Open Access
BSGF - Earth Sci. Bull.
Volume 190, 2019
Article Number 11
Number of page(s) 9
Published online 13 September 2019
  • Armstrong G, Dunham KC, Harvey CO, Sabine PA, Waters WF. 1951. The paragenesis of sylvine, carnallite, polyhalite and kieserite in Eskdale borings nos. 3,4, and 6, northe-east Yorkshire. Mineralogical Magazine XXIX: 667–690. [CrossRef] [Google Scholar]
  • Barker JM, Austin GS. 1993. Economic geology of the Carlsbad potash district, New Mexico. In: Love DW, Hawley JW, Kues BS, Austin GS, Lucas SG, eds. New Mexico Geological Society 44th Annual Fall Field Conference Guidebook. Carlsbad Region (New Mexico and West Texas: 357 p. [Google Scholar]
  • Barrer RM, Denny AF. 1964. Water in hydrates. Part I. Fractionation of hydrogen isotopes by crystallization of salt hydrates. Journal of the Chemical Society 4677–4684. DOI: 10.1039/JR9640004677. [CrossRef] [Google Scholar]
  • Bath AH, et al. 1979. Paleoclimatic trends deduced from the hydrochemistry of a Triassic Sandstone aquifer, U.K. In: Isotope Hydrology 1978, Vol. II. IAEA, pp. 545–568. [Google Scholar]
  • Bojar A-V, Halas S, Bojar A-V, Chmiel S. 2017. Stable isotope hydrology of precipitation and groundwater of a region with high continentality, South Carpathians, Romania. Carpathian Journal of Earth and Environmental Sciences 12(2): 513–524. [Google Scholar]
  • Bojar A-V, Hałas S, Bojar H-P, Trembaczowski A. 2016. Late Permian to Triassic isotope composition of sulfates in the Eastern Alps: palaeogeographic implications. Geological Magazine. DOI: 10.1017/S0016756816000996. [Google Scholar]
  • Boschetti T. 2013. Oxygen isotope equilibrium in sulfate-water systems: a revision of geothermometric applications in low-enthalpy systems. Journal of Geochemical Exploration 124: 92–100. DOI: 10.1016/j.gexplo.2012.08.011. [CrossRef] [Google Scholar]
  • Boschetti T, Cortecci G, Toscani L, Iacumin P. 2011. Sulfur and oxygen isotope compositions of Upper Triassic sulfates from northern Apennines (Italy): paleogeographic and hydrogeochemical implications. Geologica Acta 9: 129–147. [Google Scholar]
  • Burliga S. 2014. Heterogeneity of folding in Zechstein (Upper Permian) salt de posits in the Kłodawa Salt Structure, central Poland. Geological Quarterly 58(3): 565–576. [Google Scholar]
  • Camur MZ, Mutulu H. 1996. Major-ion geochemistry and mineralogy of the Salt Lake (Tuz GöSliü) basin, Turkey. Chemical Geology 127: 313–329. [CrossRef] [Google Scholar]
  • Chako T, Cole DR, Horita J. 2001. Equilibrium oxygen hydrogen and carbon isotope fractionation factors applicable to geologic systems. In: Valley JW, Cole DR, eds. Stable Isotope Geochemistry. Reviews in Mineralogy and Geochemistry 43: 1–81. [CrossRef] [Google Scholar]
  • Chiba, H., Kusakabe M, Hirano S-I, Matsuo S, Shigeyuki S. 1981. Oxygen isotope fractionation factors between anhydrite and water from 100 to 550 °C. Earth and Planetary Science Letters 53: 55–62. [CrossRef] [Google Scholar]
  • Chiba H, Sakai H. 1985. Oxygen isotopic exchange rate between dissolved sulfate and water at hydrothermal temperatures. Geochimica et Cosmochimica Acta 48: 993–1000. [CrossRef] [Google Scholar]
  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology 28: 199–260. [CrossRef] [Google Scholar]
  • D’Ans J. 1908. Über Caesium-dicalcium-sulfat. Chemische Berichte 41/2: 1777–1779. [Google Scholar]
