Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 191, 2020
Article Number 5
Number of page(s) 28
DOI https://doi.org/10.1051/bsgf/2019015
Published online 06 March 2020
  • Abraham K, Monchoux P, Roux L, Seifert F. 1977. Observations sur les exsolutions dans les orthoamphiboles des roches à sapphirine des Pyrénées. Bulletin de la Société française de Minéralogie et Cristallographie 100: 329–333. [CrossRef] [Google Scholar]
  • Ackermand D, Herd RK, Windley BF. 1982. Chemographic relationships in sapphirine-bearing rocks of the Limpopo belt, Southern Africa. Revista Brasileira de Geociencias 12(1–3): 292–300. [Google Scholar]
  • Albarède F, Michard-Vitrac A. 1978. Age and significance of the north-pyrenean metamorphism. Earth and Planetary Science Letters 40: 327–332. [CrossRef] [Google Scholar]
  • Avé Lallemant HG. 1968. Structural and petrofabric analysis of an "alpine-type" peridotite: the lherzolite of the French Pyrénées. Leidse Geologische Mededelingen 42: 1–57. [Google Scholar]
  • Aranovich LY, Newton RC. 1997. H2O activity in concentrated KCl and KCl-NaCl solutions at high temperatures and pressures measured by the brucite-periclase equilibrium. Contributions to Mineralogy and Petrology 127(3): 261–271. [CrossRef] [Google Scholar]
  • Arima M, Barnett RL. 1984. Sapphirine bearing granulites from the Sipiwesk Lake area of the late Archaean Pikwitonei granulite terrain, Manitoba, Canada. Contributions to Mineralogy and Petrology 88: 102–112. [CrossRef] [Google Scholar]
  • Asti R, Lagabrielle Y, Fourcade S, Corre B, Monié P. 2019. How do continents deform during mantle exhumation? Insights from the northern Iberia inverted paleo-passive margin, western Pyrenees (France). Tectonics. DOI: 10.1029/2018TC005428. [Google Scholar]
  • Azambre B, Rossy M, Lago M. 1987. Caractéristiques pétrologiques des dolérites tholéiitiques d’âge triasique (ophites) du domaine pyrénéen. Bulletin de Minéralogie 110: 379–396. [CrossRef] [Google Scholar]
  • Berman RG, Engi M, Greenwood HJ, Brown TH. 1986. Derivation of internally-consistent thermodynamic data by the technique of mathematical programming: a review with application the system MgO-SiO2-H2O. Journal of Petrology 27(6): 1331–1364. [CrossRef] [Google Scholar]
  • Bixel F, Lucas C. 1987. Approche géodynamique du Permien et du Trias des Pyrénées dans le cadre du Sud-Ouest Européen. Cuadernos de Geología Ibérica = Journal of Iberian Geology: an international publication of earth sciences 11: 57–82. [Google Scholar]
  • Blackburn T, Bowring SA, Schoene B, Mahan K, Dudas F. 2011. U-Pb thermochronology: creating a temporal record of lithosphere thermal evolution. Contributions to Mineralogy and Petrology 162(3): 479–500. [CrossRef] [Google Scholar]
  • Bodinier JL, Guiraud M, Fabriès J, Dostal J, Dupuy C. 1987. Petrogenesis of layered pyroxenites from the Lherz, Freychinede and Prades ultramafic bodies (Ariege, French Pyrenees). Geochimica et Cosmochimica Acta 51(2): 279–290. [CrossRef] [Google Scholar]
  • Boillot G, Grimaud S, Mauffret A, et al. 1980. Ocean-continent boundary off the Iberian margin: a serpentinite diapir west of the Galicia Bank. Earth and Planetary Science Letters 48(1): 23–34. [CrossRef] [Google Scholar]
  • Boulvais P, De Parseval P, D’Hulst A, Paris P. 2006. Carbonate alteration associated with talc-chlorite mineralization in the eastern Pyrenees, with emphasis on the St. Barthelemy Massif. Mineralogy and Petrology 88(3–4): 499–526. [CrossRef] [Google Scholar]
  • Boulvais P, Ruffet G, Cornichet J, Mermet M. 2007. Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrenees). Lithos 93: 89–106. [CrossRef] [Google Scholar]
