Issue
Bull. Soc. géol. Fr.
Volume 188, Number 5, 2017
Petroleum source rocks
Article Number 29
Number of page(s) 13
DOI https://doi.org/10.1051/bsgf/2017187
Published online 10 November 2017
  • Alpern B. 1981. Les schistes bitumineux : constitution, réserves, valorisation. Bull Centres Rech Explor − Prod Elf Aquitaine 5(2): 319–352. [Google Scholar]
  • Batten DJ. 1996. Chapter 26A. Palynofacies and paleoenvironmental interpretation. In: Jansonius J, McGregor DC, eds. Palynology: Principles and Applications. Amer Asso Stra Paly Foun 3: 1011–1064. [Google Scholar]
  • Becq-Giraudon J-F, Montenat C, Van Den Driessche J. 1996. Hercynian high-altitude phenomena in the French Massif Central: tectonic implications. Palaeogeogr Palaeoclimatol Palaeoecol 122: 227–241. [Google Scholar]
  • Behar F, Lorant F, Lewan M. 2008. Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite. Org Geochem 39: 1–22. [CrossRef] [Google Scholar]
  • Behar F, Roy S, Jarvie D. 2010. Artificial maturation of a type I kerogen in closed system: mass balance and kinetic modelling. Org Geochem 41: 1235–1247. [CrossRef] [Google Scholar]
  • Bertrand C-E, Renault B. 1892. “Pila bibractensis” et le boghead d'Autun. Bull Soc Hist Nat Autun 5: 95. [Google Scholar]
  • Bohacs KM, Caroll AR, Neal JE, Mankiewicz PJ. 2000. Lake-basin type, source potential, and hydrocarbon character: an integrated sequence-stratigraphic-geochemical framework. In: Gierlowski-Kordesch EH, Kelts KR, eds. Lake basins through space and time. AAPG Stud Geol 46: 3–34. [Google Scholar]
  • Broutin J, Doubinger J, Farjanel G, Freytet P, Kerp H, Langiaux J, et al. 1990. Le renouvellement des flores au passage Carbonifère-Permien : approche stratigraphique, biologique, sédimentologique. CR Acad Sci Fr 311: 1563–1569. [Google Scholar]
  • Broutin J, Chateauneuf J-J, Galtier J, Ronchi A. 1999. L'Autunien d'Autun reste-t-il une référence pour les dépôts continentaux du Permien inférieur d'Europe ? Apport des données paléobotaniques. Geol Fr 2: 17–31. [Google Scholar]
  • Burwood R. 1999. Angola: source rock control for Lower Congo coastal and Kwanza Basin petroleum systems. In: Cameron NR, Bare RH, Clure VS, eds. The Oil and Gas Habitats of the South Atlantic. Geol Soc, London, Spec Publ 153: 181–194. [Google Scholar]
  • Burwood R, Leplat P, Mycke B, Paulet J. 1992. Proceedings of the 15th International meeting on organic geochemistry rifted margin source rock deposition: a carbon isotope and biomarker study of a West African lower cretaceous “Lacustrine” section. Org Geochem 19: 41–52. [CrossRef] [Google Scholar]
  • Chateauneuf JJ, Farjanel G. 1989. Synthèse géologique des bassins permiens français. Mém BRGM 128: 288. [Google Scholar]
  • Chateauneuf JJ, Disnar JR, Farjanel G, Feys R, Greber C, Hery B, et al. 1982. Inventaire des séries uranifères d'Europe : Permien et autres milieux continentaux. Orléans : Rap BRGM 82 SGN 124 GEO, 124 p. [EDP Sciences] [Google Scholar]
  • Delfour J, Arène J, Clozier L, Feys R, Delance JH. 1991. Carte géologique de France (1/50 000), feuille 551: Autun. 1ère édition. Orléans : BRGM. Notice explicative par Delfour J, et al. (1991), 88 p. [Google Scholar]
  • Derenne S, Largeau C, Behar F. 1994. Low polarity pyrolysis products of Permian to recent Botryococcus-rich sediments: first evidence for the contribution of an isoprenoid algaenan to kerogen formation. Geochim Cosmochim Acta 58: 3703–3711. [CrossRef] [Google Scholar]
  • Durand B, Nicaise D. 1980. Procedure of kerogen isolation. In: Durand B, ed. Insoluble Organic Matter From Sedimentary Rocks. Paris : Éditions Technip, pp. 13–34. [Google Scholar]
  • Espitalié J, Deroo G, Marquis F. 1985. La pyrolyse Rock-Eval et ses applications, deuxième partie. Rev Inst Fr Pét 40: 563–579. [CrossRef] [EDP Sciences] [Google Scholar]
