Open Access
BSGF - Earth Sci. Bull.
Volume 189, Number 1, 2018
Article Number 5
Number of page(s) 15
Published online 21 March 2018
  • Allen JRL. 1985. Principles of physical sedimentology. London: Allen & Unwin, 272 p. [Google Scholar]
  • Allen PA. 1997. Earth surface processes. London: Blackwell Science, 404 p. [Google Scholar]
  • Anthony EJ, Levoy F, Monfort O. 2004. Morphodynamics of intertidal bars on a megatidal beach, Merlimont, Northern France. Marine Geology 208(1): 73–100. [CrossRef] [Google Scholar]
  • Augris C, Clabaut P, Costa S, Gourmelon F, Latteux B. 2004. Évolution morpho-sédimentaire du domaine littoral et marin de la Seine-Maritime. Conseil Général de la Seine-Maritime, EDF, 2d. Ifremer, Bilans et Perspectives, Ifremer, 159 p. [Google Scholar]
  • Basilici G, De Luca PHV, Oliveira EP. 2011. A depositional model for a wave-dominated open-coast tidal flat, based on analyses of the Cambrian-Ordovician Lagarto and Palmares formations, north-eastern Brazil. Sedimentology 59(5): 1613–1639. [CrossRef] [Google Scholar]
  • Basilici G, de Luca PHV, Poire DG. 2012. Hummocky cross-stratification-like structures and combined-flow ripples in the Punta Negra Formation (Lower-Middle Devonian, Argentine Precordillera): a turbiditic deep-water or storm-dominated prodelta inner-shelf system? Sedimentary Geology 267: 73–92. [CrossRef] [Google Scholar]
  • Beji S, Battjes JA. 1993. Experimental investigation of wave propagation over a bar. Coastal Engineering 19(1): 151–162. [CrossRef] [Google Scholar]
  • Brocchini M, Baldock TE. 2008. Recent advances in modeling swash zone dynamics: influence of surf-swash interaction on nearshore hydrodynamics and morphodynamics. Reviews of Geophysics 46: RG3003. DOI: 10.1029/2006RG000215. [CrossRef] [Google Scholar]
  • Broome R, Komar PD. 1979. Undular hydraulic jumps and the formation of backlash ripples on beaches. Sedimentology 26: 543–559. [CrossRef] [Google Scholar]
  • Chauhan PPS. 2000. Bedform association on a ridge and runnel foreshore: implications for the hydrography of a macrotidal estuarine beach. Journal of Coastal Research 16(4): 1011–1021. [Google Scholar]
  • Clifton HE, Hunter RE, Phillips RL. 1971. Depositional structures and processes in the non-barred high-energy nearshore. Journal of Sedimentary Research 41(3): 1163–1165. [Google Scholar]
  • Cummings DI, Dumas S, Dalrymple RW. 2009. Fine-grained versus coarse-grained wave ripples generated experimentally under large-scale oscillatory flow. Journal of Sedimentary Research 79(1-2): 83–93. [CrossRef] [Google Scholar]
  • Dabrio CJ. 1982. Sedimentary structures generated on the foreshore by migrating ridge and runnel systems on microtidal and mesotidal coasts of S. Spain. Sedimentary Geology 32(1-2): 141–151. [CrossRef] [Google Scholar]
  • Dalrymple RW. 1992. Tidal depositional systems. In Walker RG, James NP, eds. Facies models: response to sea level change. St John's (Newfoundland): Geological Association of Canada, pp. 195–218. [Google Scholar]
  • Dalrymple RW. 2010. Tidal depositional systems. In: James NP, Dalrymple RW, eds. Facies models 4. St John's (Newfoundland): Geological Association of Canada, pp. 201–231. [Google Scholar]
  • Dalrymple RW, Baker EK, Harris PT, Hughes MG. 2003. Sedimentology and stratigraphy of a tide-dominated, foreland-basin delta (Fly River, Papua New Guinea). In Sidi FH, Nummedal D, Imbert B, Darman H, Posamentier HW, eds. Tropical Deltas of Southeast Asia—Sedimentology, Stratigraphy, and Petroleum Geology. Tulsa (Oklahoma): SEPM, 76, pp. 147–173. [CrossRef] [Google Scholar]
