Chaîne varisque
Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 190, 2019
Chaîne varisque
Article Number 12
Number of page(s) 18
DOI https://doi.org/10.1051/bsgf/2019014
Published online 22 November 2019
  • Aicard P, Autran A, Gérard J, Lougnon J. 1968. Sur l’âge tertiaire syntectonique et synmétamorphique alpin du gisement plombo-zincifère de Valauria (commune de Tende, Alpes Maritimes). Bull BRGM 1: 5–14. [Google Scholar]
  • Attal M. 2000. Étude tectonique et thermodynamique du tégument permo-triasique du flanc méridional du Massif de l’Argentera. Géol Alp 76: 167–170. [Google Scholar]
  • Atzori P, Cirrincione R, Del Moro A, Mazzoleni P. 2000. Petrogenesis of late Hercynian calc-alkaline dykes of mid-eastern Sardinia: Petrographical and geochemical data constraining hybridization process. Eur J Mineral 12: 1261–1282. DOI: 10.1127/0935-1221/2000/0012-1261. [CrossRef] [Google Scholar]
  • Baietto A, Perello P, Cadoppi P, Martinotti G. 2009. Alpine tectonic evolution and thermal water circulations of the Argentera Massif (South-Western Alps). Swiss J Geosci 102(2): 223–245. DOI: 10.1007/s00015-009-1313-5. [CrossRef] [Google Scholar]
  • Baletti L, Zanoni D, Spalla MI, Gosso G. 2012. Structural and petrographic map of the Sassa gabbro complex (Dent Blanche nappe, Austroalpine tectonic system, Western Alps, Italy). J Maps 8: 413–430. DOI: 10.1080/17445647.2012.745678. [CrossRef] [Google Scholar]
  • Banzet G. 1987. Interaction croûte-manteaux et genese du plutonisme subalcalin du Haut Dauphiné occidental (Massifs cristallins externs): Vaugnérites, durbachites et granitoides magnésio-potassiques. Géol Alp 63: 95–117. [Google Scholar]
  • Barca D, Cirrincione R, De Vuono E, Fiannacca P, Ietto F, Lo Giudice A. 2010. The Triassic rift system in the northern Calabrian-Peloritani Orogen: Evidence from basaltic dyke magmatism in the San Donato Unit. Period Mineral 79(2): 61–72. DOI: 10.2451/2010PM0010. [Google Scholar]
  • Bauve V, Plateaux R, Rolland Y, Sanchez G, Bethoux N, Delouis B, et al. 2014. Long-lasting transcurrent tectonics in SW Alps evidenced by Neogene to present-day stress fields. Tectonophysics 621: 85–100. DOI: 10.1016/j.tecto.2014.02.006. [CrossRef] [Google Scholar]
  • Bigot-Cormier F, Sosson M, Poupeau G, Stéphan JF, Larbin E. 2006. The denudation history of the Argentera Alpine External Crystalline Massif (Western Alps, France, Italy): An overview from the analysis of fission tracks in apatites and zircons. Geodin Acta 19(6): 455–473. DOI: 10.3166/ga.19.455–473. [CrossRef] [Google Scholar]
  • Blasi A. 1968. Geo-petrologia della regione del Boréon (settore francese del Massiccio Cristallino dell ’Argentera). Università degli Studi di Milano, Master Thesis, p. 165. [Google Scholar]
  • Blasi A. 1971. Genesi dei noduli a sillimanite nelle anatessiti del Mt. Pélago (Alpi Marittime) in rapporto ai fenomeni di metamorfismo, piegamento e granitizzazione. Mem Soc Geol It 10(11): 167–190. [Google Scholar]
  • Bogdanoff S. 1986. Evolution de la partie occidentale du massif cristallin externe de l’Argentera. Place dans l’arc alpin. Géol France 4: 433–453. [Google Scholar]
  • Bogdanoff S, Ploquin A. 1980. Les gneiss et migmatites du massif de l’Argentera (Alpes maritimes) ; apport de deux coupes geochimiques. Bull Soc géol Fr 7(3): 353–358. DOI: 10.2113/gssgfbull.S7-XXII.3.353. [CrossRef] [Google Scholar]