  • Fritsche W, Hofrichter M. 2000. Aerobic degradation by microorganisms. In: Klein J, ed. Biotechnology. New York: John Wiley & Sons, vol. 11b, pp. 146–164. [Google Scholar]
  • Furmann A, Mastalerz M, Brassell SC, Pedersen PK, Zajac NA, Schimmelmann A. 2015. Organic matter geochemistry and petrography of Late Cretaceous (Cenomanian-Turonian) organic-rich shales from the Belle Fourche and Second White Specks formations, west-central Alberta. Canada Org Geochem 85: 102–120. [CrossRef] [Google Scholar]
  • Gaglianone PC, Trindade LAF. 1988. Caracterização geoquímica dos óleos da Bacia do Recôncao. Geoch Brasi 2: 15–39. [Google Scholar]
  • Gall JC. 1979. Paléoécologie et paléoenvironnements de quelques schistes bitumineux. In : Busson G, ed. Lyon : Doc Lab Geol Fac Sci Lyon, vol. 75, pp. 19–31. [Google Scholar]
  • Galtier J. 1980. Les végétaux silicifiés du Permien d'Autun : analyse quantitative et interpretation possible. Bull Soc Hist Nat Autun 95: 35–39. [Google Scholar]
  • Gand G, Châteauneuf JJ, Durand M, Chabard D, Passaqui JP. 2007. Early Permian Continental environments in the Autun basin. In: Gand G, Châteauneuf JJ, Durand M, Chabard D, Passaqui JP, eds. Pre-symposium fieldtrip guide: Autun. Paris: Publ ASF 56. [Google Scholar]
  • Harris NB, Freeman KH, Pancost RD, White TS, Mitchell GD. 2004. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, west Africa. AAPG Bull 88(8): 1163–1184. [CrossRef] [Google Scholar]
  • Heyler D. 1969. Vertébrés de l'Autunien de France. Cah. Paléont. Paris : CNRS, 255 p. [EDP Sciences] [Google Scholar]
  • Jarvie DM. 2012. Shale resource systems for oil and gas: Part 2 – Shale-oil resource systems. In: Breyer JA, ed. Shale reservoirs − Giant resources for the 21st century. AAPG Memoir 97: 89–119. [Google Scholar]
  • Johnson TC, Halfman JD, Rosendahl BR, Lister GS. 1987. Climatic and tectonic effects on sedimentation in a rift-valley lake; evidence from high-resolution seismic profiles, Lake Turkana, Kenya. Geol Soc Am Bull 98: 439–447. [CrossRef] [Google Scholar]
  • Katz BJ. 1995. Lacustrine source rock systems − is the Green River Formation an appropriate analog? Geologiya i Geofizika 36: 26–41. [Google Scholar]
  • Kawamura K, Ishiwatari R, Ogura K. 1987. Early diagenesis of organic matter in the water column and sediments: microbial degradation and resynthesis of lipids in Lake Haruna. Org Geochem 11: 251–264. [CrossRef] [Google Scholar]
  • Killops SD, Killops VJ. 2005. An Introduction to Organic Geochemistry, 2nd ed. Oxford: Wiley-Blackwell, 394 p. [Google Scholar]
  • Largeau C, Derenne S, Casadevall E, Kadouri A, Sellier N. 1986. Pyrolysis of immature Torbanite and of the resistant biopolymer (PRB A) isolated from extant alga Botryococcus braunii. Mechanism of formation and structure of torbanite. Org Geochem 10: 1023–1032. [CrossRef] [Google Scholar]
  • Lebedel V. 2009. Étude sédimentologique des variations du potential pétroligène des schistes bitumineux de l'Autunien du bassin d'Autun. Mémoire de Master. Univ. Pierre et Marie Curie, 61 p. [Google Scholar]
  • Lewan MD, Ruble TE. 2002. Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis. Org Geochem 33: 1457–1475. [CrossRef] [Google Scholar]
  • Ma P, Wang L, Wang C, Wu X, Wei Y. 2015. Organic-matter accumulation of the lacustrine Lunpola oil shale, central Tibetan Plateau: Controlled by the paleoclimate, provenance, and drainage system. Int J Coal Geol 147–148: 58–70. [CrossRef] [Google Scholar]
  • Marteau P. 1983. Le bassin permo-carbonifère d'Autun : stratigraphie, sédimentologie et aspects structuraux. Ph.D. thesis, Univ. de Dijon. Document du BRGM, 64, 193 p. [Google Scholar]
  • Mayer-Eymar C. 1881. Classification internationale des terrains sédimentaires. Archi Soc Géol Fr 1–15. [Google Scholar]