  • Boutin A, de Saint Blanquat M, Poujol M, et al. 2016. Succession of Permian and Mesozoic metasomatic events in the eastern Pyrenees with emphasis on the Trimouns talc-chlorite deposit. International Journal of Earth Sciences 105: 747–770. [CrossRef] [Google Scholar]
  • Bouscary C. 1966. Les minéraux de métamorphisme du Trias de Bédeilhac (Ariège). Bulletin de la Société d’Histoire Naturelle de Toulouse 102(5): 286–291. [Google Scholar]
  • Briqueu L, Innocent C. 1993. Datation U/Pb sur zircon et géochimie isotopique Sr et Nd du volcanisme permien des Pyrénées occidentales (Ossau et Anayet). Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre 316(5): 623–628. [Google Scholar]
  • Canérot J. 1991. Comparative study of the eastern Iberides (Spain) and the western Pyrenees (France) Mesozoic basins. Palaeogeography, palaeoclimatology, palaeoecology 87(51-4): 1–28. [CrossRef] [Google Scholar]
  • Canérot J, Delavaux F. 1986. Tectonique et sédimentation sur la marge nord-ibérique des chaînons béarnais (Pyrénées-béarnaises). Remise en question de la signification des lherzolites du sommet de Saraillé. Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre 302(15): 951–956. [Google Scholar]
  • Chelalou R, Nalpas T, Bousquet R, et al. 2016. New sedimentological, structural and paleo-thermicity data in the Boucheville Basin (eastern North Pyrenean Zone, France). Comptes Rendus de Géoscience 348(3–4): 312–321. [Google Scholar]
  • Cherniak D. 2000. Pb diffusion in rutile. Contributions et Mineralogy and Petrology 139: 198–207. [CrossRef] [Google Scholar]
  • Chetouani K, Bodinier JL, Garrido CJ, Marchesi C, Amri I, Targuisti K. 2016. Spatial variability of pyroxenite layers in the Beni Bousera orogenic peridotite (Morocco) and implications for their origin. Comptes Rendus de Géoscience 348(8): 619–629. [Google Scholar]
  • Choukroune P. 1970. Contribution à l’étude structurale de la zone métamorphique nord-pyrénéenne ; tectonique et métamorphisme des formations secondaires de la forêt de Boucheville (Pyrénées orientales). Bulletin du Bureau des Recherches Géologiques et Minières 4: 46–63. [Google Scholar]
  • Choukroune P. 1973. La brèche de Lherz dite « d’explosion liée à la mise en place des lherzolites » est une brèche sédimentaire d’âge Cénozoïque (Pyrénées ariégeoises). Comptes Rendus de l’Académie des Sciences, Série D 277: 2621–2624. [Google Scholar]
  • Choukroune P. 1976. Structure et évolution tectonique de la Zone Nord-Pyrénéenne : analyse de la déformation dans une portion de chaîne à schistosité subverticale. Mémoires de la Société géologique de France 127. [Google Scholar]
  • Christy AG. 1989. The stability of sapphirine + clinopyroxene: implications for phase relations in the CaO-MgO-Al2O3-SiO2 system under deep-crustal and upper mantle conditions. Contributions to Mineralogy and Petrology 102: 422–428. [CrossRef] [Google Scholar]
  • Clerc C, Lagabrielle Y, Neumaier M, Reynaud JY, de Saint Blanquat M. 2012. Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bulletin de la Société Géologique de France 183(5): 443–459. [Google Scholar]
  • Clerc C, Boulvais P, Lagabrielle Y, de Saint Blanquat M. 2014. Ophicalcites from the northern Pyrenean belt: a field, petrographic and stable isotope study. International Journal of Earth Sciences 1–23. [Google Scholar]
  • Clerc C, Lagabrielle Y. 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: insights from the Cretaceous Pyrenean hot paleomargins. Tectonics 33: 1340–1359. [CrossRef] [Google Scholar]
  • Clerc C, Lahfid A, Monié P, et al. 2015. High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the north Pyrenean paleo-passive margin. Solid Earth Discussions 6: 1–61. [CrossRef] [Google Scholar]
  • Clerc C, Lagabrielle Y, Labaume P, et al. 2016. Basement–Cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the Northeastern Pyrenean analog. Tectonophysics 686: 82–97. [CrossRef] [Google Scholar]
