second amber grain spot occurrence (white arrow on the right); B: lower soft sandstone sediments (unit 1) containing lignite debris and amber grains (white arrow); C: composite bed with coral and bryozoans at the base and rudist bioconstruction at the top (unit 3); D: lamellar corals at the base of the lenticular body figured in (C); E: focus on finely branched and lamellar corals of the lenticular body; F: sandy marls with corals and lignite debris under rudist aggregate beds (unit 3); G: sandy bodies and interfingered variegated marls (unit 5); H: close-up view of the second amber grain spot occurrence (white arrow) found in sandy marls containing a shallow-marine fauna (unit 6) and eroding limestone bed (black arrow) made of coral and rudist debris (unit 7).

thumbnail Fig. 4

Representative elements from (A) the first amber grain spot occurrence (Unit 1); and (A–J) the second amber grain spot occurrence (unit 7). A: amber grain (white arrow) and lignite debris (black arrow) in coarse sandstone; B: amber grain (white arrow) and fish vertebra (black arrow) in silty marls; C: solitary corals Cunnolites polymorphus (Goldfuss, 1826); D: solitary coral Trochocyathus sp.; E: shallow-marine bivalve Neithea quinquecostata (Sowerby, 1814); F: shallow-marine gastropod Trochus subcyclostomus (Matheron, 1842); G: undetermined gastropod; H: shallow-marine gastropod Voluta pyruloides (Matheron, 1842); I: undetermined scaphopods; J: undetermined colonial serpulids.

3.2 Glacières de Pivaut

Despite poor outcropping conditions, the Glacières de Pivaut sedimentary succession observed along the forest pathway, consists of, from bottom to top, greenish sandstones (thickness ∼20 m), alternating sand and sandstone banks (∼5 m), massive sandstone (∼4 m) and coarse soft sandstone (∼5 m) containing lignite debris and amber grains (WGS 84 coordinate: 43°21’06.2"N 5°51’15.8"E) (Fig. 5AB). The amber grains reported by Saint Martin and Saint Martin (2018) originate from organic-rich clayed sediments outcropping directly below black levels with a brackish fauna (WGS 84 coordinate: 43°21’04.1"N 5°51’04.9"E). Precise correlations with the Mazaugues section remain unclear.

thumbnail Fig. 5

Field photographs of the Glacières de Pivaut area. A: view of sandstone intervals (white arrow) near the Glacières de Pivaut; B: excavation in the amber-bearing sandstones (black arrow).

3.3 Plan d’Aups

Following Onoratini et al. (2009), we confirmed the presence of amber grains at the Brasque Farm locality, located ∼1 km southwest of the Plan d’Aups village (Fig. 1B). These amber grains were collected in a drainage trench opened along a forest pathway (WGS 84 coordinate: 43°19’24.9"N 5°42’23.2"E) (Fig. 6A) and in sandstone sediments outcropping along this pathway (Fig. 6B) (WGS 84 coordinate: 43°19’17.8"N 5°42’06.0"E). Due to poor outcropping conditions, the stratigraphic position of these amber grains remains uncertain with respect to the Mazaugues section. The sediment containing the amber grains consists of organic-enriched black limestones (Fig. 6CH) including various fossils such as solitary corals (Trochosmilia), bivalves (Cardium) and gastropods (Voluta, Neritina, Cassiope). Additional amber grains were extracted from similar sediment outcropping at the Plan d’Aups village (WGS 84 coordinate: 43°19’40.5"N 5°42’36.7"E) (Fig. 6IJ).

thumbnail Fig. 6

Field photographs of the Plan d’Aups area. A: a drainage trench showing amber-bearing fossiliferous levels (white arrow) near the La Brasque Farm; B: the forest pathway starting from the La Brasque farm and the outcropping conditions of the Plan d’Aups ecozone; C: black-coloured fossiliferous limestone containing solitary corals (co) and gastropods; D–H: amber grains (black and whites arrows) scattered in the black-coloured fossiliferous limestones containing corals (co), bivalves (Cardium sp.: ca), gastropods (ga) such as Cassiope sp. (ga in E) and Voluta sp. (ga in H); I: limestone level (white arrow) of the Plan d’Aups ecozone outcropping at Plan d’Aups; J: close-up view of (I) showing the fossiliferous limestone bed.

4 Amber features

The amber grains from the Sainte-Baume Massif occur as millimetric grains in lignite-poor, soft sandstone (Mazaugues and Plan d’Aups) or lignite-rich silty clay (Glacière de Pivaut and Plan d’Aups). The amber grains were extracted manually from sandstones or after washing clayed sediments. Petrographic thin sections were performed on amber grains to characterize their internal characteristics. Examinations with Scanning Electron Microscope (SEM) were performed using Hitachi SU3500 equipment.

When complete, the grains kept the shape of the initial resin drops. They are more or less oblong, but sometimes spherical (Fig. 7AC) or sharp-edged (Fig. 7DE). The grains appear in various optical aspects. They are either represented by:

  • translucent grains with a predominantly pale yellow to reddish color (Fig. 7FG);

  • opaque grains of beige to brown color (Fig. 7H);

  • mix the two latter features (Fig. 7I).

