Open Access
Bull. Soc. géol. Fr.
Volume 188, Number 6, 2017
Article Number 37
Number of page(s) 8
Published online 13 December 2017
  • Aitken JD, Pugh DC. 1984. The Fort Norman and Leith Ridge structures; major, buried, Precambrian features underlying Franklin Mountains and Great Bear and Mackenzie plains. Bulletin of Canadian Petroleum Geology 32 (2): 139–146. [Google Scholar]
  • Bonini M. 2003. Detachment folding, fold amplification, and diapirism in thrust wedge experiments. Tectonics 22 (6): 1065. [CrossRef] [Google Scholar]
  • Borderie S, Graveleau F, Witt C, Vendeville BC. 2018. Impact of an interbedded viscous décollement on the structural and kinematic coupling in fold-and-thrust belts: Insights from analogue modeling. Tectonophysics 722: 118–137 (in press). [Google Scholar]
  • Chapple WM. 1978. Mechanics of thin-skinned fold-and-thrust belts. Geological Society of America Bulletin 89 (8): 1189–1198. [CrossRef] [Google Scholar]
  • Chen S, Tang L, Jin Z, Jia C, Pi X. 2004. Thrust and fold tectonics and the role of evaporites in deformation in the Western Kuqa Foreland of Tarim Basin, Northwest China. Marine and Petroleum Geology 21 (8): 1027–1042. [CrossRef] [Google Scholar]
  • Costa E, Vendeville BC. 2002. Experimental insights on the geometry and kinematics of fold-and-thrust belts above a weak, viscous evaporite décollement. Journal of Structural Geology 24 (11): 1729–1739. [CrossRef] [Google Scholar]
  • Cotton J, Koyi H. 2000. Modeling of thrust fronts above ductile and frictional detachments: application to structures in the Salt Range and Potwar Plateau, Pakistan. Geological Society of America Bulletin 112 (3): 351–363. [CrossRef] [Google Scholar]
  • Couzens-Schultz BA, Vendeville BC, Wiltschko DV. 2003. Duplex style and triangle zone formation: insights from physical modeling. Journal of Structural Geology 25 (10): 1623–1644. [CrossRef] [Google Scholar]
  • Dahlen FA. 1990. Critical taper model of fold-and-thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences 18: 55–99. [CrossRef] [Google Scholar]
  • Davis D, Suppe J, Dahlen FA. 1983. Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research 88 (B12): 1153–1172. [CrossRef] [Google Scholar]
  • Davis DM, Engelder T. 1985. The role of salt in fold-and-thrust belts. Tectonophysics 119 (1–4): 67–88. [CrossRef] [Google Scholar]
  • Duerto L, McClay K. 2009. The role of syntectonic sedimentation in the evolution of doubly vergent thrust wedges and foreland folds. Marine and Petroleum Geology 26 (7): 1051–1069. [CrossRef] [Google Scholar]
  • Graveleau F, Malavieille J, Dominguez S. 2012. Experimental modelling of orogenic wedges: A review. Tectonophysics 538–540: 1–66. [CrossRef] [Google Scholar]
  • Guillier B, Baby P, Colletta B, Mendez E, Limachi R, Letouzey J, Specht M. 1995. Analyse géométrique et cinématique d'un “duplex” issu d'un modèle analogique visualisé en 3D par tomographie aux rayons X. Comptes Rendus de l'Académie des Sciences − Series IIA − Earth and Planetary Science Série 2a: Sciences de la Terre (321): 901–908. [Google Scholar]
  • Klinkmüller M, Schreurs G, Rosenau M, Kemnitz H. 2016. Properties of granular analogue model materials: A community wide survey. Tectonophysics 684: 23–38. [CrossRef] [Google Scholar]
  • Konstantinovskaia E, Malavieille J. 2005. Erosion and exhumation in accretionary orogens: Experimental and geological approaches. Geochemistry, Geophysics, and Geosystems 6 (Q02006). [CrossRef] [Google Scholar]
  • Koyi HA, Vendeville BC. 2003. The effect of décollement dip on geometry and kinematics of model accretionay wedges. Journal of Structural Geology 25 (9): 1445–1450. [CrossRef] [Google Scholar]
  • Larrasoaña JC, Pares JM, Millan H, del Valle J, Pueyo EL. 2003. Paleomagnetic, structural and stratigraphic constraints on tranverse fault kinematics during basin inversion: the Pamplona Fault (Pyrenees, north Spain). Tectonics 22 (1071). [Google Scholar]