  • Conquéré F. 1978. Pétrologie des complexes ultramafiques de l’Ariège, Doctoral Dissertation, Université Pierre et Marie Curie, 333 p. [Google Scholar]
  • Corre B, Lagabrielle Y, Labaume P, Fourcade S, Clerc C, Ballèvre M. 2016. Deformation associated with mantle exhumation in a distal, hot passive margin environment: new constraints from the Saraillé Massif (Chaînons Béarnais, North-Pyrenean Zone). Comptes Rendus de Géoscience 348(3–4): 279–289. [Google Scholar]
  • Corre B, Boulvais P, Boiron MC, Lagabrielle Y, Marasi L, Clerc C. 2018. Fluid circulations in response to mantle exhumation at the passive margin setting in the North Pyrenean Zone, France. Mineralogy and Petrology 112(5): 647–670. [Google Scholar]
  • Costa S, Maluski H. 1988. Use of the 40Ar-39Ar stepwise heating method for dating mylonite zones: an example from the St. Barthélémy massif (Northern Pyrenees, France). Chemical Geology: Isotope Geoscience section 72(2): 127–144. [Google Scholar]
  • Dauteuil O, Ricou LE. 1989. Une circulation de fluides de haute-température à l’origine du métamorphisme crétacé nord-pyrénéen. Geodinamica Acta 3(3): 237–249. [CrossRef] [Google Scholar]
  • Debroas EJ. 1978. Évolution de la fosse du flysch ardoisier de l’Albien supérieur au Sénonien inferieur (zone interne métamorphique des Pyrénées navarro-languedociennes). Bulletin de la Société géologique de France 7(5): 639–648. [CrossRef] [Google Scholar]
  • Debroas EJ, Bilotte M, Canérot J, Astruc G. 2010. Réinterprétation des brèches de la Faille nord-pyrénéenne ariégeoise (France). Bulletin de la Société d’Histoire Naturelle de Toulouse 146: 77–88. [Google Scholar]
  • DeFelipe I, Pedreira D, Pulgar JA, Iriarte E, Mendia M. 2017. Mantle exhumation and metamorphism in the Basque-Cantabrian Basin (N Spain): stable and clumped isotope analysis in carbonates and comparison with ophicalcites in the North-Pyrenean Zone (Urdach and Lherz). Geochemistry, Geophysics, Geosystems 18(2): 631–652. [CrossRef] [Google Scholar]
  • Denèle Y, Paquette JL, Olivier P, Barbey P. 2012. Permian granites in the Pyrenees: the Aya pluton (Basque Country). Terra Nova 24(2): 105–113. [Google Scholar]
  • Denèle Y, Laumonier B, Paquette JL, Olivier P, Gleizes G, Barbey P. 2014. Timing of granite emplacement, crustal flow and gneiss dome formation in the Variscan segment of the Pyrenees. Geological Society, London, Special Publications 405(1): 265–287. [Google Scholar]
  • Denny AR, Kelley DS, Früh-Green GL. 2016. Geologic evolution of the Lost City hydrothermal field. Geochemistry, Geophysics, Geosystems 17(2): 375–394. [CrossRef] [Google Scholar]
  • de Saint Blanquat M., Bajolet F, Grand’Homme A, et al. 2016. Cretaceous mantle exhumation in the central Pyrenees: new constraints from the peridotites in eastern Ariège (North Pyrenean zone, France). Comptes Rendus de Géoscience 348(3–4): 268–278. [Google Scholar]
  • Ducoux M. 2017. Structure, thermicité et évolution géodynamique de la Zone Interne Métamorphique des Pyrénées, Doctoral Dissertation, Université d’Orléans, 643 p. [Google Scholar]
  • Duretz, T, Asti R, Lagabrielle Y, Brun JP, Jourdon A, Clerc C, Corre B. 2019. Numerical modelling of Cretaceous Pyrenean Rifting: the interaction between mantle exhumation and syn-rift salt tectonics. Basin Research. DOI: 10.1111/bre.12389. [Google Scholar]
  • Engvik AK, Austrheim H. 2010. Formation of sapphirine and corundum in scapolitised and Mg-metasomatised gabbro. Terra Nova 22(3): 166–171. [CrossRef] [Google Scholar]
  • Espurt N, Callot JP, Totterdell J, Struckmeyer H, Vially R. 2009. Interactions between continental breakup dynamics and large-scale delta system evolution: insights from the Cretaceous Ceduna delta system, Bight Basin, Southern Australian margin. Tectonics 28(6). [Google Scholar]