Some of the grains have a more complex structure corresponding to various resin flows or are marked by dense bullous inclusions reflected by internal porosity (Fig. 7JK).

As pointed out by diverse authors, the amber appearance is determined by the presence of micro-inclusions, mainly of organic origin (e.g. Breton et al., 1999, 2013, 2018; Breton and Tostain, 2005; Schmidt and Schäfer, 2005; Schmidt et al., 2010; Girard, 2010; Speranza et al., 2010, 2015; Beimforde and Schmidt, 2011; Saint Martin et al., 2012, 2013; Girard et al., 2013a, 2013b; Saint Martin and Saint Martin, 2018). The more translucent grains often show a reddish peripheral fringe variable in thickness (20–50 μm) corresponding to partial colonization by microbial communities (Fig. 8AF). By contrast, the opaque grains reflect intense colonization of the initial resin by various micro-inclusions (Fig. 8GH).

The micro-inclusions show a great diversity of micro-organisms. The thin red coating at the periphery of drop-shaped amber grains is characterised by the development of filamentous tufts with v terminations (Fig. 8A), corresponding to actinomycetes described under type A sensu Girard (2010) and Saint Martin et al. (2012, 2013). The same grain coating is also the seat of colonization by fine whorled filaments (Fig. 8B) presumed to be actinomycetes, as observed in the Santonian amber of Belcodene (Saint Martin et al., 2013). Other micro-inclusions occur at the periphery but also in the interior of the grains. This is the case of small isolated clusters of branched filaments (Fig. 8C) or dense networks of partially spiraled filaments (Fig. 8D), both assigned to actinomycetes close to the living genus Streptomyces (e.g. Saint Martin et al., 2012, 2013; Néraudeau et al., 2016, 2017). Another enigmatic micro-organism with a foliaceous form and sheathed filaments occupies the same habitus (Fig. 8E). These are referred to as Sphaerotilus-type sheathed bacteria although remaining doubts exist on this identification (see discussion in Néraudeau et al., 2016; Breton et al., 2018).

In addition, Saint Martin and Saint Martin (2018) previously reported dense network of filamentous sheathed bacteria identified as Leptotrichites resinatus in amber grains from Glacières de Pivaut. In thicker coatings, up to the center of the grain, different types of filament networks belonging to different types of actinomycetes and sheathed bacteria can be closely entangled (Fig. 8FH).

thumbnail Fig. 7

A: Variation in shape and appearance of the collected amber grains; B–E: views of amber grains under SEM; F–K: close-up views of amber grain thin sections under optical microscope. In details: B: section of translucent grain in the form of an elongated drop-shaped; C: part of elongated drop-shaped grain with surface cracks and peripheral partial colonization by filamentous micro-organisms; D: uniformly opaque grain; E: heterogeneous opaque grain with bubbles; F: translucent grain with orange outline; G: partially colonised translucent grain by a filamentous network (black arrow); H: opaque grain entirely colonised by a filamentous network; I–J: heterogeneous opaque grains with centripetal colonization areas by micro-organisms; K: heterogeneous opaque grain with dense bubbles.

thumbnail Fig. 8

Overview of micro-inclusions from the Sainte-Baume amber grains. A: tuft of actinomycetes developing centripetally at the periphery of the grain; B: verticillate structure of suspected actinomycetes with a stellate appearance developed centripetally at the periphery of the grain; C: isolated clusters of thin actinomycete filaments; D: filaments with a spiral appearance which mimics the aerial hyphae of Streptomyces; E: undetermined micro-inclusion showing a foliaceous structure developed centripetally at the periphery of the grain (black arrow); F: detail of peripheral opaque sleeve showing the entanglement between the filaments of Leptotrichites resinatus (black arrow) and the networks of Streptomyces-type filaments (white arrow); G: view of a grain with thick peripheral centripete sleeve formed by various micro-inclusions; H: detail of the dense filamentous network assigned to different types of micro-inclusions such as filaments of Leptotrichites resinatus.

5 Discussion

5.1 Stratigraphic correlations

Previous studies (e.g. Lutaud, 1914, 1917, 1925; Philip, 1970; Babinot, 1980) provided a general lithostratigraphy of the Upper Cretaceous deposits of the Plan d’Aups syncline (Fig. 9A). Above the Durancian bauxite horizon, those authors reported four main rudist-bearing banks (named as the Caïre de Sarazin, Crau de Piourian, Grand-Jas, and Vallon des Combes members − ; Fig. 9A) separated by four unnamed detrital intervals. Those detrital intervals are thereafter referred to as the Vallon de l’Épine, Bastide du Plan, Equireuil, and Mazaugues members, respectively (Fig. 9A).

At Mazaugues, the lowermost three units logged at the Equireuil Quarry correlate to the upper part of the Grand-Jas Member characterised by alternating rudistid biostromes, sandy limestones, and sandstones (Philip, 1970). The rich rudist fauna − including Vaccinites beaussetensis and Radiolites galloprovincialis − pinpoints a Santonian age (Philip, 1970).

The overlying units 4 and 5 of the Equireuil Quarry correlate to the third detrital interval as understood by Philip (1970). It is here referred to as the Equireuil Member after the name of the abandoned quarry. Its deposits − including sandstone channels and variegated silty clays – testify of the installation of a fluvio-deltaic sedimentation.