  • Bogdanoff S, Michard A, Mansour M, Poupeau G. 2000. Apatite fission track analysis in the Argentera massif: Evidence of contrasting denudation rates in the External Crystalline Massifs of the Western Alps. Terra Nova 12(3): 117–125. DOI: 10.1046/j.1365-3121.2000.123281.x. [CrossRef] [Google Scholar]
  • Bortolami G, Sacchi R. 1968. Osservazioni geologico-petrografiche sui medi valloni di S. Anna e Rio Freddo (Massiccio Cristallino dell’Argentera). Mem Soc Geol It 7: 37–64. [Google Scholar]
  • Bortolami G, Callegari E, Gosso G. 1974. Caratteri metamorfici nella copertura permocarbonifera e nel basamento cristallino dell’Argentera. Mem Soc Geol It 13(1): 257–267. [Google Scholar]
  • Boucarut M. 1967. Structure du granite de l’Argentera et style tectonique de l’ensemble de ce massif. C R Acad Sci Paris 264: 1573–1576. [Google Scholar]
  • Buffet G, Aumaitre R. 1979. Implications tectoniques possibles des directions des filons carbonifères et triasiques de la partie Sud et Ouest du massif cristallin des Ecrins-Pelvoux. Géol Alp 55: 35–43. [Google Scholar]
  • Bussien D, Bussy F, Masson H, Magna T, Rodionov N. 2008. Variscan lamprophyres in the Lower Penninic domain (Central Alps): Age and tectonic significance. Bull Soc géol Fr 179(4): 369–381. DOI: 10.2113/gssgfbull.179.4.369. [CrossRef] [Google Scholar]
  • Bussy F, Hernandez J, Von Raumer JF. 2000. Bimodal magmatism as a consequence of the post-collisional readjustment of the thickened Variscan continental lithosphere (Aiguilles Rouges-Mont Blanc Massifs, Western Alps). Earth Env Sci Trans Roy Soc Edinb 91(1–2): 221–233. DOI: 10.1017/S0263593300007392. [CrossRef] [Google Scholar]
  • Buzzi L, Gaggero L. 2008. Petrogenesis of post-orogenic Lower Permian andesites in southern Europe: Insights into the collapse of the Variscan range. Geodin Acta 21(5–6): 273–290. DOI: 10.3166/ga.21.273-290. [CrossRef] [Google Scholar]
  • Cannic S, Lapierre H, Monié P, Briqueu L, Basile C. 2002. Late orogenic evolution of the Variscan lithosphere: Nd isotopic constraints from the western Alps. Schweiz Mineral Petrogr Mitt 82: 77–99. [Google Scholar]
  • Carignan J, Hild P, Mevelle P, Morel J, Yeghicheyan D. 2001. Routine analyses of trace elements in geological samples using flow injection and low pressure on‐line liquid chromatography coupled to ICP‐MS: A study of geochemical reference materials BR, DR‐N, UB‐N, AN‐G and GH. Geostandards Newslett 25(2–3): 187–198. DOI: 10.1111/j.1751-908X.2001.tb00595.x. [CrossRef] [Google Scholar]
  • Carosi R, D’Addario E, Mammoliti E, Montomoli C, Simonetti M. 2016. Geology of the northwestern portion of the Ferriere-Mollieres Shear Zone, Argentera Massif, Italy. J Maps 12(sup1): 466–475. DOI: 10.1080/17445647.2016.1243491. [CrossRef] [Google Scholar]
  • Casetta F, Coltorti M, Marrocchino E. 2018. Petrological evolution of the Middle Triassic Predazzo Intrusive Complex, Italian Alps. Int Geol Rev 60(8): 977–997. DOI: 0.1080/00206814.2017.1363676. [CrossRef] [Google Scholar]
  • Casini L, Cuccuru S, Maino M, Oggiano G, Tiepolo M. 2012. Emplacement of the Arzachena Pluton (Corsica–Sardinia Batholith) and the geodynamics of incoming Pangaea. Tectonophysics 544: 31–49. DOI: 10.1016/j.tecto.2012.03.028. [CrossRef] [Google Scholar]
  • Cassinis G, Cortesogno L, Gaggero L, Perotti C, Ronchi A. 2007. Volcanic products from the Early Permian Collio Basin (southern Alps) and their geodynamic implications. Period Mineral 76: 25–47. DOI: 10.2451/2007PM0007. [Google Scholar]