  • Dulinski M, Rózanski K, Brudnik K, Kolonko P, Tadych J. 2014. Isotope monitoring of water appearances in salt mines: The Polish experience. Radioactive Waste Management Committee Natural Analogues for Safety Cases of Repositories in Rock Salt “Salt Club” Workshop Proceedings. pp. 123–132. [Google Scholar]
  • Fisher S, Voigt W, Köhnke K. 1996. The thermal decomposition of polyhalite K2SO4 − MgSO4 − 2CaSO4 − 2 H2O. Cryst. Res. Tehnol. 31/1: 87–92. [CrossRef] [Google Scholar]
  • Fontes JC, Gonfiantini R. 1967. Fractionment isotopique de l’hydrogene dans ĺeau de crystallization du gypse. Comptes Rendue de l’Académie des Sciences. Paris: 265, pp. 2–4. [Google Scholar]
  • Froehlich K, Kralik M, Papesch W, Rank D, Scheifinger H, Stichler W. 2008. Deuterium excess in precipitation of Alpine regions − moisture recycling. Isotopes in Environmental and Health Studies 44/1: 1–10. [CrossRef] [Google Scholar]
  • Gazquez F, Evans NP, Hodell DA. 2017. Precise and accurate isotope fractionation factors (α17O, α18O and αD) for water and CaSO4*2H2O (gypsum). Geochimica et Cosmochimica Acta 198: 259–270. [CrossRef] [Google Scholar]
  • Gonfianti R, Fontes JC. 1963. Oxygen isotopic fractionation in the water of crystallization of gypsum. Nature 2000: 644–646. [CrossRef] [Google Scholar]
  • Hałas S, Bojar A-V, Peryt TM. 2015. Oxygen isotopes in authigenic quartz from massive salt deposits. Chemical Geology 402: 1–5. [CrossRef] [Google Scholar]
  • Hałas S, Krouse HR. 1982. Isotopic abundances of water of crystallization of gypsum from the Miocene evaporite formation, Carpathian Foredeep, Poland. Geochimica et Cosmochimica Acta 46: 293–296. [CrossRef] [Google Scholar]
  • Hałas S, Pluta I. 2000. Empirical calibration of isotope thermometer δ18O (SO42−)-δ18O (H2O) for low temperature brines. Kraków, Poland: V Isotope Workshop of the European Society for Isotope Research: 68–71. [Google Scholar]
  • Hałas S, Szaran J. 2001. Improved thermal decomposition of sulfates to SO2 and mass spectrometric determination of δ34S of IAEA SO-5, IAEA SO-6 and NBS-127 sulfate standards. Rapid Communications in Mass Spectrometry 15: 1618–1620. [CrossRef] [Google Scholar]
  • Hałas S, Szaran J, Czarnacki M, Tanweer A. 2007. Refinements in BaSO4 to CO2 preparation and δ18O calibration of the sulphate standards NBS-127, IAEA SO-5 and IAEA SO-6. Geostandard Geoanalytical Research 31: 61–68. [CrossRef] [Google Scholar]
  • Hardie LA. 1996. Secular variation in seawater chemistry: an explanation for the coupled variation in the mineralogies of marine limestones and potash evaporites over the past 600 my. Geology 24: 279–283. [CrossRef] [Google Scholar]
  • Herwartz D, Surma J, Voigt C, Assonov S, Staubwasser M. 2017. Triple oxygen isotope systematics of structurally bonded water in gypsum. Geochimica et Cosmochimica Acta 209: 254–266. [CrossRef] [Google Scholar]
  • Holser WT. 1966. Diagenetic polyhalite in recent salt from Baja California. The American Mineralogist 51: 99–109. [Google Scholar]
  • Holland HD. 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton, NJ: Princeton University Press, 582 p. [Google Scholar]
  • Horita J. 1989. Stable isotope fractionation factors of water in hydrated saline mineral-brine system. Earth and Planetary Science Letters 95: 173–179. [CrossRef] [Google Scholar]
