Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 189, Number 4-6, 2018
Article Number 16
Number of page(s) 16
DOI https://doi.org/10.1051/bsgf/2018015
Published online 21 November 2018
  • Barbarand J, Lucazeau F, Pagel M, Séranne M. 2001. Burial and exhumation history of the south-eastern Massif Central (France) constrained by an apatite fission-track thermochronology. Tectonophysics 335: 275–290. [CrossRef] [Google Scholar]
  • Barbarand J, Hurford T, Carter A. 2003a. Variation in apatite fission-track length measurement: implications for thermal history modelling. Chemical Geology 198(1–2): 77–106. [CrossRef] [Google Scholar]
  • Barbarand J, Carter A, Wood I, Hurford AJ. 2003b. Compositional and structural control of fission-track annealing in apatite. Chemical Geology 198(1–2): 107–137. [CrossRef] [Google Scholar]
  • Barbarand J, Quesnel F, Pagel M. 2013. Lower Paleogene denudation of the Upper Cretaceous cover of the Morvan massif and south-eastern Paris Basin (France) revealed by AFT thermochronology and paleoweathering study. Tectonophysics 608: 1310–1327. [CrossRef] [Google Scholar]
  • Barbier F. 2012. Étude de paléoaltération météorique (Crétacé Inférieur à Néogène) sur socle silicoclastique hétérogène : caractérisation et essai de cartographie d’altérites en Région Wallonne (Belgique). Unpublished PhD thesis, University of Namur, 437 p. [Google Scholar]
  • Belanger I, Delaby S, Delcambre B, Ghysel P, Hennebert M, Laloux M, et al. 2012. Redéfinition des unités structurales du front varisque utilisées dans le cadre de la nouvelle Carte géologique de Wallonie (Belgique). Geologica Belgica 153(3): 169–175. [Google Scholar]
  • Bless MJ, Felder PJ. 1989. Note on the Cretaceous of Hockaï (Hautes Fagnes, NE Belgium). Annales de la Société géologique de Belgique 112: 47–56. [Google Scholar]
  • Bless MJM, Demoulin A, Felder PJ, Jagt JWM, Reynders JPH. 1991. The Hautes Fagnes area (NE Belgium) as a monadnock during the Late Cretaceous. Annales de la Société Géologique de Belgique 113: 75–101. [Google Scholar]
  • Bonté D, Guillou-Frottier L, Garibaldi C, Bourgine B, Lopez S, Bouchot V, et al. 2010. Subsurface temperature maps in French sedimentary basins: new data compilation and interpolation. Bull Soc géol Fr 181(4): 377–390. DOI: 10.2113/gssgfbull.181.4.377. [CrossRef] [Google Scholar]
  • Boulvain F, Vandenberghe N. 2018. An Introduction to the Geology of Belgium and Luxembourg. In: Demoulin A, ed. Landscapes and Landforms of Belgium and Luxembourg. Cham (Suisse): Springer, pp. 9–33. [CrossRef] [Google Scholar]
  • Boulvain F, Belanger I, Delsate D, Ghysel P, Godefroit P, Laloux M. et al. 2001. Triassic and Jurassic lithostratigraphic units (Belgian Lorraine). Geologica Belgica 4(1–2): 113–119. [Google Scholar]
  • Bour I. 2010. Histoire thermique des massifs ardennais et bohémien : conséquences sur la dynamique de l’Europe de l’Ouest au Méso-Cénozoïque. PhD thesis, University Paris Sud, 363 p. [Google Scholar]
  • Bourquin S, Péron S, Durand M. 2006. Lower Triassic sequence stratigraphy of the western part of the Germanic Basin (west of Black Forest): Fluvial system evolution through time and space. Sedimentary Geology 186: 187–211. [CrossRef] [Google Scholar]
  • Braun J., 2010. The many surface expressions of mantle dynamics. Nature Geosciences 3(12): 825–833. [CrossRef] [Google Scholar]
  • Briart A. 1888. Notice descriptive des terrains tertiaires et crétacés de l’Entre-Sambre-et-Meuse. Mém Soc Géol Belgique 15: 3–58. [Google Scholar]