  • Leturmy P, Mugnier JL, Vinour P, Baby P, Colletta B, Chabron E. 2000. Piggyback basin development above a thin-skinned thrust belt with two detachment levels as a function of interactions between tectonic and superficial mass transfer: the case of the Subandean Zone (Bolivia). Tectonophysics 320 (1): 45–67. [CrossRef] [Google Scholar]
  • Malavieille J. 1984. Modélisation expérimentale des chevauchements imbriqués: application aux chaînes de montagnes. Bulletin de la Société Géologique de France 7 (1): 129–138. [CrossRef] [Google Scholar]
  • Morrell. 1995. Petroleum Exploration in Northern Canada: A Guide to Oil and Gas Exploration and Potential. N. O. a. G. D. I. a. N. A. Canada: 117. [Google Scholar]
  • Mugnier JL, Baby P, Colletta B, Vinour P, Bale P, Leturmy P. 1997. Thrust geometry controlled by erosion and sedimentation: a view from analogue models. Geology 25 (5): 427–430. [CrossRef] [Google Scholar]
  • Mulugeta G, Koyi H. 1987. Three-dimensional geometry and kinematics of experimental piggyback thrusting. Geology 15 (11): 1052–1056. [CrossRef] [Google Scholar]
  • Munoz JA. 2002. Alpine tectonics I: the Alpine system north of the Betic Cordillera tectonic setting; the Pyrenees. In : Gibbons Z, Moreno T, The Geology of Spain. London: Geological Society, pp. 370–385. [Google Scholar]
  • Nilfouroushan F, Pysklywec R, Cruden A. 2012. Sensitivity analysis of numerical scaled models of fold-and-thrust belts to granular material cohesion variation and comparison with analog experiments. Tectonophysics 526–529: 196–206. [CrossRef] [Google Scholar]
  • Reston TJ, Fruehn J, von Huene R. 2002. The structure and evolution of the western Mediterranean Ridge. Marine Geology 186 (1–2): 83–110. [CrossRef] [Google Scholar]
  • Rudolf M, Boutelier D, Rosenau M, Schreurs G, Oncken O. 2016. Rheological benchmark of silicone oils used for analog modeling of short- and long-term lithospheric deformation. Tectonophysics 684: 12–22. [CrossRef] [Google Scholar]
  • Ruh JB, Kaus BJP, Burg J.-P. 2012. Numerical investigation of deformation mechanics in fold-and-thrust belts: Influence of rheology of single and multiple décollements. Tectonics 31 (3). [Google Scholar]
  • Santolaria P, Vendeville BC, Graveleau F, Soto R, Casas-Sainz A. 2015. Double evaporitic décollements: Influence of pinch-out overlapping in experimental thrust wedges. Journal of Structural Geology 76 (0): 35–51. [CrossRef] [Google Scholar]
  • Serrano O, Delmas J, Hanot F, Vially R, Herbin J.-P, Houel P, Tourlière B. 2006. Le Bassin d'Aquitaine: valorisation des données sismiques, cartographie structurale et potentiel pétrolier. BRGM. [Google Scholar]
  • Sherkati S, Letouzey J, Frizon de Lamotte D. 2006. Central Zagros fold-thrust belt (Iran): New insights from seismic data, field observation, and sandbox modeling. Tectonics 25 (4). [Google Scholar]
  • Stockmal GS, Beaumont C, Nguyen M, Lee B. 2007. Mechanics of thin-skinned fold-and-thrust belts: insights from numerical models. Whence the mountains? Inquiries into the evolution of orogenic systems: a volume in honor of Raymond A. Price. J. W. Sears, T. A. Harms and C. A. Evenchick (Boulder, CO, USA), Geological Society of America Special Paper. 433: 63–98. [Google Scholar]
  • Storti F, Soto Marín R, Rossetti F, Casas Sainz AM. 2007. Evolution of experimental thrust wedges accreted from along-strike tapered, silicone-floored multilayers. Journal of the Geological Society, London 164: 73–85. [CrossRef] [Google Scholar]
  • Suppe J. 1981. Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China 4: 67–89. [Google Scholar]
  • Vergés J, Martínez A, Muñoz JA. 1992. South Pyrenean fold and thrust belt: The role of foreland evaporitic levels in thrust geometry. In : McClay KR, Thrust Tectonics. Chapman & Hall, 255–264. [CrossRef] [Google Scholar]
  • Yin H, Wang Z, Wang X, Wu Z. 2011. Characteristics and mechanics of Cenozoic salt-related structures in Kuqa foreland basin: insights from physical modeling and discussion. Geological Journal of China Universities 17 (2): 308–317. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.