  • Cirrincione R, Fiannacca P, Lustrino M, Romano V, Tranchina A. 2014. Late Triassic tholeiitic magmatism in Western Sicily: A possible extension of the Central Atlantic Magmatic Province (CAMP) in the Central Mediterranean area?. Lithos 188: 60–71. DOI: 10.1016/j.lithos.2013.10.009. [CrossRef] [Google Scholar]
  • Cirrincione R, Fiannacca P, Lustrino M, Romano V, Tranchina A, Villa IM. 2016. Enriched asthenosphere melting beneath the nascent North African margin: Trace element and Nd isotope evidence in middle-late Triassic alkali basalts from central Sicily (Italy). Int J Earth Sci (Geol Rundsch) 105(2): 595–609. DOI: 10.1007/s00531-015-1190-2. [CrossRef] [Google Scholar]
  • Cocherie A, Rossi P, Fanning CM, Guerrot C. 2005. Comparative use of TIMS and SHRIMP for U-Pb zircon dating of A-type granites and mafic tholeiitic layered complexes and dykes from the Corsican Batholith (France). Lithos 82(1–2): 185–219. DOI: 10.1016/j.lithos.2004.12.016. [CrossRef] [Google Scholar]
  • Colombo F, Ghiglione G, Compagnoni R. 1993. Relitti di porfidi granitici a xenoliti granulitici nelle migmatiti dell’Argentera (Alpi Marittime). Plinius 10: 113–116. [Google Scholar]
  • Compagnoni R, Ferrando S, Lombardo B, Radulesco N, Rubatto D. 2010. Paleo-European crust of the Italian western Alps: Geological history of the Argentera Massif and comparison with Mont Blanc-Aiguilles Rouges and Maures-Tanneron Massifs. In: Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C, eds. J Virt Expl 36(paper 3): 1–32. DOI: 10.3809/jvirtex.2009.00228. [Google Scholar]
  • Corsini M, Ruffet G, Caby R. 2004. Alpine and late-hercynian geochronological constrains in the Argentera Massif (Western Alps). Eclogae Geol Helv 97: 3–15. DOI: 10.1007/s00015-004-1107-8. [CrossRef] [Google Scholar]
  • Cortesogno L, Cassinis G, Dallagiovanna G, Gaggero L, Oggiano G, Ronchi A, et al. 1998. The Variscan post-collisional volcanism in late Carboniferous–Permian sequences of Ligurian Alps, southern Alps and Sardinia (Italy): A synthesis. Lithos 45(1–4): 305–328. DOI: 10.1016/S0024-4937(98)00037-1. [CrossRef] [Google Scholar]
  • Dallagiovanna G, Gaggero L, Maino M, Seno S, Tiepolo M. 2009. U-Pb zircon ages for post-Variscan volcanism in the Ligurian Alps (Northern Italy). J Geol Soc 166(1): 101–114. DOI: 10.1144/0016-76492008-027. [CrossRef] [Google Scholar]
  • Dardeau, G. 1988. Tethyan evolution and Alpine reactivation of Jurassic extensional structures in the French “Alpes Maritimes”. Bull Soc géol Fr 4(4): 651–657. DOI: 10.2113/gssgfbull.IV.4.651. [Google Scholar]
  • Debon F, Le Fort P. 1988. A cationic classification of common plutonic rocks and their magmatic associations: Principles, method, applications. Bull Minéral 111(5): 493–510. [Google Scholar]
  • Debon F, Lemmet M. 1999. Evolution of Mg/Fe ratios in late Variscan plutonic rocks from the external crystalline massifs of the Alps (France, Italy, Switzerland). J Petrol 40(7): 1151–1185. DOI: 10.1093/petroj/40.7.1151. [CrossRef] [Google Scholar]
  • Delteil J, Stephan JF, Attal M. 2003. Control of Permian and Triassic faults on Alpine basement deformation in the Argentera massif (external southern French Alps). Bull Soc géol Fr 174(5): 481–496. DOI: 10.2113/174.5.481. [CrossRef] [Google Scholar]