The units 6 and 7 of the Equireuil Quarry mark the return of shallow-marine conditions. Imbrication of silty marls and resedimented rudist–coral limestone conforms to the sedimentation of the Vallon des Combes Member observed westward (Babinot, 1980). According to Philip (1970), this member is still of Santonian age according to the occurrence of radiolitid rudists.

Note that the fourth detrital interval badly crops out at the Equireuil Quarry. Better outcropping conditions are found eastward at Mazaugues and consists of whitish to yellowish sands and sandstones including black lignite argillaceous horizons (thickness ∼20–25 m). We propose to refer this detrital interval as the Mazaugues Member since it forms the basement of the nominative village. The member stops at the overthrusting Liassic front of the Sainte-Baume Massif (Fig. 1B and Fig. 9A).

Eastward, the Grand-Jas and Vallon des Combes members are lacking at the Glacières de Pivaut and replaced by coarse sandstones including brackish bivalves and gastropods, and miliolid-bearing sands with rudist and/or coral debris (Philip, 1970). This conforms to our observations made along the Glacières de Pivaut forest pathway (see sect. 3.2). There, amber grains were harvested from similar sandstone sediments and also in overlying silty clays and black limestones rich in bivalves (Corbicula and Melania) and gastropods (Viviparus and Theodoxus) typical of the “Valdo-Fuvélien” regional stage (Philip, 1965a, 1965b).

In the vicinity of Plan d’Aups, at the Brasque Farm locality, the Caïre de Sarrazin Member is overlain by a thick Santonian rudist bank interfingering with miliolid-bearing calcisiltites and lignitic clays (Philip, 1970; Babinot, 1980) (Fig. 9B). According to Philip (1970), this rudist bank is stratigraphically equivalent to the Vallon de l’Épine, Crau de Piourian and Bastide du Plan members but their correlation with Mazaugues remain unclear. These deposits are overlain by the “zone du Plan d’Aups” (Répelin, 1906; Duboul, 1947; Philip, 1964, 1970; Fabre-Taxy and Philip, 1964, 1966). The “zone du Plan d’Aups” corresponds to a transition of shallow-marine to brackish sedimentation including coelenterate, rudist, oyster and gastropod bioherms at its base. Our amber grains from Plan d’Aups and the Brasque Farm originate from those facies. A Santonian age is assigned to the “Zone du Plan d’Aups” by the record of the rudist species Praeradiolites coquandi, and Apricardia toucasi (see Philip, 1970). Above, the succession consists of pisolithic and/or lignitic clays and marls which mark the onset of continental conditions (Fabre-Taxy and Philip, 1964, 1966; Philip, 1970; Babinot, 1980). The latter being still of Santonian age according to magnetostratigraphy (i.e. inferred age of the Valdonian stage after Westphal and Durand, 1990).

thumbnail Fig. 9

Upper Cretaceous sedimentary series of the Sainte-Baume Massif. (A) Mazaugues and (B) Plan d’Aups type sections (modified and completed after Philip, 1970).

5.2 Palaeoenvironmental significance

The Upper Cretaceous deposits of the Sainte-Baume Massif are characterised by a mixture of shallow-marine (rudist-dominant) and brackish (gastropod-dominant) deposits (e.g. Philip, 1970, 1972, 1974). Such configuration has been explained by the complex imbrication and rapid evolution in space and time of shallow-marine, lagoonal and lacustrine environments at the front of the North Provence Durancian uplift (Fig. 10). In the Sainte-Baume Massif, Philip (1970) showed that the advance of a terrigenous front contributes to the gradual migration towards the west of the Coniacian shallow-marine carbonate platform until its emergence at the end of Santonian and the establishment of the lagoon-brackish conditions (Fig. 9AB and Fig. 10). The lagoon-brackish conditions are illustrated by the deposition of the Plan d’Aups ecozone (Philip, 1970). In those deposits, the carbonate limestones persisted in the form of kilometre-scale lenses either dominated by rudist and/or corals interfingered with sandstone and silty marl intervals of brackish sedimentation. There, the predominance of neritid gastropods (Neritina) over cassiopid (Cassiope) and volutid ones (Voluta) conform to strong variations in salinity and periodical influence of fresh water. Indeed, the neritid gastropods usually lives in warm fresh to mesohaline waters (Esu and Girotti, 2010), while the two other genera used to inhabit intertidal and shallower infralittoral zones, with bathymetries up to 50 m (Mennessier, 1984). These changes in salinity are also confirmed by both the foraminiferal and ostracodal associations of the Plan d’Aups ecozone (Babinot and Tronchetti, 1983).