  • Brigaud B, Durlet Ch, Deconinck J-F, Vincent B, Thierry J, Trouiller A. 2009. The origin and timing of multiphase cementation in carbonates: Impact of regional scale geodynamic events on the Middle Jurassic Limestones diagenesis (Paris Basin, France). Sedimentary Geology 222: 161–180. [Google Scholar]
  • Brix MR. 2002. Thermal history of Palaeozoic rocks in the Meuse Valley between Charleville-Mézières and Namur (France, Belgium) assessed from zircon fission-track data. Aardk Mededel 12: 93–95. [Google Scholar]
  • Brunet M-F., Le Pichon X. 1982. Subsidence of the Paris Basin. Journal of Geophysical Research B 87: 8547–8560. [CrossRef] [Google Scholar]
  • Bultynck P, Geukens F, Smolderen A. 2001. Permian lithostratigraphic units, Malmédy Graben (Belgium). Geologica Belgica 4(1–2): 105–106. [Google Scholar]
  • Burtner RL, Nigrini A, Donelick RA. 1994. Thermochronoloy of Lower Cretaceous source rocks in the Idaho-Wyoming thrust belt. Am Ass Petr Geol Bull 78(10): 1613–1636. [Google Scholar]
  • Chadwick RA. 1986. Extension tectonics in the Wessex Basin, southern England. Journal of the Geological Society, London 143: 465–488. [CrossRef] [Google Scholar]
  • Chantraine J, Autran A, Cavelier C. 2003. Carte géologique de la France à 1/1 000 000, 6e édition révisée. Orléans : BRGM. [Google Scholar]
  • Cloetingh S, Burov E. 2011. Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms. Basin Research 23: 257–290. [CrossRef] [Google Scholar]
  • Debrabant P, Chamley H, Deconinck J-F, Récourt Ph, Trouiller A. 1992. Clay sedimentology, mineralogy and chemistry of Mesozoic sediments drilled in the Northern Paris Basin. Scientific Drilling 3: 138–152. [Google Scholar]
  • Deckers J, Matthijs J. 2017. Middle Paleocene uplift of the Brabant Massif from central Belgium up to the southeast coast of England. Geol Mag 154(5): 1117–1126. DOI: 10.1017/S001675681600073X. [CrossRef] [Google Scholar]
  • Deckers J, Vandenberghe N, Lanckacker T, de Koninck R. 2016. The Pyrenean inversion phase in northern Belgium: an example of a relaxation inversion? Int J Earth Sci (Geol Rundsch) 105: 583–593. [CrossRef] [Google Scholar]
  • Delcambre B. 1996. Application de la typologie du zircon à la téphostratigraphie du Carbonifère de la Belgique et des régions limitrophes. Thèse de doctorat. Université Catholique de Louvain, 318 p. [Google Scholar]
  • Demoulin, A., 1995. Les surfaces d’érosion méso-cénozoïques en Ardenne-Eifel. Bull Soc géol Fr 166(5): 573–585. [Google Scholar]
  • Demoulin A, Quesnel F, Dupuis C, Gerrienne P, Yans J. 2010. Cenomanian sands and clays north of the Vesdre valley: the oldest known Cretaceous deposits in eastern Belgium. Geologica Belgica 11(3): 241–256. [Google Scholar]
  • Demoulin A, Barbier F, Dekoninck A, Verhaert M, Ruffet G, Dupuis C, et al. 2018. Landscapes and Landforms of Belgium and Luxembourg. In: Demoulin A, ed. Landscapes and Landforms of Belgium and Luxembourg. Cham (Suisse): Springer Verlag, pp. 63–84. [CrossRef] [Google Scholar]
  • Demyttenaere R, Laga P. 1988. Breuken- en isohypsenkaarten van het Belgisch gedeelte van de roerdal slenk. Professional Paper 1988/4, n° 234. Brussels: Belg. Geol. Dienst. [Google Scholar]
  • Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet M-F, et al. (eds). 2000. Atlas Peri-Tethys, Paleogeographic maps. CCGM/CGMW, Paris, 24 maps and explanatory notes: I–XX; 1–269. [Google Scholar]
  • De Vos W, Poot B, Hus J, El Khayati M. 1992. Geophysical characterization of lithologies from the Brabant Massif as a contribution to gravimetric and magnetic modelling. Bull Soc Belg Géol 101: 173–180. [Google Scholar]
  • Dèzes P, Schmid SM, Ziegler PA. 2004. Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389: 1–33. [CrossRef] [Google Scholar]