  • Fabriès J, Lorand JP, Bodinier JL, Dupuy C. 1991. Evolution of the upper mantle beneath the Pyrenees: evidence from orogenic spinel lherzolite massifs. Journal of Petrology (2): 55–76. [CrossRef] [Google Scholar]
  • Fallourd S, Poujol M, Boulvais P, Paquette JL, de Saint Blanquat M, Remy P. 2014. In situ LA-ICP-MS U-Pb titanite dating of Na-Ca metasomatism in orogenic belts: the North Pyrenean example. International Journal of Earth Sciences 103(3): 667–682. [CrossRef] [Google Scholar]
  • Feneyrol J. 2012. Pétrologie, géochimie et genèse des gisements de tsavorite associés aux gneiss et roches calco-silicatées graphiteux de Lemshuku et Namalulu, Tanzanie, Doctoral dissertation, Université de Lorraine, 885 p. [Google Scholar]
  • García Senz J. 2002. Cuencas extensivas del Cretácico Inferior en los Pirineos centrales. Formación y subsecuente inversión. Universitat de Barcelona. [Google Scholar]
  • Garrido-Megías A. 1972. Síntesis geológica del Secundario y Terciario entre los ríos Cinca y Segre (Pirineo central de la vertiente surpirenaica, provincias de Huesca y Lérida). Boletín Geológico y Minero de España 83: 1–47. [Google Scholar]
  • Gasparik T. 1994. A petrogenetic grid for the system MgO-Al2O3-SiO2. The Journal of Geology 102(1): 97–109. [CrossRef] [Google Scholar]
  • Gillard M, Manatschal G, Autin J. 2016. How can asymmetric detachment faults generate symmetric Ocean Continent Transitions? Terra Nova 28(1): 27–34. [CrossRef] [Google Scholar]
  • Gleizes G. 1971. Étude géologique et minéralogique du Trias de Betchat et de Bonrepaux (Ariège), Thèse de troisième cycle, Université Paul-Sabatier − Toulouse III and Bureau des Recherches Géologiques et Minières, 121 p. [Google Scholar]
  • Golberg JM, Maluski H. 1988. Données nouvelles et mise au point sur l’âge du métamorphisme pyrénéen = Age of the Pyrenean metamorphism: new data and discussion. Comptes Rendus de l’Académie des Sciences 306(6): 429–435. [Google Scholar]
  • Golberg JM, Leyreloup AF. 1990. High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contributions to Mineralogy and Petrology 104: 194–207. [CrossRef] [Google Scholar]
  • Gong Z, Langereis CG, Mullender TAT. 2008. The rotation of Iberia during the Aptian and the opening of the Bay of Biscay. Earth and Planetary Science Letters 273: 80–93. [CrossRef] [Google Scholar]
  • Grew ES. 1988. Kornerupine at the Sar e Sang, Afghanistan, whiteschist locality: implications for tourmaline-kornerupine distribution in metamorphic rocks. American Mineralogist 73(3–4): 345–357. [Google Scholar]
  • Grew ES, Chernosky JV, Werding G, Abraham K, Marquez N, Hinthorne JR. 1990. Chemistry of kornerupine and associated minerals, a wet chemical, ion microprobe, and X-ray study emphasizing Li, Be, B and F contents. Journal of Petrology 31(5): 1025–1070. [CrossRef] [Google Scholar]
  • Handy MR, Schmid SM, Bousquet R, Kissling E, Bernoulli D. 2010. Reconciling plate tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth-Science Reviews 102: 121–158. [Google Scholar]
  • Harley SL. 1993. Sapphirine granulites from the Vestfold Hills, East Antarctica: geochemical and metamorphic evolution. Antarctic Science 5(4): 389–402. [CrossRef] [Google Scholar]
  • Harley SL, Motoyoshi Y. 2000. Al zoning in orthopyroxene in a sapphirine quartzite: evidence for > 1120 °C UHT metamorphism in the Napier Complex, Antarctica, and implications for the entropy of sapphirine. Contributions to Mineralogy and Petrology 138(4): 293–307. [CrossRef] [Google Scholar]
  • Hawthorne FC, Cooper MA, Grew ES. 2009. The crystal chemistry of the kornerupite-prismatine series. III. Chemical relations. Canadian Mineralogist 47: 275–296. [CrossRef] [Google Scholar]