The amber grains were collected in both lagoon and brackish environments in association with lignite remains. The periodical influence of freshwater supplies may have yielded plant debris, and hardened resin nodules to the surrounding shallow water environments. Such configuration is similarly found in the Santonian amber-bearing deposits of Piolenc (Vaucluse). It has been often stated that the tree areas producing the resin may be quite far from the deposition area. However, the co-occurrence of abundant amber grains and plant cuticles at Mazaugues likely pinpoints close vicinity with the amber-producing forests. As further evidence, diverse authors reported the presence of Frenelopsis imprints in the Santonian deposits of the Sainte-Baume Massif (Carpentier, 1937; Depape, 1959; Samuel and Gaillard, 1984). This Cheirolepidiaceae is often related to the production of amber resins, as it has been argued for the Santonian amber grains of Belcodène (Saint Martin et al., 2013). However, apart the case of exceptional inclusion of identifiable plant debris in amber (Néraudeau et al., 2020), the botanical origin of amber still remains widely debated for each amber deposit, even if the chemical composition of amber grains can give some indications (see Seyfullah et al., 2018 and the discussion in Valentin et al., 2020). At Piolenc, various leaf cuticle compressions of Corystospermales, Cycadales, Bennettitales, Gymnosperms and mostly Angiosperms are recorded, and testify of a warm and humid, tropical climate, including a dry season (Gomez et al., 2003).

The Santonian amber-bearing sites of southeastern France mostly contain small automorphic drop-shaped amber grains (Saint Martin et al., 2012, 2013, 2021; Saint Martin and Saint Martin, 2018). Such grains are also observed in Alabama (Knight et al., 2010) and Siberia (Rasnitsyn et al., 2016). According to Saint Martin et al. (2013) this dominance likely reflects a process of grain selection from the place of resin production to the place of deposition, leading to an underestimation of larger flows along the trunks. Micro-inclusions would result of events taking place in the aerial parts of the resin producing plants. The nature of the micro-inclusions indicates early colonization while the resin is still fluid, involving resinicolous micro-organisms (Girard, 2010; Saint Martin et al., 2012, 2013; Breton et al., 2014, 2018). As discussed by those authors, the resin production in the aerial parts may result from environmental factors. The forest fires or the action of biting insects causing a reaction in the plant have been invoked. Another rarely considered cause could be the activity of pathogenic organisms, such as ascomycete fungi, which can lead to occasional but repeated exudations of resin (Smith et al., 1988; Zlatković et al., 2017). The features of the amber harvested can thus inform on the forest ecosystem, including its negative dimension through the production of resin and its subsequent deposition in the surrounding environments.

thumbnail Fig. 10

Schematic palaeomap of southeastern France during the Coniacian–Santonian times showing the northward prograding trend of the South Provence platform and the westward advance of a terrigenous front (modified after Philip, 1970).

6 Conclusions

The collection of amber grains in the Sainte-Baume Massif gives new evidence of a widespread resin-producing environment in southeastern France during the Santonian, and the permanent activity of a microscopic resinicolous community. Our findings extent the record of Santonian amber-bearing sediments to the east of the Sainte-Baume Massif. It is hypothesised that the amber grains may result from Cheilolepidiaceae forests that have proliferated close to the Durancian uplift front. The grains were subsequently deposited into the surrounding complex shallow-marine and fluvio-deltaic system developed in the Sainte-Baume Massif. There is hardly any doubt that new amber spot occurrences can be found there and will better constrain the regional palaeogeography in a near future. Additionally, further analyses of the chemical composition of amber will help identifying the nature of resin-producing plants.

Acknowledgments

Séverin Morel (UMR 7207 CR2P) produced the thin sections and Géraldine Toutirais (PTME, Muséum National d’Histoire Naturelle, Paris) assisted us for the scanning electron microscopy. The paper greatly benefited from the valuable comments of François Fournier (CEREGE, Aix-Marseille Université) and anonymous reviewers.