  • Duin EJT, Doornenbal JC, Rijkers RHB, Verbeek JW, Wong Th E. 2006. Subsurface structure of the Netherlands – results of recent onshore and offshore mapping. Netherlands Journal of Geosciences – Geologie en Mijnbouw 85(4): 245–276. [CrossRef] [Google Scholar]
  • Dupuis C. 1992. Mesozoic kaolinized giant regoliths and Neogene halloysite cryptokarsts: two striking paleoweathering types in Belgium. In: Schmitt JM, Gall Q, eds. Mineralogical and Geochemical records of Paleoweathering, IGCP 317, ENSMP, Mém Sci de la Terre 18: 61–68. [Google Scholar]
  • Dupuis C, Ertus R. 1994. Neogene lacustrine deposits of karstic origin (Ardenne Massif, Belgium) in Global Geological Record of Lakes Basins. In: Gierlowki-Kordesch E, Kelt K, eds. IGCP project 324, GLOPALS-UNESCO-IUGS, World and Regional Geology 4. Cambridge (UK): Cambridge University Press, pp. 299–302. [Google Scholar]
  • Dupuis C, Charlet J-M, Dejonghe L, Thorez J. 1996. Reconnaissance par carottage des paléoaltérations kaolinisées mésozoïques de la Haute Ardenne (Belgique). Le sondage de Transinne (194E-495) : premiers résultats. Ann Soc Géol Belgique 2: 91–109. [Google Scholar]
  • Dupuis C, Nicaise D, De Putter T, Perruchot A, Demaret M, Roche E. 2003. Miocene cryptokarsts of Entre-Sambre-et-Meuse and Condroz plateaus. Paleoenvironment, evolution and weathering processes. Géologie de la France 2003(1): 27–31. [Google Scholar]
  • Durand M. 1978. Paléocourants et reconstitution paléogéographique : l’exemple du Buntsandstein des Vosges méridionales (Trias inférieur et moyen continental). Sciences de la Terre, Nancy 22(4): 301–390. [Google Scholar]
  • Dusar M, Lagrou D. 2007. Cretaceous flooding of the Brabant Massif and the lithostratigraphic characteristics of its chalk cover in Northern Belgium. Geologica Belgica 10(1–2): 27–38. [Google Scholar]
  • Dusar M, Langenaeker V, Wouters L. 2001. Permian-Triassic-Jurassic lithostratigraphic units in the Campine basin and the Roer Valley Graben (NE Belgium). Geologica Belgica 4(1): 107–112. [Google Scholar]
  • Ertus R. 1990. Les néoformations d’halloysite dans les cryptokarsts oligo-miocènes de l’Entre-Sambre-et-Meuse (Belgique). Approche sédimentologique, pétrographique et minéralogique. Thèse de doctorat, Université de Paris-sud, Centre d’Orsay, 177 p. [Google Scholar]
  • Esteban L, Bouchez JL, Trouiller A. 2006. The Callovo-Oxfordian argillites from eastern Paris Basin magnetic data and petrofabrics. CR Geoscience 338: 12–13. [CrossRef] [Google Scholar]
  • Færseth RB. 1996. Interaction of Permo-Triassic and Jurassic extensional fault-blocks during the development of the northern North Sea. Journal of the Geological Society, London 153: 931–944. [CrossRef] [Google Scholar]
  • Felder PJS. 1994. Late Cretaceous (Santonian-Maastrichtian) sedimentation rates in the Maastricht (NL), Liège/Campine (B) and Aachen (D) area. Annales de la Société Géologique de Belgique 117(2): 311–319. [Google Scholar]
  • Fielitz W, Mansy J-L. 1999. Pre- and synorogenic burial metamorphism in the Ardenne and neighbouring areas (Rhenohercynian zone, central European Variscides). In: Sintubin M, Vandycke S, Camelbeeck T, eds. Palaeozoic to recent tectonics in the NW European Variscan front zone. Tectonophysics 309: 227–256. [Google Scholar]
  • Fischer J-C. 1979. Le Jurassique moyen au SW du massif ardennais : essai de synthèse biosédimentologique. In: Symposium sédimentation Jurassique W européen, ASF Publication spéciale no 1, 47–54. [Google Scholar]
  • Galbraith RF, Laslett GM. 1993. Statistical models for mixed fission-track ages. Nucl Tracks Radiat Meas 21: 459–470. [CrossRef] [Google Scholar]