  • Duchesne JC, Liégeois JP, Bolle O, Vander Auwera J, Bruguier O, Matukov DI, et al. 2013. The fast evolution of a crustal hot zone at the end of a transpressional regime: The Saint-Tropez peninsula granites and related dykes (Maures Massif, SE France). Lithos 162: 195–220. DOI: 10.1016/j.lithos.2012.12.019. [CrossRef] [Google Scholar]
  • Evans MJ, Elliot T. 1999. Evolution of a thrust‐sheet‐top basin: The Tertiary Barrême Basin, Alpes de Haute Provence, France. Geol Soc Am Bull 111: 1617–1643. DOI: 10.1130/0016-7606(1999)111<1617:EOATST>2.3.CO;2. [CrossRef] [Google Scholar]
  • Faure-Muret A. 1955. Études géologiques sur le Massif de l’Argentera-Mercantour et sur ses enveloppes sédimentaires. Paris : Mém Carte Géol France, p. 336. [Google Scholar]
  • Ferrando S, Lombardo B, Compagnoni R. 2008. Metamorphic history of HP mafic granulites from the Gesso-Stura Terrain (Argentera Massif, Western Alps, Italy). Eur J Mineral 20: 777–790. DOI: 10.1127/0935-1221/2008/0020-1891. [CrossRef] [Google Scholar]
  • Ferrara G, Malaroda R. 1969. Radiometric age of granitic rocks from the Argentera Massif (Maritime Alps). Boll Soc Geol It 88: 311–320. [Google Scholar]
  • Ford M, Lickorish WH, Kusznir NJ. 1999. Tertiary foreland sedimentation in the southern Subalpine chains, SE France: A geodynamic analysis. Basin Res 11: 315–336. DOI: 10.1046/j.1365-2117.1999.00103.x. [CrossRef] [Google Scholar]
  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD. 2001. A geochemical classification for granitic rocks. J Petrol 42(11): 2033–2048. DOI: 10.1093/petrology/42.11.2033. [CrossRef] [Google Scholar]
  • Gaggero L, Oggiano G, Buzzi L, Slejko F, Cortesogno L. 2007. Post-Variscan mafic dykes from the late orogenic collapse to the Tethyan rift: Evidence from Sardinia. Ofioliti 32(1): 15–37. DOI: 10.4454/ofioliti.v32i1.344. [Google Scholar]
  • Garuti G, Bea F, Zaccarini F, Montero P. 2001. Age, geochemistry and petrogenesis of the ultramafic pipes in the Ivrea Zone, NW Italy. J Petrol 42(2): 433–457. DOI: 10.1093/petrology/42.2.433. [CrossRef] [Google Scholar]
  • Giobbi Origoni E, Bocchio R, Boriani A, Carmine M, De Capitani L. 1988. Late-Hercynian mafic and intermediate intrusives of Serie dei Laghi (N-Italy). Rend Soc It Mineral Petrol 43: 395–410. [Google Scholar]
  • Gosso G, Rebay G, Roda M, Spalla MI, Tarallo M, Zanoni D, et al. 2015. Taking advantage of petrostructural heterogeneities in subduction-collisional orogens, and effect on the scale of analysis. Period Mineral 84(3B Special Issue): 779–825. DOI: 10.2451/2015PM0452. [Google Scholar]
  • Gosso G, Lardeaux JM, Zanoni D, Volante S, Corsini M, Bersezio R, et al. 2019. Mapping the progressive geologic history at the junction of the Alpine mountain belt and the western Mediterranean ocean. Ofioliti 44(2): 97–110. DOI: 10.4454/ofioliti.v44i2.467. [Google Scholar]
  • Kerckhove C. 1969. La Zone du flysch dans les nappes de l’Embrunais-Ubaye (Alpes occidentales). Géol Alp 45: 5–204. [Google Scholar]
  • Lapierre H, Basile C, Dupuis V. 1999. Basaltes et trachytes permiens de l’Esterel (SE France) ; une serie tholeiitique transitionnelle epanchee pendant l’amincissement lithospherique. Bull Soc géol Fr 170(2): 253–265. [Google Scholar]
  • Lardeaux JM. 2014. Deciphering orogeny: A metamorphic perspective. Examples from European Alpine and Variscan belts. Part I: Alpine metamorphism in the western Alps. A review. Bull Soc géol Fr 185(2): 93–114. DOI: 10.2113/gssgfbull.185.2.93. [CrossRef] [Google Scholar]