  • Dashtgard SE, Gingras MK, MacEachern JA. 2009. Tidally modulated shorefaces. Journal of Sedimentary Research 79(11-12): 793–807. [CrossRef] [Google Scholar]
  • Dashtgard SE, MacEachern JA, Frey SE, Gingras MK. 2012. Tidal effects on the shoreface: towards a conceptual framework. Sedimentary Geology 279: 42–61. [CrossRef] [Google Scholar]
  • Davis Jr RA. 1985. Beach and nearshore zone, Coastal sedimentary environments. New York (NY): Springer New York, 379–444. [CrossRef] [Google Scholar]
  • Davis Jr RA, Hayes MO. 1984. What is a wave-dominated coast? Marine Geology 60(1-4): 313–329. [CrossRef] [Google Scholar]
  • Davis RAJ, Dalrymple RW. 2012. Principles of tidal sedimentology. Dordrecht: Springer-Verlag. [CrossRef] [Google Scholar]
  • Dumas S, Arnott RWC, Southard JB. 2005. Experiments on oscillatory-flow and combined-flow bed forms: implications for interpreting parts of the shallow-marine sedimentary record. Journal of Sedimentary Research 75(3): 501–513. [CrossRef] [Google Scholar]
  • Gallagher EL. 2003. A note on megaripples in the surf zone: evidence for their relation to steady flow dunes. Marine Geology 193(3-4): 171–176. [CrossRef] [Google Scholar]
  • Grunnet NM, Ruessink BG. 2005. Morphodynamic response of nearshore bars to a shoreface nourishment. Coastal Engineering 52(2): 119–137. [CrossRef] [Google Scholar]
  • Hale PB, McCann SB. 1982. Rhythmic topography in a mesotidal, low-wave-energy environment. Journal of Sedimentary Petrology 52: 415–429. [Google Scholar]
  • Harms J. 1979. Primary sedimentary structures. Annual Review of Earth and Planetary Sciences 7: 227. [CrossRef] [Google Scholar]
  • Immenhauser A. 2009. Estimating palaeo-water depth from the physical rock record. Earth-Science Reviews 96(1): 107–139. [CrossRef] [Google Scholar]
  • King CAM. 1972. Beaches and Coasts, 2nd ed. London: Edward Arnold. [Google Scholar]
  • King CAM, Williams WW. 1949. The formation and movement of sand bars by wave action. The Geographical Journal 113: 70–85. [CrossRef] [Google Scholar]
  • Kroon A, Masselink G. 2002. Morphodynamics of intertidal bar morphology on a macrotidal beach under low-energy wave conditions, North Lincolnshire, England. Marine Geology 190(3-4): 591–608. [CrossRef] [Google Scholar]
  • Landau L, Lifshitz E. 1987. Fluid mechanics. 2nd ed. Oxford: Pergamon Press. [Google Scholar]
  • Larsen SM, Greenwood B, Aagaard T. 2015. Observations of megaripples in the surf zone. Marine Geology 364, 1–11. [CrossRef] [Google Scholar]
  • Lashteh Neshaei MA, Holmes P, Gholipour Salimi M. 2009. A semi-empirical model for beach profile evolution in the vicinity of reflective structures. Ocean Engineering 36(17-18): 1303–1315. [CrossRef] [Google Scholar]
  • Levoy F, Anthony E, Barusseau J-P, Howa H, Tessier B. 1998. Morphodynamique d’une plage macrotidale à barres. Comptes Rendus de l’Académie des Sciences − Series IIA − Earth and Planetary Science 327(12): 811–818. [Google Scholar]
  • Levoy F, Anthony EJ, Monfort O, Larsonneur C. 2000. The morphodynamics of megatidal beaches in Normandy, France. Marine Geology 171(1-4): 39–59. [CrossRef] [Google Scholar]
  • Li C, Wang P, Daidu F, Bing D, Tiesong L. 2000. Open-coast intertidal deposits and the preservation potential of individual laminae: a case study from east-central China. Sedimentology 47(5): 1039–1051. [CrossRef] [Google Scholar]