  • Garcia JP, Dromart G, Guillocheau F, Allemand P, Gaumet F, Robin C, et al. 1996. Bathonian-Callovian Paris Basin – Subalpine Basin intercorrelations along an Ardenne-Ardèche cross-section. Comptes Rendus de l’Académie des Sciences de Paris 323: 697–703. [Google Scholar]
  • Glasmacher UA, Zentilli M, Grist AM. 1998. Apatite fission-track thermochronology of Paleozoic sandstones and the Hill-intrusion, northern Linksrheinisches Schiefergebirge, Germany. In: Van den Haute P, De Corte F, eds. Advances in Fission – Track Geochronology. Kluwer Academic Publishers, pp. 151–172. [Google Scholar]
  • Gleadow AJW. 1981. Fission-track dating methods: what are the real alternatives. Nuclear Tracks 5: 3–14. [CrossRef] [Google Scholar]
  • Green PF. 1986. On the thermo-tectonic evolution of Northern England: evidence from fission-track analysis. Geological Magazine 123, 493–506. [CrossRef] [Google Scholar]
  • Green PF, Duddy IR, Laslett GM, Hegarty KA, Gleadow AJW, Lovering JF. 1989. Thermal annealing of fission tracks in apatite: 4. Quantitative modelling techniques and extension to geological timescales. Chem Geol (Isot Geosci Sect) 79: 155–182. [CrossRef] [Google Scholar]
  • Guillocheau F, Robin C, Allemand P, Bourquin S, Brault N, Dromart G, et al. 2000. Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints. Geodinamica Acta 13: 189–246. [Google Scholar]
  • Gulink M. 1963. Guide books. Excursions M-N, 6e Congrès International de Sédimentologie. [Google Scholar]
  • Heijlen W, Muchez P, Banks DA. 2001. Origin and evolution of high salinity, Zn-Pb mineralising fluids in the Variscides of Belgium. Mineralium Deposita 36: 165–176. [CrossRef] [Google Scholar]
  • Helsen S. 1995. Burial history of Palaeozoic strata in Belgium as revealed by conodont colour alteration data and thickness distributions. Geol Rundsch 84: 738–747. [CrossRef] [Google Scholar]
  • Hesselbo SP. 2008. Sequence stratigraphy and inferred relative sea-level change from the onshore British Jurassic. Proceedings of the Geologists’ Association 119: 19–34. [CrossRef] [Google Scholar]
  • Hurford AJ. 1990. Standardization of fission-track dating calibration: Recommendation by the Fission-Track Working Group of the I.U.G.S. Subcommission on Geochronology. Chemical Geology: Isotope Geoscience Section 80: 171–178. [CrossRef] [Google Scholar]
  • Hurford AJ, Green PF. 1983. The zeta age calibration of fission-track dating. Isotopic Geoscience 1: 285–317. [Google Scholar]
  • Karg H, Carter A, Brix M, Littke R. 2005. Late- and post-Variscan cooling and exhumation history of the northern Rhenish Massif and the southern Ruhr Basin: new constraints from fission-track analysis. International Journal of Earth Sciences (Geologische Rundschau) 94: 180–192. [CrossRef] [Google Scholar]
  • Ketcham RA. 2005. Forward and inverse modeling of low-temperature thermochronometry data. Rev Mineral Geochem 58: 275–314. [CrossRef] [Google Scholar]
  • Ketcham RA, Donelick RA, Donelick MB. 2000. AFTSolve: a program for multi-kinetic modeling of apatite fission-track data. Geol Mater Res 2(1): 1–32. [CrossRef] [Google Scholar]
  • Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ. 2007. Improved modeling of fission-track annealing in apatite. American Mineralogist 92: 799–810. [CrossRef] [Google Scholar]
  • Knapp G. 1980. Erl. Geol. Kte. Der nördlichen Eifel 1: 100 000. 155 p., Krefeld 3rd ed. [Google Scholar]
  • Lacquement F, Mansy J-L., Hanot F, Meilliez F. 1999. Retraitement et interprétation d’un profil sismique pétrolier méridien au travers du Massif paléozoïque ardennais (Nord de la France). Comptes Rendus Académie des Sciences de Paris, Sciences de la terre et des planètes 329: 471–477. [Google Scholar]