References

  • Babinot J-F. 1980. Les Ostracodes du Crétacé supérieur de Provence. Systématique-Biostratigraphie-Paléoécologie-Paléogéographie. Thèse Doct. État, Marseille, unpublished, 634 p. [Google Scholar]
  • Babinot J-F., Tronchetti G. 1983. Les microfaunes (foraminifères-ostracodes) du Coniacien-Santonien de Provence (S.E. France): biostratigraphie, paléoécologie. Géologie Méditerranéenne 10(3–4): 143–154. [Google Scholar]
  • Beimforde C, Schmidt A-R. 2011. Microbes in resinous habitats: a compilation from modern and fossil resins. In: Reitner G, et al., Eds. Advances in Stromatolite geobiology, Lectures Notes in Earth Sciences 131: 391–407. [Google Scholar]
  • Bestani L, Espurt N, Lamarche J, Floquet M, Philip J, Bellier O, Hollender F. 2015. Structural style and evolution of the Pyrenean-Provence thrust belt, SE France. In: Serrane M, et al., Eds. Lithosphere dynamics and sedimentary basins: The circum-Mediterranean basins and analogue. Bulletin de la société géologique de France 186(4–5): 223–241. [Google Scholar]
  • Breton G, Tostain F. 2005. Les microorganismes de l’ambre cénomanien d’Ecommoy (Sarthe, France). Comptes Rendus Palevol 4: 31–46. [CrossRef] [Google Scholar]
  • Breton G, Gauthier C, Vizcaino D. 1999. Land and freshwater microflora in a sparnacian amber from the Corbières (South France): first observations. Estudios del Museo de Ciencias Naturales de Álava 14: 161–166. [Google Scholar]
  • Breton G, Bilote M, Eychenne G. 2013. L’ambre campanien du Mas d’Azil (Ariège, France): gisement, microinclusions, taphonomie. Annales de Paléontologie 99: 317–337. [Google Scholar]
  • Breton B, Champion S, Bilote M. 2018. L’ambre turonien du ruisseau des Tarquès (Commune de Duilhac-sous-Peyrepertuse, Aude, France). Bulletin de la Société d’Histoire Naturelle de Toulouse 154: 161–176. [Google Scholar]
  • Breton G, Serrano-Sánchez M, Vega FJ. 2014. Filamentous micro-organims, inorganic inclusions and pseudo-fossils in the Miocene amber from Totolapa (Chiapas, Mexico: taphonomy and systematics. Boletín de la Sociedad Geológica Mexicana 66(1): 199–214. [Google Scholar]
  • Carpentier A. 1937. Remarques sur des empreintes de Frenelopsis trouvées dans le Campanien inférieur du Massif de la Sainte-Baume. Annales du Muséum d’Histoire naturelle de Marseille 28(4): 14 p. [Google Scholar]
  • Collot L. 1890. Description du terrain crétacé dans une partie de la Basse-Provence. Bulletin de la Société Géologique de France XVIII(sér. 3): 49–102. [Google Scholar]
  • Coquand H. 1860. Rapports qui existent entre les groupes de la craie moyenne et de la craie supérieure de la Provence et du sud-ouest de la France. Bulletin de la Société Géologique de France XVIII(sér. 2): 133–162. [Google Scholar]
  • Coquand H. 1864. Description géologique de la Sainte-Baume (Provence). Marseille: Éditions Arnaud et Comp., 85 p. [Google Scholar]
  • Depape G. 1959. Les flores fossiles du Crétacé supérieur en France. Actes du 84e Congrès des Société Savantes, Paris, pp. 61–94. [Google Scholar]
  • Duboul C. 1947. La faune saumâtre du Campanien inférieur de la Basse Provence Occidentale. Bulletin du Muséum d’Histoire Naturelle de Marseille 7(1): 45–255. [Google Scholar]
  • Esu D, Girotti O. 2010. The late Oligocene molluscan fauna from Otranto (Apulia,southern Italy): an example of alternating freshwater, lagoonal and emerged environments. Palaeontology 53(1): 137–174. [Google Scholar]
  • Fabre-Taxy S, Philip J. 1964. La zone du Plan d’Aups dans sa région type la Sainte- Baume (Var). Bulletin de la Société Géologique de France 6(4): 554–559. [Google Scholar]
  • Fabre-Taxy S, Philip J. 1966. Biostratigraphie et paléoécologie des peuplements à Huîtres et des formations saumâtres du Santonien provençal. Bulletin de la Société Géologique de France 8(5): 702–711. [Google Scholar]
  • Girard V. 2010. Microcenoses des ambres medio-Crétacés français. Taphonomie, systématique, paléoécologie et reconstitution du paléoenvironnement. Mémoires Géosciences Rennes 134: 1–294. [Google Scholar]
  • Girard V, Breton G, Perrichot V, Bilote M, Le Loeuff J, Nel A, Philippe M, Thevenard F. 2013a. The Cenomanian amber of Fourtou (Aude, Southern France): tahonomy and palaeoecological implications. Annales de paléontologie 99: 301–315. [CrossRef] [Google Scholar]
  • Girard V, Néraudeau D, Breton G, Morel N. 2013b. Palaeoecology of the Cenomanian amber forest of Sarthe (western France). Geologica Acta 11(3): 321–330. [Google Scholar]
  • Goldfuss A. 1826. Petrefacta Germaniae tam ea, quae in museo Universitatis Regiae Borussicae Fredericae Wilhelmiae Rhenanae servantur quam alia quaecunque in Museis Hoeninghausiano Muensteriano aliisque extant Iconibus et Descriptionibus Illustrata. Dusseldorf: Erster Theil. (Arnz & Comp.), 252 p. [Google Scholar]