  • Henry P, Azambre B, Montigny R, Rossy M, Stevenson RK. 1998. Late mantle evolution of the Pyrenean sub-continental lithospheric mantle in the light of new 40Ar–39Ar and Sm–Nd ages on pyroxenites and peridotites (Pyrenees, France). Tectonophysics 296(1–2): 103–123. [CrossRef] [Google Scholar]
  • Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: example of the western Pyrenees. Tectonics 28(4). [Google Scholar]
  • Jöns N, Schenk V. 2008. Relics of the Mozambique Ocean in the central East African Orogen: evidence from the Vohibory Block of southern Madagascar. Journal of Metamorphic Geology 26: 17–28. [Google Scholar]
  • Lacroix A. 1892. Sur l’axinite des Pyrénées, ses formes et les conditions de son gisement. Comptes Rendus de l’Académie des Sciences, 739–741. [Google Scholar]
  • Lacroix A. 1894. Les phénomènes de contact de la lherzolite et de quelques ophites des Pyrénées. Bulletin du Service de la Carte Géologique de France 6: 307–346. [Google Scholar]
  • Lacroix A. 1900. Les roches basiques accompagnant les lherzolites et les ophites des Pyrénées. Comptes Rendus du VIIIe Congrès Géologique International. [Google Scholar]
  • Lagabrielle Y, Bodinier JL. 2008. Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20: 11–21. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 29(4). [Google Scholar]
  • Lagabrielle Y, Clerc C, Vauchez A, et al. 2016. Very high geothermal gradient during mantle exhumation recorded in mylonitic marbles and carbonate breccias from a Mesozoic Pyrenean paleomargin (Lherz area, North Pyrenean Zone, France). Comptes Rendus de Géoscience 348: 290–300. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, et al. 2019. Mantle exhumation at magma-poor passive continental margins. Part I. 3D architecture and metasomatic evolution of a fossil exhumed mantle domain (Urdach lherzolite, north-western Pyrenees, France). Bulletin de la Société Géologique de France 190(1): 8. [Google Scholar]
  • Lago M, Arranz E, Pocovi A, Galé C, Gil-Imaz, A. 2004. Permian magmatism and basin dynamics in the southern Pyrenees: a record of the transition from late Variscan transtension to early Alpine extension. Geological Society, London, Special Publications 223(1): 439–464. [CrossRef] [Google Scholar]
  • Le Roux V, Bodinier JL, Tommasi A, et al. 2007. The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth and Planetary Science Letters 259(3): 599–612. [CrossRef] [Google Scholar]
  • Masini E, Manatschal G, Tugend J, Mohn G, Flament JM. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq–Mauléon rift system (Western Pyrenees, SW France). International Journal of Earth Sciences 103(6): 1569–1596. [CrossRef] [Google Scholar]
  • McClay KR, Whitehouse PS, Dooley T, Richards M. 2004. 3D evolution of fold and thrust belts formed by oblique convergence. Marine and Petroleum Geology 21(7): 857–877. [CrossRef] [Google Scholar]
  • Meinhold G. 2010. Rutile and its applications in earth sciences. Earth-Science Reviews 102(1–2): 1–28. [CrossRef] [Google Scholar]
  • Mezger K, Hanson GN, Bohlen SR. 1989. High precision U-Pb ages of metamorphic rutile: applaication to the cooling history of high-grade terranes. Earth and Planetary Science Letters 96: 106–118. [CrossRef] [Google Scholar]
  • Minnigh LD, Van Calsteren PWC, Den Tex E. 1980. Quenching: An additional model for emplacement of the Iherzolite at Lers (French Pyrenees). Geology 8(1): 18–21. [CrossRef] [Google Scholar]
  • Monchoux P. 1969. Corindon, kornerupine, sapphirine. Bulletin de la Société française de Minéralogie et de Cristallographie 92: 397–399. [Google Scholar]
  • Monchoux P. 1970. Les lherzolites pyrénéennes : contribution à l’étude de leur minéralogie, de leur genèse et de leurs transformations. Doctoral Dissertation, Université de Toulouse, 180 p. [Google Scholar]