  • IAEA/WMO, 2010. Global Network of Isotopes in Precipitation: The GNIP Database, available at: (last access: 20 June 2017). [Google Scholar]
  • Jasechko S, Lechler A, Pausata FSR, Fawcett PJ, Gleeson T, Cendón DI, Galewsky J, LeGrande AN, Risi C, Sharp ZD, Welker JM, Werner M, Yoshimura K. 2015. Late-glacial to late-Holocene shifts in global precipitation. Climate of the Past 11: 1375–1393. [CrossRef] [Google Scholar]
  • Kampschulte A, Buhl D, Strauss H. 1998. The sulfur and strontium isotopic compositions of Permian evaporates from the Zechstein basin, northern Germany. Geologische Rundschau 87: 192–199. [CrossRef] [Google Scholar]
  • Kasprzyk A, Jasińska B. 1998. Isotopic composition of the crystallization water of gypsum in the Badenian of the northern Carpathian Foredeep: a case study from the cores Przyborow 1 and Strzegom 143. Geological Quarterly 42/3: 301–310. [Google Scholar]
  • Kemp SJ, Smith FW, Wagner D, Mounteney I, Bell CP, Milne CJ, Gowing CJB, Pottas TL. 2016. An improved approach to characterize potash-bearing evaporite deposits, evidenced in North Yorkshire, United Kingdom. Economic Geology 111: 719–742. [CrossRef] [Google Scholar]
  • Kemp BR, ed. 1999. Handbook of Thermal Analysis and Calorimetry, Vol. 4, From Macromolecules to Man. Elsevier, 1032 pp. [Google Scholar]
  • Knauth LP, Beeunas MA. 1986. Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and the origin of saline formation waters. Geochimica et Cosmochimica Acta 50/3: 419–433. [CrossRef] [Google Scholar]
  • Kusakabe M, Robinson BW. 1977. Oxygen and sulfur isotope equilibria in the BaSO4- −HSO4- −H2O system from 110 to 350 °C with applications. Geochimica et Cosmochimica Acta 41: 1033–11040. [CrossRef] [Google Scholar]
  • Leitner C, Neubauer F, Genser J, Borojevic-Sostaric B, Rantitsch G. 2013. 40Ar/39Ar ages of recrystallization of rock-forming polyhalite in Alpine rocksalt deposits. In: Jordan F, Mark DF, Verati C, eds. Advances in 40Ar/39Ar Dating: from Archaeology to Planetary Sciences. Geological Society, London, Special Publications, 378, 207–244. [Google Scholar]
  • Lloyd RM. 1968. Oxygen isotope behaviour in the sulfate-water system. Journal of Geophysical Research 73/18: 6099–6110. [CrossRef] [Google Scholar]
  • Longinelli A. 1983. Oxygen-18 and sulphur-34 in dissolved oceanic sulphate and phosphate. In: Fritz P, Fonts JC, eds. The Marine Environment. Handbook Environ. Isotope Geochem. Amsterdam: Elsevier: 219–255. [Google Scholar]
  • Longinelli A, Flora O. 2007. Isotopic composition of gypsum samples of Permian and Triassic age from the north-eastern Italian Alps: Palaeoenvironmental implications. Chemical Geology, 245/3-4: 275–284. [CrossRef] [Google Scholar]
  • Lowenstein TK. 1988. Origin of depositional cycles in the Permian "saline giant": the Salado (McNutt zone) evaporites of New Mexico and Texas. Geological Society of America Bulletin 100: 592–608. [CrossRef] [Google Scholar]
  • Lowenstein TK, Spencer RJ, Pengxi Z. 1989. Origin of ancient potash evaporites: clues from the modern nonmarine Qaidam Basin of western China. Science 245: 1090–1092. [CrossRef] [Google Scholar]
  • Ma L, Lowenstein TL, Li B, Jiang P, Liu C, Zhong J, Sheng J, Qiu H, Wu H. 2010. Hydrochemical characteristics and brine evolution paths of Lop Nor Basin, Xinjiang Province, Western China. Applied Geochemistry 25: 1770–1782. [CrossRef] [Google Scholar]