  • Meyers PA, Eadie BJ. 1993. Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Org Geochem 20: 47–56. [CrossRef] [Google Scholar]
  • Meyers PA, Ishiwatari R. 1993. Lacustrine organic geochemistry − an overwiew of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20: 867–900. [CrossRef] [Google Scholar]
  • Parrish JT. 1993. Climate of the Supercontinent Pangea. J Geol 101: 215–233. [CrossRef] [Google Scholar]
  • Perlmutter MA, Matthews MD. 1990. Global cyclostratigraphy-a model. In: Cross TA, ed. Quantitative Dynamic Stratigraphy: Englewood Cliffs. New Jersey: Prentice Hall, pp. 233–260. [Google Scholar]
  • Peters K, Walters C, Moldowan M. 2005. The biomarker guide: Biomarkers and Isotopes in the Petroleum Exploration and Earth History. Cambridge: Cambridge University Press, vol. 2, 680 p. [Google Scholar]
  • Powell TG. 1986. Petroleum geochemistry and depositional setting of lacustrine source rocks. Mar and Pet Geol 3: 200–219. [CrossRef] [Google Scholar]
  • Ruble TE, Lewan MD, Philp RP. 2001. New insights on the Green River petroleum system in the Uinta basin from hydrous pyrolysis experiments. AAPG Bull 85(8): 1333–1371. [Google Scholar]
  • Schneider JW, Körner F, Roscher M, Kroner U. 2006. Permian climate development in the northern peri-Tethys area −The Lodève basin, French Massif Central, compared in a European and global context. Palaeogeogr Palaeoclimatol Palaeoecol 240: 161–183. [CrossRef] [Google Scholar]
  • Sebag D, Copard Y, Di-Giovanni C, Durand A, Laignel B, Ogier S, et al. 2006. Palynofacies as useful tool to study origins and transfers of particulate organic matter in recent terrestrial environments: Synopsis and prospects. Earth-Sci Rev 79: 241–259. [CrossRef] [Google Scholar]
  • Shanahan TM, Overpeck JT, Wheeler CW, Beck JW, Pigati JS, Talbot MR, et al. 2006. Paleoclimatic variations in West Africa from a record of late Pleistocene and Holocene lake level stands of Lake Bosumtwi, Ghana. Palaeogeogr Palaeoclimatol Palaeoecol 242: 287–302. [CrossRef] [Google Scholar]
  • Staplin FL. 1977. Interpretation of thermal history from color of particulate organic matter, a review. Palynology 1: 9–18. [CrossRef] [Google Scholar]
  • Tegelaar EW, Noble RA. 1994. Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis-gas chromatography. Org Geochem 22: 543–574. [CrossRef] [Google Scholar]
  • Teichmüller M, Durand B. 1983. Fluorescence microscopical rank studies on liptinites and vitrinites in peat and coals, and comparison with results of the Rock-Eval pyrolysis. Int J Coal Geol 2: 197–230. [CrossRef] [Google Scholar]
  • Teichmüller M, Wolf M. 1977. Application of fluorescence microscopy in coal petrology and oil exploration. J Microsc 109(1): 49–73. [CrossRef] [Google Scholar]
  • Tissot BP, Welte DH. 1984. Petroleum Formation Occurence, second edn. Berlin: Springer-Verlag, 699 p. [Google Scholar]
  • Tribovillard N, Algeo T, Lyons TW, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232: 12–32. [Google Scholar]
  • Tyson RV. 1995. Sedimentary organic matter. Organic Facies and Palynofacies. London: Chapman and Hall, 615 p. [Google Scholar]
  • Ungerer P, Pelet R. 1987. Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature 327: 52–54. [CrossRef] [Google Scholar]
  • Wenger LM, Isaksen GH. 2002. Control of hydrocarbon seepage intensity on level of biodegradation in sea bottom sediments. Org Geochem 33: 1277–1292. [CrossRef] [Google Scholar]
  • Ziegler AM. 1990. Phytogeographic patterns and continental configurations during the Permian period. In: McKerrow WS, Scotese CR, eds. Palaeozoic Palaeogeography and Biogeography. Geol Soc, London, Mem 12: 363–379. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.