  • Masselink G. 2004. Formation and evolution of multiple intertidal bars on macrotidal beaches: application of a morphodynamic model. Coastal Engineering 51(8-9): 713–730. [CrossRef] [Google Scholar]
  • Masselink G, Anthony EJ. 2001. Location and height of intertidal bars on macrotidal ridge and runnel beaches. Earth Surface Processes and Landforms 26(7): 759–774. [CrossRef] [Google Scholar]
  • Masselink G, Kroon A, Davidson-Arnott RGD. 2006. Morphodynamics of intertidal bars in wave-dominated coastal settings. A review. Geomorphology 73(1-2): 33–49. [CrossRef] [Google Scholar]
  • McLane M. 1995. Sedimentology. Oxford: Oxford university press, 423 p. [Google Scholar]
  • Perillo MM, Best J, Garcia MH. 2014a. A new phase diagram for combined-flow bedforms. Journal of Sedimentary Research 84(4): 301–313. [CrossRef] [Google Scholar]
  • Perillo MM, Best JL, Yokokawa M, Sekiguchi T, Takagawa T, Garcia MH. 2014b. A unified model for bedform development and equilibrium under unidirectional, oscillatory and combined-flows. Sedimentology 61(7): 2063–2085. [CrossRef] [Google Scholar]
  • Perillo MM, Prokocki EW, Best JL, García MH. 2014c. Bed form genesis from bed defects under unidirectional, oscillatory, and combined flows. Journal of Geophysical Research: Earth Surface 119(12): 2635–2652. [CrossRef] [Google Scholar]
  • Pierrot Deseilligny M. 2015. Apero, Pastis and other beverages in a nutshell! [Google Scholar]
  • Pierrot Deseilligny M, Clery I. 2011. Apero, an open source bundle adjusment software for automatic calibration and orientation of set of images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 38: 269–276. [Google Scholar]
  • Plint AG. 2010. Wave-and storm-dominated shoreline and shallow-marine systems. In: Dalrymple RW, James NP, eds. Facies models. St John’s: Geol. Assoc. Canada, pp. 167–200. [Google Scholar]
  • Reichmüth B, Anthony EJ. 2007. Tidal influence on the intertidal bar morphology of two contrasting macrotidal beaches. Geomorphology 90(1-2): 101–114. [CrossRef] [Google Scholar]
  • Rossi VM, Steel RJ. 2016. The role of tidal, wave and river currents in the evolution of mixed-energy deltas: example from the Lajas Formation (Argentina). Sedimentology 63(4): 824–864. [CrossRef] [Google Scholar]
  • Ruessink BG. 1998. The temporal and spatial variability of infragravity energy in a barred nearshore zone. Continental Shelf Research 18(6): 585–605. [CrossRef] [Google Scholar]
  • Ruessink BG, Kroon A. 1994. The behaviour of a multiple bar system in the nearshore zone of Terschelling, the Netherlands: 1965–1993. Marine Geology 121(3): 187–197. [CrossRef] [Google Scholar]
  • Ruessink BG, Terwindt JHJ. 2000. The behaviour of nearshore bars on the time scale of years: a conceptual model. Marine Geology 163(1-4): 289–302. [Google Scholar]
  • Short A. 1991. Macro-meso tidal beach morphodynamics: an overview. Journal of Coastal Research 7(2): 417–436. [Google Scholar]
  • Sipka V, Anthony EJ. 1999. Morphology and hydrodynamics of a macrotidal ridge and runnel beach under modal low wave conditions. Journal de Recherche Océanographique 24: 25–31. [Google Scholar]
  • Smosna R, Bruner KR. 2016. A tide-dominated beach from the cambro-ordovician cabos formation of Northwestern Spain. Journal of Sedimentary Research 86(12): 1378–1398. [CrossRef] [Google Scholar]
  • Stépanian A, Levoy F. 2003. Séquences d’évolution morphodynamique des barres intertidales d’une plage macrotidale : l’exemple d’Omaha beach (Normandie, France). Oceanologica Acta 26(2): 167–177. [CrossRef] [Google Scholar]