  • Gomez B, Barale G, Saad D, Perrichot V. 2003. Santonian Angiosperm-dominated leaf-assemblage from Piolenc (Vaucluse, Sud-Est de la France). Comptes Rendus Palevol 2: 197–204. [Google Scholar]
  • Guiliano M, Mille G, Onoratini G, Simon P. 2006. Présence d’ambre dans le Crétacé supérieur (Santonien) de La Mède à Martigues (Sud-Est de la France) ; caractérisation IRTF. Comptes Rendus Palevol 5: 851–858. [Google Scholar]
  • Guyonnet-Benaize C, Lamarche J, Masse J-P., Villeneuve M, Viseur S. 2010. 3D structural modelling of small-deformations in poly phase faults pattern, Application to the Mid-Cretaceous Durance uplift, Provence (SE France). Journal of Geodynamics 50: 81–93. [CrossRef] [Google Scholar]
  • Knight TK, Bingham PS, Grimaldi DA, Anderson K, Lewis RD, Savrda CE. 2010. A new Upper Cretaceous (Santonian) amber deposit from the Eutaw Formation of eastern Alabama, U.S.A. Cretaceous Research 31: 85–93. [Google Scholar]
  • Lutaud L. 1914. Sur le Sénonien de Mazaugues (Var). Comptes rendus des séances de l’Académie des Sciences de Paris 159: 85–88. [Google Scholar]
  • Lutaud L. 1917. Au sujet de la continuation vers l’Est du synclinal sénonien du Plan d’Aups. Comptes-rendus sommaires de la Société Géologique de France 1917(12): 165–167. [Google Scholar]
  • Lutaud L. 1925. Le plateau crétacé de Mazaugues (Var). Bulletin de la Société Géologique de France XXV(4): 801–829. [Google Scholar]
  • Marchand E. 2019. Rôle des interactions tectonique-sédimentation sur l’évolution et la variabilité spatiale d’un gisement de bauxite karstique: exemple au bassin de Villeveyrac (Sud de la France). Thèse Doct, IMT − Mines Alès, unpublished, 285 p. [Google Scholar]
  • Masse J-P., Philip J. 1976. Paléogéographie du Crétacé moyen en Provence: révision du concept d’isthme durancien. Rev. Géogr. Phys. Géol. Dyn. 18(1): 49–66. [Google Scholar]
  • Matheron P. 1842. Catalogue méthodique et descriptif des corps organisés fossiles du département des Bouches-du-Rhône et lieux circonvoisins. Répertoire des travaux de la Société de statistique de Marseille 6: 81–361. [Google Scholar]
  • Mennessier G. 1984. Révision des gastéropodes appartenant à la famille des Cassiopidae Kollmann (=Glauconiidae Ptchelintsev). Travaux du Département de Géologie de l’Université de Picardie 1: 1–189. [Google Scholar]
  • Néraudeau D, Perrichot V, Batten D, Boura A, Girard V, Jeannau L, Nohra Y, Polette F, Saint Martin S, Saint Martin J-P, Thomas R. 2017. Upper Cretaceous amber from Vendée, north-western France: age dating and geological, chemical, and palaeontological characteristics. Cretaceous Research 70: 77–95. [CrossRef] [Google Scholar]
  • Néraudeau D, Saint Martin J-P, Saint Martin S, Moreau J-D, Philippe M, Polette F, Gendry D, Brunet J, Tréguier J. 2020. Amber and plant-bearing deposits from the Cenomanian of Neau (Mayenne, northern France). Bulletin de la Société Géologique de France 191: 39. [Google Scholar]
  • Néraudeau D, Saint Martin S, Batten D, Colin J-P, Daviero-Gomez V, Girard V, Gomez B, Nohra Y, Polette F, Platel J-P, Saint Martin J-P, Vullo R. 2016. Palaeontology of the upper Turonian paralic deposits of the Sainte-Mondane Formation, Aquitaine Basin, France. Geologica Acta 14(1): 53–69. [Google Scholar]
  • Onoratini G, Guiliano M, Asia L, Mille G, Simon P. 2009. L’ambre dans le Sud-Est de la France, ressources géologiques et utilisation archéologique. Bulletin du Musée d’Anthropologie préhistorique de Monaco 49: 3–20. [Google Scholar]
  • Philip J. 1964. Faciès et variations du Sénonien dans le massif de la Sainte-Baume (Var). Comptes-rendus sommaires de la Société Géologique de France 3: 107–108. [Google Scholar]
  • Philip J. 1965a. Intercalation du faciès valdo-fuvélien dans le Santonien marin du massif de la Sainte-Baume. Annales de la Faculté des Sciences de Marseille 37: 145–152. [Google Scholar]
  • Philip J. 1965b. Nouvelles observations sur la structure du synclinal du Plan d’Aups dans le massif de la Sainte-Baume (Var). Comptes rendus sommaires de la Société Géologique de France 9: 310–311. [Google Scholar]
  • Philip J. 1972. Paléoécologie des formations a rudistes du Crétacé supérieur − l’exemple du sud-est de la France. Palaeogeography, Palaeoclimatology, Palaeoecology 12: 205–222. [Google Scholar]
  • Philip J. 1970. Les formations calcaires à Rudistes du Crétacé supérieur Provençal et Rhodanien. Thèse Doct. État, Marseille, unpublished, 438 p. [Google Scholar]
  • Philip J. 1974. Les formations calcaires à Rudistes du Crétacé supérieur provençal et rhodanien: stratigraphie et paléogéographie. Bulletin du BRGM (deuxième série), section 1, 3: 107–151. [Google Scholar]