  • Matsubaya O, Sakai H. 1973. Oxygen and hydrogen isotopic study on the water of crystallization of gypsum from the Kuroko type mineralization. Geochemical Journal 7: 153–165. [CrossRef] [Google Scholar]
  • Paytan A, Gray E. 2012. Sulfur isotope stratigraphy. A geological time scale. In: Gradstein F, et al., eds. In: The Geologic Time Scale, Vol. 1. Elsevier: 161–180. Chapter 9. [Google Scholar]
  • Pena JA, Garcia-Ruiz JM, Marfil R, Prieto M. 1982. Growth features of magnesium and sodium salts in a recent Playa Lac of La Mancha (Spain). Estudios geol. 38: 245–257. [Google Scholar]
  • Peryt TM, Pierre C, Gryniv SP. 1998. Origin of polyhalite deposits in Zechstein (Upper Permian) Zdrada platform (northern Poland). Sedimentology 45: 565–578. [CrossRef] [Google Scholar]
  • Peryt TM, Tomassi-Morawiec H, Czapowski G, Hryniv SP, Pueyo JJ, Eastoe CJ, Vovnyuk S. 2005. Polyhalite occurrence in the Werra (Zechstein, Upper Permian) Peribaltic Basin of Poland and Russia: Evaporite Facies Constraints. Carbonates and Evaporites 20(2): 182–194. [CrossRef] [Google Scholar]
  • Rye RO, Stoffregen RE. 1995. Jarosite-water oxygen and hydrogen isotope fractionation: preliminary experimental data. Economic Geology 90: 2336–2342. [CrossRef] [Google Scholar]
  • Schorn A, Neubauer F, Bernroider M. 2013. Polyhalite microfabrics in an Alpine evaporite mélange : Hallstatt, Eastern Alps. Journal of Structural Geology 46: 57–75. [CrossRef] [Google Scholar]
  • Seal RR II, Alpers CN, Rye RO. 2000. Stable isotope systematics of sulfate minerals. In: Alpers, C.N., Jambor, J.L., Nordstrom, D.K., (eds.). Sulfate minerals, crystallography, geochemistry and environmental significance. Reviews in Mineralogy & Geochemistry 40: 541–602. [CrossRef] [Google Scholar]
  • Sial AN, Gaucher C, Ferreira VP, Pereira NS, Cezario WS, Chiglino L, Lima HM. 2015. Isotope and elemental chemostratigraphy. In: Chemostratigraphy. Elsevier: 23–64. Chapter 2. [CrossRef] [Google Scholar]
  • Sinha R, Raymahashay BC. 2004. Evaporite mineralogy and geochemical evolution of the Sambhar Salt Lake, Rajasthan, India. Sedimentary Geology 166: 59–71. [CrossRef] [Google Scholar]
  • Stoffregen RE, Rye RO, Wasserman MD. 1994. Experimental studies on alunite: I. 18-16O and D-H fractionation factors between alunite and water at 250°-450 °C. Geochimica et Cosmochimica Acta 58: 903–916. [CrossRef] [Google Scholar]
  • Szaran J, Niezgoda H, Hałas S. 1998. New determination of oxygen and sulphur isotope fractionation between gypsum and dissolved sulphate. ESIR Isotope Workshop IV, Portorož, June 1998. RMZ Materials and Geoenvironment 45: 180–182. [Google Scholar]
  • Tan H-B, Huang J-Z, Zhang W-J, Liu X-Q, Zhang Y-F, Kong N, Zhang Q. 2014. Fractionation of hydrogen and oxygen isotopes of gypsum hydration water and assessment of its geochemical indications. Australian Journal of Earth Sciences 61(6): 793–801. [CrossRef] [Google Scholar]
  • Wollmann G, Freyer D, Voigt W. 2008. Polyhalite and its analogous triple salts. Monatshefte für Chemie 139: 739–745. [CrossRef] [Google Scholar]
  • Zeebe RE. 2010. A new value for the stable oxygen isotope fractionation between dissolved sulfate ion and water. Geochimica et Cosmochimica Acta 74: 818–828. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.