  • Larangé F. 2002. Low-grade metamorphism and geotectonic setting of the Brabant Massif and the Medio-occidental part of the Ardenne, Belgium: Application of white mica crystallinity, b cell dimension and transmission electron microscope studies. Thèse inédite. Université catholique de Louvain, 211 p. [Google Scholar]
  • Larson SA, Tullborg EL, Cederbom C, Stiberg JP. 1995. Sveconorwegian and Caledonian foreland basins in the Baltic Shield revealed by fission-track thermochronology. Terra Nova 11: 210–215. [CrossRef] [Google Scholar]
  • Laslett GM, Gleadow AJW, Duddy IR. 1984. The relationship between fission-track length and density in apatite. Nucl Tracks 9: 29–38. [Google Scholar]
  • Legrand R. 1968. Le massif du Brabant. Mem Expl Cartes Géol Min Belg 9: 148. [Google Scholar]
  • Lucius M. 1948. Entstehung und Entwicklung es Luxemburger Flusssytems. Bulletin de la Société des Naturalistes Luxembourgeois 53: 17–48. [Google Scholar]
  • Macquaker JHS, Taylor KG. 1996. A sequence stratigraphic interpretation of a mudstone-dominated succession: The Lower Jurassic Cleveland Ironstone Formation, UK. Journal of the Geological Society, London 153: 759–770. [CrossRef] [Google Scholar]
  • Mader D. 1985. Fluvial conglomerates in continental red beds of the Buntsandstein (Lower Triassic) in the Eifel (F.R.G.) and their palaeoenvironmental, palaeogeographical and palaeotectonic significance. Sedimentary Geology 44: 1–64. [CrossRef] [Google Scholar]
  • Mansy JL, Everaerts M, De Vos W. 1999. Structural analysis of the Acadian and Variscan fold belts in Belgium and northern France from geophysical and geological evidence. Tectonophysics 309: 99–116. [CrossRef] [Google Scholar]
  • Mansy, JL, Manby GM, Averbuch O, Everearts M, Bergerat F, Van Vliet-Lanoë B, et al. 2003. Dynamics and inversion of the Mesozoïc basin of the Weald-Boulonnais area: role of basement reactivation. Tectonophysics 373: 161–179. [CrossRef] [Google Scholar]
  • Mazur S, Schek-Wenderoth M. 2005. Constraints on the tectonic evolution of the Central European Basin System revealed by seismic reflection profiles from Northern Germany. Netherlands Journal of Geosciences 84(4): 389–401. [CrossRef] [Google Scholar]
  • Morris JE, Hampson GJ, Johnson HD. 2006. A sequence stratigraphic model for an intensely bioturbated shallow-marine sandstone: the Bridport Sand Formation, Wessex Basin, UK. Sedimentology 53: 1229–1263. [CrossRef] [Google Scholar]
  • Nelskamp S, David P, Littke R. 2008. A comparison of burial, maturity and temperature histories of selected wells from sedimentary basins in The Netherlands. International Journal of Earth Sciences 97: 931–953. [CrossRef] [Google Scholar]
  • Paproth E, Dusar M, Bless M, Bouckaert J, Delmer A, Fairon-Demaret M, et al. 1983. Bio- and lithostratigraphic subdivisions of the Silesian in Belgium. A review. Ann Soc Géol Belg 106: 241–283. [Google Scholar]
  • Parrish RR, Parrish CM, Lasalle S. 2018. Vein calcite dating reveals Pyrenean orogen as cause of Paleogene deformation in southern England. Journal of the Geological Society 175(3): 425–442. [CrossRef] [Google Scholar]
  • Péron S, Bourquin S, Fluteau F, Guillocheau F. 2005. Paleoenvironment reconstructions and climate simulations of the Early Triassic: impact of the water and sediment supply on the preservation of fluvial system. Geodinamica Acta 18(6): 431–446. [CrossRef] [Google Scholar]