  • Philip J. 2012. L’exploration géologique de la Provence. Deux siècles et demi de débats et de controverses. Presses des Mines, coll. « Histoire, sciences et sociétés », 366 p. [Google Scholar]
  • Rasnitsyn AP, Bashkuev AS, Kopylov DS, Lukashevich ED, Ponomarenko AG, Popov Yu A, Rasnitsyn DA, Ryzhkova OV, Sidorchuk EA, Sukatsheva ID, Vorontsov DD. 2016. Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins), Cretaceous Research 61: 234–255. [Google Scholar]
  • Répelin J. 1906. Monographie de la faune saumâtre du Campanien inférieur du Sud-Est de la France ; zone du Plan d’Aups. Annales du Muséum d’Histoire Naturelle de Marseille 10: 87 p. [Google Scholar]
  • Saint Martin J-P, Saint Martin S. 2018. Exquisite preservation in Cretaceous French ambers of a widespread but controversial filamentous microorganism. Comptes Rendus Palevol 17: 415–434. [CrossRef] [Google Scholar]
  • Saint Martin S, Saint Martin J-P, Girard V, Néraudeau D, Grosheny D. 2012. Filamentous micro-organisms in Upper Cretaceous amber (Martigues, France). Cretaceous Research 35: 217–229. [CrossRef] [Google Scholar]
  • Saint Martin S, Saint Martin J-P, Girard V, Néraudeau D. 2013. Organismes filamenteux de l’ambre du Santonien de Belcodène (Bouches-du-Rhône, France). Annales de Paléontologie 99(4): 339–360. [Google Scholar]
  • Saint Martin S, Dutour Y, Ebbo L, Frau C, Mazières B, Néraudeau D, Saint Martin S, Tortosa T, Turini E, Valentin X. 2021. Reassessment of amber-bearing deposits of Provence, southeastern France. Bulletin de la Société Géologique de France 192: 5. [Google Scholar]
  • Samuel E, Gaillard MG. 1984. Les gisements à flore fossile d’âge crétacé supérieur en France : localisation, stratigraphie et essai de corrélations des données macro et microfloristiques. Bulletin mensuel de la Société linnéenne de Lyon, 53e année 6: 213–223. [Google Scholar]
  • Schmidt A, Schäfer U. 2005. Leptotrichites resinatus new genus and species: a fossil sheathed bacterium in Alpine Cretaceous amber. Journal of Paleontology 79: 175–184. [CrossRef] [Google Scholar]
  • Schmidt A, Perrichot V, Svojtka M, Anderson K, Belete K, Bussert R, Dörfelt H, Jancke S, Mohr B, Mohrmann E, Nascimbene P, Nel A, Nel P, Ragazzi E, Roghi G, Saupe E, Schmidt K, Schneider H, Selden P, Vávra N. 2010. Cretaceous African life captured in amber. Proceedings of the National Academy of Sciences of the USA 107: 7329–7334. [CrossRef] [Google Scholar]
  • Smith IM, Dunez J, Phillips DH, Lelliott RA, Archer SA. 1988. European Handbook of Plant Diseases. Blackwell Scientific Publications, 583 p. [Google Scholar]
  • Seyfullah L, Beimforde C, Dal Corso J, Perrichot V, Rikkinen J, Schmidt A. 2018. Production and preservation of resins − past and present. Biological Reviews 93: 1684–1714. [CrossRef] [Google Scholar]
  • Sowerby J. 1814. The mineral conchology of Great Britain; or coloured figures and descriptions of those remains of testaceous animals or shells, which have been preserved at various tomes and depths in the earth. London, pp. 97–124. [Google Scholar]
  • Speranza M, Wierzchos J, Alonso J, Bettuci L, Martin-Gonzáles A, Ascaso C. 2010. Traditional and new microscopy techniques applied to the study of microscopic fungi included in amber. In: Méndez A, Diaz J, Eds. Microscopy, Science, Technology, Application and Education, pp. 1135–1145. [Google Scholar]
  • Speranza M, Ascaso C, Delclòs X, Peñalver E. 2015. Cretaceous mycelia preserving fungal polysaccharides: taphonomic and paleoecological potential of microorganisms preserved in fossil resins. Geologica Acta 13(4): 363–385. [Google Scholar]
  • Valentin X, Garcia G, Gomez B, Daviero Gomez V, Boiteau J, Saint Martin S, Saint Martin J-P. 2020. New fossil assemblage with amber, plants and vertebrates from the lower Cenomanian near Châtellerault (Vienne, western France). Bulletin de la Société Géologique de France 191: 29. [Google Scholar]
  • Vasseur G. 1890. Découverte d’une flore turonienne dans les environs des Martigues (Bouches-du-Rhône). Comptes rendus des séances de l’Académie des Sciences de Paris 110: 1086–1089. [Google Scholar]
  • Vasseur G. 1894. Compte rendu d’excursions géologiques aux Martigues et à l’Estaque (Bouches-du-Rhône). Bulletin de la Société Géologique de France 22: 413–444. [Google Scholar]
  • Westphal M, Durand J-P. 1990. Magnétostratigraphie des séries continentales fluvio-lacustres du Crétacé supérieur dans le synclinal de l’Arc (région d’Aix-en-Provence, France). Bulletin de la Société Géologique de France 6: 609–620. [Google Scholar]
  • Zlatković M, Keča N, Wingfield MJ, Jami F, Slippers B. 2017. New and unexpected host associations for Diplodia sapinea in the Western Balkans. Forest Pathology 47 (3): 1–11. [Google Scholar]