  • Swales A, Oldman JW, Smith K. 2006. Bedform geometry on a barred sandy shore. Marine Geology 226(3-4): 243–259. [CrossRef] [Google Scholar]
  • Swift DJP, Thorne JA. 1991. Sedimentation on continental margins, I: a general model for shelf sedimentation. In: Swift DJP, Oertel GF, Tillman RW, Thorne JA, eds. Shelf sand and sandstone bodies: geometry, facies and sequence stratigraphy. International Association of Sedimentologists, Special Publication. 14, Oxford (UK): Blackwell Publishing Ltd. pp. 3–31. [Google Scholar]
  • Vakarelov BK, Ainsworth RB, MacEachern JA. 2012. Recognition of wave-dominated, tide-influenced shoreline systems in the rock record: Variations from a microtidal shoreline model. Sedimentary Geology 279: 23–41. [CrossRef] [Google Scholar]
  • van Houwelingen S, Masselink G, Bullard J. 2006. Characteristics and dynamics of multiple intertidal bars, north Lincolnshire, England. Earth Surface Processes and Landforms 31(4): 428–443. [CrossRef] [Google Scholar]
  • Vaucher R, Pittet B, Hormière H, Martin E, Lefebvre B. 2017. A wave-dominated, tide-modulated model for the lower ordovician of the anti-atlas, Morocco. Sedimentology 64(3): 777–807. [CrossRef] [Google Scholar]
  • Vaucher R, Pittet B, Humbert T, Ferry S. 2018. Large-scale bedforms induced by supercritical flows and wave–wave interference in the intertidal zone (Cap Ferret, France). Geo-Marine Letters. [Google Scholar]
  • Voulgaris G, Simmonds D, Michel D, Howa H, Collins MB, Huntley DA. 1998. Measuring and modelling sediment transport on a macrotidal ridge and runnel beach: an intercomparison. Journal of Coastal Research 14(1): 315–330. [Google Scholar]
  • Wheatcroft RA. 1990. Preservation potential of sedimentary event layers. Geology 18(9): 843–845. [CrossRef] [Google Scholar]
  • Wijnberg KM, Kroon A. 2002. Barred beaches. Geomorphology 48(1-3): 103–120. [CrossRef] [Google Scholar]
  • Yang BC, Chun SS. 2001. A seasonal model of surface sedimentation on the Baeksu open-coast intertidal flat, southwestern coast of Korea. Geosciences Journal 5(3): 251–262. [CrossRef] [Google Scholar]
  • Yang BC, Dalrymple RW, Chun SS. 2005. Sedimentation on a wave-dominated, open-coast tidal flat, south-western Korea: summer tidal flat − winter shoreface. Sedimentology 52(2): 235–252. [CrossRef] [Google Scholar]
  • Yang BC, Dalrymple RW, Chun SS. 2006. The significance of hummocky cross-stratification (HCS) wavelengths: evidence from an open-coast tidal flat, South Korea. Journal of Sedimentary Research 76 (1-2): 2–8. [CrossRef] [Google Scholar]
  • Yang BC, Dalrymple RW, Chun SS, Johnson MF, Lee HJ. 2008a. Tidally modulated storm sedimentation on open-coast tidal flats, southwestern coast of Korea: distinguishing tidal-flat from shoreface storm deposits. In: Hampson GJ, Steel RJ, Burgess PB, Dalrymple RW, eds. Recent advances in models of siliciclastic shallow-marine stratigraphy. Tulsa (Oklahoma): SEPM Special Publication, 90, 161–176. [CrossRef] [Google Scholar]
  • Yang BC, Gingras MK, Pemberton SG, Dalrymple RW. 2008b. Wave-generated tidal bundles as an indicator of wave-dominated tidal flats. Geology 36(1): 39–42. [CrossRef] [Google Scholar]
  • Zhang Y, Swift DJP, Niedoroda AW, Reed CW, Thorne JA. 1997. Simulation of sedimentary facies on the northern California shelf. Geology 25: 635–638. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.