  • Lardeaux JM, Spalla MI. 1991. From granulites to eclogites in the Sesia zone (Italian Western Alps): A record of the opening and closure of the Piedmont ocean. J Metamorph Geol 9: 35–59. DOI: 10.1111/j.1525-1314.1991.tb00503.x. [CrossRef] [Google Scholar]
  • Latouche L, Bogdanoff S. 1987. Évolution précoce du massif de l’Argentera : apport des eclogites et des granulites. Géol Alp 63: 151–164. [Google Scholar]
  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, eds. 2002. Igneous rocks: A classification and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge: Cambridge University Press, p. 236. [CrossRef] [Google Scholar]
  • Leclère H, Lacroix B, Fabbri O. 2014. Fault mechanics at the base of the continental seismogenic zone: Insights from geochemical and mechanical analyses of a crustal-scale transpressional fault from the Argentera crystalline massif, French-Italian Alps. J Struct Geol 66: 115–128. DOI: 10.1016/j.jsg.2014.05.009. [CrossRef] [Google Scholar]
  • Lemoine M, Bas T, Arnaud-Vanneau A, Arnaud H, Dumont T, Gidon M, et al. 1986. The continental margin of the Mesozoic Tethys in the Western Alps. Mar Petroleum Geol 3(3): 179–199. DOI: 10.1016/0264-8172(86)90044-9. [CrossRef] [Google Scholar]
  • Leroy S, Cabanis B. 1993. Le volcanisme permien du bassin de Toulon : un jalon septentrional du volcanisme permien de l’Ouest méditerranéen. Geol Fr 2: 57–66. [Google Scholar]
  • Locmelis M, Fiorentini ML, Rushmer T, Arevalo Jr R, Adam J, Denyszyn SW. 2016. Sulfur and metal fertilization of the lower continental crust. Lithos 244: 74–93. DOI: 10.1016/j.lithos.2015.11.028. [CrossRef] [Google Scholar]
  • Malaroda R, Carraro F, Dal Piaz GV, Franceschetti B, Sturani C, Zanella E. 1970. Carta geologica del Massiccio dell’Argentera alla scala 1:50 000 e note illustrative. Mem Soc Geol It 9: 557–663. [Google Scholar]
  • Marotta AM, Spalla MI, Gosso G. 2009. Upper and lower crustal evolution during lithospheric extension: Numerical modelling and natural footprints from the European Alps. In: Ring U, Wernicke B, eds. Extending a continent: Architecture, rheology and heat budget. Geol Soc London Spec Publ 321: 33–72. DOI: 10.1144/SP321.3. [Google Scholar]
  • Marotta AM, Roda M, Conte K, Spalla MI. 2018. Thermo-mechanical numerical model of the transition from continental rifting to oceanic spreading: The case of study of the Alpine Tethys. Geol Mag 155(2): 250–279. DOI: 10.1017/S0016756816000856. [CrossRef] [Google Scholar]
  • Maruyama S, Liou JG, Suzuki K. 1982. The peristerite gap in low-grade metamorphic rocks. Contrib Mineral Petrol 81(4): 268–276. DOI: 10.1007/BF00371681. [CrossRef] [Google Scholar]
  • Maruyama S, Suzuki K, Liou JG. 1983. Greenschist–amphibolite transition equilibria at low pressures. J Petrol 24(4): 583–604. DOI: 10.1093/petrology/24.4.583. [CrossRef] [Google Scholar]
  • Merle O, Brun JP. 1984. The curved translation path of the Parpaillon Nappe (French Alps). J Struct Geol 6(6): 711–719. DOI: 10.1016/0191-8141(84)90010-5. [CrossRef] [Google Scholar]
  • Montani V. 2004. Studio meso e microstrutturale dei boudin di metabasiti del complesso Malinvern-Argentera: resti dell’Oceano Reico nel Dominio Provenzale delle Alpi Marittime. Università degli Studi di Milano, Master Thesis, p. 181. [Google Scholar]
  • Morillon AC, Féraud G, Sosson M, Ruffet G, Crevola G, Lerouge G. 2000. Diachronous cooling on both sides of a major strike slip fault in the Variscan Maures Massif (south-east France), as deduced from a detailed 40Ar/39Ar study. Tectonophysics 321(1): 103–126. DOI: 10.1016/S0040-1951(00)00076-7. [CrossRef] [Google Scholar]