  • Piqué A, Huon S, Clauer N. 1984. La schistosité hercynienne et le métamorphisme associé dans la vallée de la Meuse, entre Charleville-Mézières et Namur (Ardenne franco-belges). Bull Soc Belge Géol 93: 55–70. [Google Scholar]
  • Press WH, Flannery BP, Teukolsky SA, Vettering WT. 1988. Numerical Recipes in C. Cambridge (UK): Cambridge University Press, 735 p. [Google Scholar]
  • Quesnel F. 2006. Méso-Cénozoïque, Crétacé et Cénozoïque, 3 geological maps and 87 p of explanatory notes. In: Lacquement F, Quesnel F, Mansy JL, Moulouel H, Vinchon C, Gateau C et al., eds. La Géologie du territoire de l’Avesnois, Système d’information géologique, DVD, BRGM/RP-55465-FR. Orléans : BRGM. [Google Scholar]
  • Quesnel F, Théveniaut H, Voisin L, Wyns R. 2003. The “Pierres de Stonne” and the “Borne de fer”, as main features of Meso-Cenozoic palaeoweathering of the Upper Lorraine and Ardennian Thiérache areas (Ardennes and Moselle departments, France), Field trip guide. In: Paleoweathering and paleosurfaces in the Ardenne-Eifel region – Preizerdaul – Luxembourg – 14-17/05/2003. Géologie de la France 2003(1) (supplement): 11–28. [Google Scholar]
  • Quesnel F, Yans J, Dupuis C, Wyns R, Théveniaut, H Demoulin A. 2006. Mesozoic and Cenozoic paleoweathering in the Ardenne and the surrounding area. Characterisation dating and geometric reconstruction of the associated paleosurfaces and analysis of their successive deformation, Extended Abstract. Géologie de la France 1–2: 99–102, 3 figs. [Google Scholar]
  • Rahn M, Seward D. 2000. How many tracks do we need? On Track 20: 12–15. [Google Scholar]
  • Ramaekers JJF. 1991. The Netherlands. In: Hurtig E, Cermak V, Haenel R, Zui V, eds. Geothermal Atlas of Europe. Gotha: Hermann Haack Verlagsgesellschaft mbH. [Google Scholar]
  • Rijkers R, Duin E. 1994. Crustal observations beneath the southern North Sea and their tectonic and geological implications. Tectonophysics 240: 215–224. [CrossRef] [Google Scholar]
  • Rijkers R, Duin E, Dusar M, Langenaekerj V. 1993. Crustal structure of the London-Brabant Massif, southern North Sea. Geological Magazine 130(5): 569–574. [CrossRef] [Google Scholar]
  • Robaszynski F, 2006. Maastrichtian. Geologica Belgica 9: 63–72. [Google Scholar]
  • Rosenbaum G, Lister GS, Duboz C. 2002. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359: 117–129. [CrossRef] [Google Scholar]
  • Schintgen T, Förster A. 2013. Geology and basin structure of the Trier-Luxembourg Basin – implications for the existence of a buried Rotliegend graben. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 164(4): 615–637. [CrossRef] [Google Scholar]
  • Schneider J, Haack U, Hein UF, German A. 1999. Direct Rb-Sr dating of sandstone-hosted sphalerites from stratabound Pb-Zn deposits in the northern Eifel, NW Rhenish Massif, Germany. In: Stanley et al., eds. Mineral deposits: processes to processing. Rotterdam: Balkema, pp. 1287–1290. [Google Scholar]
  • Théveniaut H, Quesnel F, Wyns R, Hugues G. 2007. Palaeomagnetic dating of the “Borne de Fer” ferricrete (NE France): lower Cretaceous continental weathering. Palaeogeography Palaeoclimatology Palaeoecology 253: 271–279. [CrossRef] [Google Scholar]
  • Thiry M, Quesnel F, Yans J, Wyns R, Vergari A, Théveniaut H, et al. 2006. Continental France and Belgium during the Early Cretaceous: paleoweatherings and paleolandforms. Bull Soc géol Fr 177: 155–175. [CrossRef] [Google Scholar]
  • Thiry-Bastien P, Thierry J, Debourse P, Vidier J-P. 2000. Géométries et profils de dépôt de la plate-forme ardennaise au Bathonien supérieur – Callovien inférieur : un exemple de contraintes stratigraphiques lors de l’ennoyage d’une plate-forme carbonatée. Géologie de la France 2: 3–15. [Google Scholar]