  • Monchoux P. 1972a. Roches à sapphirine au contact des lherzolites pyrénéennes. Contributions to Mineralogy and Petrology 37: 47–64. [CrossRef] [Google Scholar]
  • Monchoux P. 1972b. Description des gisements de sapphirine associés aux lherzolites pyrénéennes : I. Gisements de l’étang de Lherz. Bulletin de la Société d’Histoire Naturelle de Toulouse: 410–419. [Google Scholar]
  • Montigny R, Azambre B, Rossy M, Thuizat R. 1986. K-Ar study of cretaceous magmatism and metamorphism in the Pyrenees: age and length of rotation of the Iberian Peninsula. Tectonophysics 129: 257–213. [CrossRef] [Google Scholar]
  • Moore, PB. 1969. The crystal structure of sapphirine. American Mineralogist: Journal of Earth and Planetary Materials 54(1–2): 31–49. [Google Scholar]
  • Morishita T, Arai S, Gervilla F. 2001. High-pressure aluminous mafic rocks from the Ronda peridotite massif, southern Spain: significance of sapphirine-and corundum-bearing mineral assemblages. Lithos 57(2–3): 143–161. [CrossRef] [Google Scholar]
  • Nijland TG, Touret JL, Visser D. 1998. Anomalously low temperature orthopyroxene, spinel, and sapphirine occurrences in metasediments from the Bamble amphibolite-to-granulite facies transition zone (South Norway): possible evidence for localized action of saline fluids. The Journal of Geology 106(5): 575–590. [CrossRef] [Google Scholar]
  • Olivet JL. 1996. La cinématique de la plaque ibérique. Bulletin des Centres de Recherche Exploration-Production Elf-Aquitaine 20: 131–195. [Google Scholar]
  • Péron-Pinvidic G, Manatschal G. 2009. The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view. International Journal of Earth Sciences 98(7): 1581–1597. [CrossRef] [Google Scholar]
  • Péron-Pinvidic G, Osmundsen PT. 2016. Architecture of the distal and outer domains of the Mid-Norwegian rifted margin: Insights from the Rån-Gjallar ridges system. Marine and Petroleum Geology 77: 280–299. [CrossRef] [Google Scholar]
  • Podlesskii KK, Aranovitch LY, Gerya TV, Kosyakova NA. 2008. Sapphirine-bearing assemblages in the system MgO–Al2O3–SiO2: a continuing ambiguity. European Journal of Mineralogy 20: 721–734. [CrossRef] [Google Scholar]
  • Podlesskii KK. 2010. Stability of sapphirine-bearing mineral assemblages in the system FeO–MgO–Al2O3–SiO2 and metamorphic P–T parametres of aluminous granulites. Petrology 18: 350–368. [CrossRef] [Google Scholar]
  • Poujol M, Boulvais P, Kosler J. 2010. Regional-scale Cretaceous albitization in the Pyrenees: evidence from in situ U–Th–Pb dating of monazite, titanite and zircon. Journal of the Geological Society of London 167: 751–767. [CrossRef] [Google Scholar]
  • Ravier J. 1959. Le métamorphisme des terrains secondaires des Pyrénées. Mémoires de la Société Géologique de France 86: 250 p. [Google Scholar]
  • Ravier J, Thiébaut J. 1982. Sur l’origine lagunaire des marbres et cornéennes mésozoïques du col d’Agnes (Ariège). Comptes Rendus de l’Académie des Sciences 294: 127–130. [Google Scholar]
  • Rosenbaum G, Lister GS, Duboz C. 2002. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359: 117–129. [CrossRef] [Google Scholar]
  • Roux L. 1977. L’évolution des roches du faciès granulite et le problème des ultramafitites dans le massif de Castillon (Ariège), Doctoral Dissertation, Université de Toulouse, 487 p. [Google Scholar]
  • Salardon R, Carpentier C, Bellahsen N, Pironon J, France-Lanord C. 2017. Interactions between tectonics and fluid circulations in an inverted hyper-extended basin: Example of mesozoic carbonate rocks of the western North Pyrenean Zone (Chaînons Béarnais, France). Marine and Petroleum Geology 80: 563–586. [CrossRef] [Google Scholar]