  • Mørk MBE. 1985. A gabbro to eclogite transition on Flemsøy, Sunnmøre, western Norway. Chem Geol 50(1–3): 283–310. DOI: 10.1016/0009-2541(85)90125-1. [CrossRef] [Google Scholar]
  • Musumeci G, Colombo F. 2002. Late Visean mylonitic granitoids in the Argentera Massif (western Alps, Italy): Age and kinematic constraints on the Ferrière-Mollières shear zone. C R Geosci 334(3): 213–220. DOI: 10.1016/S1631-0713(02)01722-4. [CrossRef] [Google Scholar]
  • Myers JS. 1978. Formation of banded gneisses by deformation of igneous rocks. Precambrian Res 6(1): 43–64. DOI: 10.1016/0301-9268(78)90054-2. [CrossRef] [Google Scholar]
  • Paquette JL, Ménot RP, Peucat JJ. 1989. REE, Sm-Nd and U-Pb zircon study of eclogites from the Alpine External Massifs (Western Alps): Evidence for crustal contamination. Earth Planet Sci Lett 96: 181–198. DOI: 10.1016/0012-821X(89)90131-3. [CrossRef] [Google Scholar]
  • Paquette JL, Ménot RP, Pin C, Orsini JB. 2003. Episodic and short-lived granitic pulses in a post-collisional setting: Evidence from precise U-Pb zircon dating through a crustal cross-section in Corsica. Chem Geol 198(1–2): 1–20. DOI: 10.1016/S0009-2541(02)00401-1. [CrossRef] [Google Scholar]
  • Poitrasson F, Pin C. 1998. Extreme Nd isotope homogeneity in a large rhyolitic province: The Estérel massif, southeast France. Bull Volcanol 60(3): 213–223. DOI: 10.1007/s004450050228. [CrossRef] [Google Scholar]
  • Renna MR, Tribuzio R, Tiepolo M. 2007. Origin and timing of the post-Variscan gabbro–granite complex of Porto (Western Corsica). Contrib Mineral Petrol 154(5): 493–517. DOI: 10.1007/s00410-007-0205-9. [CrossRef] [Google Scholar]
  • Roda M, Regorda A, Spalla MI, Marotta AM. 2018. What drives Alpine Tethys opening? Clues from the review of geological data and model predictions. Geol J 2018: 1–19. DOI: 10.1002/gj.3316. [Google Scholar]
  • Romain J, Vernet J. 1978. Decouverte d’un volcanisme basique d’age permien dans la vallee de la Gordolasque (Sud-Ouest du massif de l’Argentera-Mercantour, Alpes-Maritimes, France). Bull Soc géol Fr S7-XX(6): 929–933. DOI: 10.2113/gssgfbull.S7-XX.6.929. [CrossRef] [Google Scholar]
  • Romano V, Cirrincione R, Fiannacca P, Lustrino M, Tranchina A. 2011. Late-Hercynian post-collisional dyke magmatism in central Calabria (Serre Massif, southern Italy). Period Mineral 80(3 Special Issue): 489–515. DOI: 10.2451/2011PM0032. [Google Scholar]
  • Rossi P, Cocherie A, Lahondère D, Fanning CM. 2002. The European margin of the Jurassic Tethys in Corsica: Dating of Balagne trondhjemites and evidence to support a continental crust beneath the Balagne-Ligurian domain. CR Geosci 334(5): 313–322. DOI: 10.1016/S1631-0713(02)01758-3. [CrossRef] [Google Scholar]
  • Rossi P, Cocherie A, Fanning CM. 2015. Evidence in Variscan Corsica of a brief and voluminous Late Carboniferous to Early Permian volcanic-plutonic event contemporaneous with a high-temperature/low-pressure metamorphic peak in the lower crust. Bull Soc géol Fr 186(2–3): 171–192. DOI: 10.2113/gssgfbull.186.2-3.171. [CrossRef] [Google Scholar]
  • Rottura A, Bargossi GM, Caggianelli A, Del Moro A, Visona D, Tranne CA. 1998. Origin and significance of the Permian high-K calc-alkaline magmatism in the central-eastern Southern Alps, Italy. Lithos 45(1–4): 329–348. DOI: 10.1016/S0024-4937(98)00038-3. [CrossRef] [Google Scholar]