  • Underhill JR, Partington MA. 1993. Use of genetic sequence stratigraphy in defining and determining a regional tectonic control on the “mid-Cimmerian Unconformity” implications for North Sea basin development and the global sea-level chart. In: Weimer P, Posamentier HW, eds. Silisiclastic Sequence Stratigraphy: Recent Developments and Applications. AAPG Memoir 58: 449–484. [Google Scholar]
  • Vandenberghe N, Van Simaeys S, Steurbaut E, Jagt JWM, Felder PJ. 2004. Stratigraphic architecture of the Upper Cretaceous and Cenozoic along the southern border of the North Sea Basin in Belgium. Netherlands Journal of Geosciences 83: 155–171. [CrossRef] [Google Scholar]
  • Van den Bril K, Swennen R. 2009. Sedimentological control on carbonate cementation in the Luxembourg Sandstone Formation. Geological Belgica 12(1–2): 3–23. [Google Scholar]
  • Van den Haute P, Vercoutere C. 1989. Apatite fission-track evidence for a Mesozoic uplift of the Brabant massif: preliminary results. Annales de la Société Géologique de Belgique 112(2): 443–452. [Google Scholar]
  • Van Wijhe DH. 1987. Structural evolution of inverted basins in the Dutch offshore. Tectonophysics 137: 171–219. [CrossRef] [Google Scholar]
  • Vercoutere C, Van den Haute P. 1993. Post-Palaeozoic cooling and uplift of the Brabant massif as revealed by apatite fission-track analysis. Geological Magazine 130(5): 639–646. [CrossRef] [Google Scholar]
  • Vidier J-P, Garcia J-P, Thierry J, Fauconnier D. 1995. Le Dogger du Boulonnais (Nord bassin de Paris) : nouveaux découpages chronologique et séquentiel des formations carbonatées jurassiques en bordure du massif Londres-Brabant. C.R. Académie des Sciences Paris 320, série Iia, pp. 219–226. [Google Scholar]
  • Vincent B, Emmanuel L, Houel P, Loreau J-P. 2007. Geodynamic control on carbonate diagenesis: Petrographic and isotopic investigation of the Upper Jurassic formations of the Paris Basin (France). Sedimentary Geology 197: 267–289. [CrossRef] [Google Scholar]
  • Wagner GA, Coyle DA, Duyster J, Henjes-Kunst F, Peterek A, Schröder B. et al. 1997. Post-Variscan thermal and tectonic evolution of the KTB site and its surroundings. J Geophys Res 102(B8): 18221–18232. [CrossRef] [Google Scholar]
  • Xu C, Mansy JL, Van den Haute P, Guillot F, Zhou Z, Chen J, et al. 2009. Late- and post-Variscan evolution of the Ardenne in France and Belgium: constraints from apatite fission-track data. In: Lisker F, Ventura B, Glasmacher UA, eds. Thermochronological Methods: From Palaeotemperature Constraints to Landscape Evolution Models. Geological Society, London, Special Publications 324: 167–179. [Google Scholar]
  • Yans J. 2003a. An overview of the saprolites of Belgium and their potential kaolinitic supplies to Mesozoic and Cenozoic sediments. Géologie de la France 2003(1): 33–37. [Google Scholar]
  • Yans J. 2003b. Chronologie des sédiments kaoliniques faciès wealdiens (Barrémien moyen Albien supérieur, Bassin de Mons) et de la saprolite polyphasée (Crétacé inférieur et Miocène inférieur) de la Haute-Lesse (Belgique). Implications géodynamiques et paléoclimatiques. Thèse de 3e cycle, Faculté Polytechnique de Mons and Université de Paris-Sud Orsay, 316 p. [Google Scholar]
  • Ziegler PA. 1987. Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine foreland - a geodynamic model. Tectonophysics 137: 389–420. [CrossRef] [Google Scholar]
  • Ziegler PA. 1990. Geological Atlas of Western and Central Europe. 2nd. Ed. Shell International Petroleum Mij. B.V. Bath: Geological Society, London, Publishing House, 239 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.