Cite this article as: Frau C, Saint Martin J-P, Saint Martin S, Mazière B. 2021. An overview of the Santonian amber-bearing deposits of the Sainte-Baume Massif, southeastern France, BSGF - Earth Sciences Bulletin 192: 18.

All Figures

thumbnail Fig. 1

A: situation map of the Saint Baume Massif in southern France; B: Google Earth satellite view and sketchy geological map of the Plan d’Aups, and Mazaugues study areas, including the three amber-bearing sites (Pt. 1: Equireuil quarry, Pt. 2: Glacières de Pivaut, and Pt. 3: Plan d’Aups-La Brasque Farm) and C: schematic sedimentary succession of the Sainte-Baume Massif (modified from Bestani et al., 2015).

In the text
thumbnail Fig. 2

Lithological succession of the Equireuil Quarry section (Mazaugues), main lithological units (units 1 to 7), and the two collected amber grain spot occurrences (units 1 and 6).

In the text
thumbnail Fig. 3

Field photographs from the Equireuil Quarry section. A: East-West panorama of the Equireuil Quarry and location of the second amber grain spot occurrence (white arrow on the right); B: lower soft sandstone sediments (unit 1) containing lignite debris and amber grains (white arrow); C: composite bed with coral and bryozoans at the base and rudist bioconstruction at the top (unit 3); D: lamellar corals at the base of the lenticular body figured in (C); E: focus on finely branched and lamellar corals of the lenticular body; F: sandy marls with corals and lignite debris under rudist aggregate beds (unit 3); G: sandy bodies and interfingered variegated marls (unit 5); H: close-up view of the second amber grain spot occurrence (white arrow) found in sandy marls containing a shallow-marine fauna (unit 6) and eroding limestone bed (black arrow) made of coral and rudist debris (unit 7).

In the text
thumbnail Fig. 4

Representative elements from (A) the first amber grain spot occurrence (Unit 1); and (A–J) the second amber grain spot occurrence (unit 7). A: amber grain (white arrow) and lignite debris (black arrow) in coarse sandstone; B: amber grain (white arrow) and fish vertebra (black arrow) in silty marls; C: solitary corals Cunnolites polymorphus (Goldfuss, 1826); D: solitary coral Trochocyathus sp.; E: shallow-marine bivalve Neithea quinquecostata (Sowerby, 1814); F: shallow-marine gastropod Trochus subcyclostomus (Matheron, 1842); G: undetermined gastropod; H: shallow-marine gastropod Voluta pyruloides (Matheron, 1842); I: undetermined scaphopods; J: undetermined colonial serpulids.

In the text
thumbnail Fig. 5

Field photographs of the Glacières de Pivaut area. A: view of sandstone intervals (white arrow) near the Glacières de Pivaut; B: excavation in the amber-bearing sandstones (black arrow).

In the text
thumbnail Fig. 6

Field photographs of the Plan d’Aups area. A: a drainage trench showing amber-bearing fossiliferous levels (white arrow) near the La Brasque Farm; B: the forest pathway starting from the La Brasque farm and the outcropping conditions of the Plan d’Aups ecozone; C: black-coloured fossiliferous limestone containing solitary corals (co) and gastropods; D–H: amber grains (black and whites arrows) scattered in the black-coloured fossiliferous limestones containing corals (co), bivalves (Cardium sp.: ca), gastropods (ga) such as Cassiope sp. (ga in E) and Voluta sp. (ga in H); I: limestone level (white arrow) of the Plan d’Aups ecozone outcropping at Plan d’Aups; J: close-up view of (I) showing the fossiliferous limestone bed.

In the text
thumbnail Fig. 7

A: Variation in shape and appearance of the collected amber grains; B–E: views of amber grains under SEM; F–K: close-up views of amber grain thin sections under optical microscope. In details: B: section of translucent grain in the form of an elongated drop-shaped; C: part of elongated drop-shaped grain with surface cracks and peripheral partial colonization by filamentous micro-organisms; D: uniformly opaque grain; E: heterogeneous opaque grain with bubbles; F: translucent grain with orange outline; G: partially colonised translucent grain by a filamentous network (black arrow); H: opaque grain entirely colonised by a filamentous network; I–J: heterogeneous opaque grains with centripetal colonization areas by micro-organisms; K: heterogeneous opaque grain with dense bubbles.

In the text
thumbnail Fig. 8

Overview of micro-inclusions from the Sainte-Baume amber grains. A: tuft of actinomycetes developing centripetally at the periphery of the grain; B: verticillate structure of suspected actinomycetes with a stellate appearance developed centripetally at the periphery of the grain; C: isolated clusters of thin actinomycete filaments; D: filaments with a spiral appearance which mimics the aerial hyphae of Streptomyces; E: undetermined micro-inclusion showing a foliaceous structure developed centripetally at the periphery of the grain (black arrow); F: detail of peripheral opaque sleeve showing the entanglement between the filaments of Leptotrichites resinatus (black arrow) and the networks of Streptomyces-type filaments (white arrow); G: view of a grain with thick peripheral centripete sleeve formed by various micro-inclusions; H: detail of the dense filamentous network assigned to different types of micro-inclusions such as filaments of Leptotrichites resinatus.

In the text
thumbnail Fig. 9

Upper Cretaceous sedimentary series of the Sainte-Baume Massif. (A) Mazaugues and (B) Plan d’Aups type sections (modified and completed after Philip, 1970).

In the text
thumbnail Fig. 10

Schematic palaeomap of southeastern France during the Coniacian–Santonian times showing the northward prograding trend of the South Provence platform and the westward advance of a terrigenous front (modified after Philip, 1970).

In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.