  • Rubatto D, Schaltegger U, Lombardo B, Colombo F, Compagnoni R. 2001. Complex Paleozoic magmatic and metamorphic evolution in the Argentera Massif (Western Alps), resolved with U-Pb dating. Schweiz Mineral Petrogr Mitt 81: 213–228. DOI: 10.5169/seals-61689. [Google Scholar]
  • Rubatto D, Ferrando S, Compagnoni R, Lombardo B. 2010. Carboniferous high-pressure metamorphism of Ordovician protoliths in the Argentera Massif (Italy), Southern European Variscan belt. Lithos 116(1–2): 65–76. DOI: 10.1016/j.lithos.2009.12.013. [CrossRef] [Google Scholar]
  • Sanchez G, Rolland Y, Schreiber D, Giannerini G, Corsini M, Lardeaux JM. 2010. The active fault system of SW Alps. J Geodyn 49(5): 296–302. DOI: 10.1016/j.jog.2009.11.009. [CrossRef] [Google Scholar]
  • Sanchez G, Rolland Y, Schneider J, Corsini M, Oliot E, Goncalves P, et al. 2011a. Dating low-temperature deformation by 40Ar/39Ar on white mica, insights from the Argentera-Mercantour Massif (SW Alps). Lithos 125(1): 521–536. DOI: 10.1016/j.lithos.2011.03.009. [CrossRef] [Google Scholar]
  • Sanchez G, Rolland Y, Jolivet M, Brichau S, Corsini M, Carter A. 2011b. Exhumation controlled by transcurrent tectonics: The Argentera-Mercantour massif (SW Alps). Terra Nova 23(2): 116–126. DOI: 10.1111/j.1365-3121.2011.00991.x. [Google Scholar]
  • Schaltegger U, Brack P. 2007. Crustal-scale magmatic systems during intracontinental strike-slip tectonics: U, Pb and Hf isotopic constraints from Permian magmatic rocks of the Southern Alps. Int J Earth Sci 96(6): 1131–1151. DOI: 10.1007/s00531-006-0165-8. [CrossRef] [Google Scholar]
  • Schreiber D, Lardeaux JM, Martelet G, Courrioux G, Guillen A. 2010. 3-D modelling of Alpine Mohos in Southwestern Alps. Geophys J Int 180: 961–975. DOI: 10.1111/j.1365-246X.2009.04486.x. [CrossRef] [Google Scholar]
  • Schwartz S, Lardeaux JM, Tricart P, Guillot S, Labrin E. 2007. Diachronous exhumation of HP-LT metamorphic rocks from south-western Alps: Evidence from fission track analysis. Terra Nova 19(2): 133–140. DOI: 10.1111/j.1365-3121.2006.00728.x. [CrossRef] [Google Scholar]
  • Simon‐Labric T, Rolland Y, Dumont T, Heymes T, Authemayou C, Corsini M, et al. 2009. 40Ar/39Ar dating of Penninic Front tectonic displacement (W Alps) during the Lower Oligocene (31–34 Ma). Terra Nova 21(2): 127–136. DOI: 10.1111/j.1365-3121.2009.00865.x. [CrossRef] [Google Scholar]
  • Simonetti M, Carosi R, Montomoli C, Langone A, D’Addario E, Mammoliti E. 2018. Kinematic and geochronological constraints on shear deformation in the Ferriere-Mollières shear zone (Argentera-Mercantour Massif, Western Alps): Implications for the evolution of the Southern European Variscan Belt. Int J of Earth Sci 107: 2163–2189. DOI: 10.1007/s00531-018-1593-y. [CrossRef] [Google Scholar]
  • Sloman LE. 1989. Triassic shoshonites from the dolomites, northern Italy: Alkaline arc rocks in a strike‐slip setting. J Geophys Res Solid Earth 94(B4): 4655–4666. DOI: 10.1029/JB094iB04p04655. [CrossRef] [Google Scholar]
  • Spalla MI, Siletto GB, di Paola S, Gosso G. 2000. The role of structural and metamorphic memory in the distinction of tectono-metamorphic units: The basement of the Como lake in the Southern Alps. J Geodyn 30(1–2): 191–204. DOI: 10.1016/S0264-3707(99)00033-2. [CrossRef] [Google Scholar]