  • Saspiturry N, Razin P, Baudin T, Serrano O, Issautier B, Lasseur E, et al. 2019. Symmetry vs. asymmetry of a hyper-thinned rift: example of the Mauléon Basin (Western Pyrenees, France). Marine and Petroleum Geology 104: 86–105. [CrossRef] [Google Scholar]
  • Schärer U, Parseval PD, Polvé M, de Saint Blanquat M. 1999. Formation of the Trimouns talc-chlorite deposit (Pyrenees) from persistent hydrothermal activity between 112 and 97 Ma. Terra Nova 11(1): 30–37. [CrossRef] [Google Scholar]
  • Schreyer W, Abraham K. 1976. Three-stage metamorphic history of a whiteschist from Sar e Sang, Afghanistan, as part of a former evaporite deposit. Contributions to Mineralogy and Petrology 59(2): 111–130. [CrossRef] [Google Scholar]
  • Seifert F. 1974. Stability of sapphirine: a study of the aluminous part of the system MgO-Al2O3-SiO2-H2O. The Journal of Geology 82(2): 173–204. [CrossRef] [Google Scholar]
  • Sibuet JC, Srivastava S, Manatschal G. 2007. Exhumed mantle-forming transitional crust in the Newfoundland-Iberia rift and associated magnetic anomalies. Journal of Geophysical Research 112: B06105. [CrossRef] [Google Scholar]
  • Simon G, Chopin C. 2001. Enstatite–sapphirine crack-related assemblages in ultrahigh-pressure pyrope megablasts, Dora-Maira Massif, western Alps. Contributions to Mineralogy and Petrology 140: 422–440. [CrossRef] [Google Scholar]
  • Stacey JS, Kramers JD. 1975 Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26: 207–221. [Google Scholar]
  • Ternet Y, Colchen M, Debroas EJ, et al. 1997. N otice explicative, Carte géologique de France (1/50 000), feuille 1086, Aulus-les-Bains. Orléans: BRGM éditions, Bureau des Recherches Géologiques et Minières. [Google Scholar]
  • Thiébaut J, Debeaux M, Durand-Wackenheim C, et al. 1988. Métamorphisme et halocinèse crétacés dans les évaporites de Betchat le long du chevauchement frontal nord-Pyrénéen (Haute-Garonne et Ariège, France). Comptes rendus de l’Académie des sciences, Série 2 307: 1535–1540. [Google Scholar]
  • Thiébaut J, Durand-Wackenheim C, Debeaux M, Souquet P. 1992. Métamorphisme des évaporites triasiques du versant nord des Pyrénées centrales et occidentales. Bulletin de la Société d’Histoire Naturelle de Toulouse 128: 77–84. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E. 2015. Characterizing and identifying structural domains at rifted continental margins: application to the Bay of Biscay margins and its Western Pyrenean fossil remnants. Geological Society, London, Special Publications 413(1): 171–203. [CrossRef] [Google Scholar]
  • Vauchez A, Clerc C, Bestani L, et al. 2013. Preorogenic exhumation of the North Pyrenean Agly massif (Eastern Pyrenees-France). Tectonics 32: 1–12. [Google Scholar]
  • Vielzeuf D, Kornprobst J. 1984. Crustal splitting and the emplacement of Pyrenean lherzolites and granulites. Earth Planetary Science Letters 67(1): 87–96. [CrossRef] [Google Scholar]
  • Vry JK, Cartwright I. 1994. Sapphirine-kornerupine rocks from the Reynolds Range, central Australia: constraints on the uplift history of a Proterozoic low pressure terrain. Contributions to Mineralogy and Petrology 116(1-2): 78–91. [CrossRef] [Google Scholar]
  • Wheller CJ, Powell R. 2014. A new thermodynamic model for sapphirine: calculated phase equilibria in K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. Journal of Metamorphic Geology 32: 287–299. [CrossRef] [Google Scholar]
  • Whitney DL, Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95: 185–187. [CrossRef] [Google Scholar]
  • Windley BF, Ackermand D, Herd RK. 1984. Sapphirine/kornerupine-bearing rocks and crustal uplift history of the Limpopo belt, Southern Africa. Contributions to Mineralogy and Petrology 86(4): 342–358. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.