  • Spalla MI, Zanoni D, Marotta AM, Rebay G, Roda M, Zucali M, et al. 2014. The transition from Variscan collision to continental break-up in the Alps: Insights from the comparison between natural data and numerical model predictions. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G, eds. The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. Geol Soc London Spec Publ 405: 363–400. DOI: 10.1144/SP405.11. [Google Scholar]
  • Spear FS. 1993. Metamorphic phase equilibria and pressure-temperature-time paths. Washington D.C.: Min Soc Am Monograph, p. 799. [Google Scholar]
  • Storck JC, Brack P, Wotzlaw JF, Ulmer P. 2019. Timing and evolution of Middle Triassic magmatism in the Southern Alps (northern Italy). J Geol Soc 176(2): 253–268. DOI: 10.1144/jgs2018-123. [CrossRef] [Google Scholar]
  • Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD, Norry MJ, eds. Magmatism in the ocean basins. Geol Soc London Spec Publ 42: 313–345. DOI: 10.1144/GSL.SP.1989.042.01.19. [Google Scholar]
  • Traversa G, Ronca S, Del Moro A, Pasquali C, Buraglini N, Barabino G. 2003. Late to post-Hercynian dyke activity in the Sardinia-Corsica domain: A transition from orogenic calc-alkaline to anorogenic alkaline magmatism. Boll Soc Geol It 2: 131–152. [Google Scholar]
  • Tricart P, Schwartz S, Sue C, Lardeaux JM. 2004. Evidence of synextension tilting and doming during final exhumation from analysis of multistage faults (Queyras Schistes lustrés, Western Alps). J Struct Geol 26(9): 1633–1645. DOI: 10.1016/j.jsg.2004.02.002. [CrossRef] [Google Scholar]
  • Vatin-Pérignon N, Aumaitre R, Buffet G. 1974. La spilitisation dans le massif des Écrins-Pelvoux Un cortège intrusif et effusif dolérito-spilitique. Géol Alp 50: 153–194. [Google Scholar]
  • Vatin-Pérignon N, Juteau T, Le Fort P. 1972. Les filons du massif du Pelvoux (Alpes occidentales françaises). Géol Alp 48: 207–227. [Google Scholar]
  • Vernon RH. 2018. A practical guide to rock microstructures, second edition. Cambridge: Cambridge University Press, p. 432. DOI: 10.1017/9781108654609. [CrossRef] [Google Scholar]
  • von Raumer JF. 1987. Les Massifs du Mont Blanc et des Aiguilles Rouges temoins de la formation de croute Varisque dans les Alpes Occidentales. Géol Alp 63: 7–24. [Google Scholar]
  • von Raumer JF, Finger F, Veselà P, Stampfli GM. 2014. Durbachites-Vaugnerites – a geodynamic marker in the central European Variscan orogen. Terra Nova 26: 85–95. DOI: 10.1111/ter.12071. [CrossRef] [Google Scholar]
  • Whitney DL, Evans B. 2010. Abbreviations for names of rock-forming minerals. Am Mineral 95(1): 185–187. DOI: 10.2138/am.2010.3371. [CrossRef] [Google Scholar]
  • Williams PF. 1985. Multiply deformed terrains – problems of correlation. J Struct Geol 7(3–4): 269–280. DOI: 10.1016/0191-8141(85)90035-5. [CrossRef] [Google Scholar]
  • Zanoni D, Spalla MI. 2018. The Variscan evolution in basement cobbles of the Permian Ponteranica Formation by microstructural and petrologic analysis. Ital J Geosci 137: 254–271. DOI: 10.3301/IJG.2018.12. [CrossRef] [Google Scholar]
  • Zanoni D, Rebay G, Spalla MI. 2016. Ocean floor and subduction record in the Zermatt-Saas rodingites, Valtournanche, Western Alps. J Metamorph Geol 34: 941–961. DOI: 10.1111/jmg.12215. [CrossRef] [Google Scholar]
  • Zheng JS, Mermet JF, Toutin-Morin N, Hanes J, Gondolo A, Morin R, et al. 1992. Datation 40Ar-39Ar du magmatisme et de filons minéralisés permiens en Provence orientale (France). Geodin Acta 5(3): 203–215. DOI: 10.1080/09853111.1992.11105228. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.