Chaîne varisque
Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 191, 2020
Chaîne varisque
Article Number 26
Number of page(s) 29
DOI https://doi.org/10.1051/bsgf/2020027
Published online 25 September 2020
  • Altherr R, Kalt A. 1996. Metamorphic evolution of ultrahigh-pressure garnet peridotites from the Variscan Vosges Mts. (France). Chemical Geology 134: 27–47. [CrossRef] [Google Scholar]
  • Altherr R, Henjes-Kunst F, Langer C, Otto J. 1999. Interaction between crustal-derived felsic and mantle-derived mafic magmas in the Oberkirch Pluton (European Variscides, Schwarzwald, Germany). Contributions to Mineralogy and Petrology 137: 304–322. [CrossRef] [Google Scholar]
  • Altherr R, Hanel M, Schwarz WH, Wimmenauer W. 2019. Petrology and U–Pb zircon age of the Variscan porphyroclastic Rand Granite at the southeastern margin of the Central Schwarzwald Gneiss Complex (Germany). International Journal of Earth Sciences 108: 1879–1895. [CrossRef] [Google Scholar]
  • Altherr R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50: 51–73. [CrossRef] [Google Scholar]
  • Altherr R, Soder CG. 2018. Sapphirine as a breakdown product of garnet in a Variscan UHP/HT peridotite from the Vosges Mountains (France) − An indication of near-isothermal decompression. Journal of Petrology 59: 2221–2243. [CrossRef] [Google Scholar]
  • Anders E, Grevesse N. 1989. Abundances of the elements: meteoritic and solar. Geochimica et Cosmochimica Acta 53: 197–214. [NASA ADS] [CrossRef] [Google Scholar]
  • André F. 1981. Un exemple de vaugnérite, cumulat d’une association gabbro-dioritique dans le massif des Ballons (Vosges méridionales, France). Comptes rendus de l’Académie des sciences. Série II 293: 445–448. [Google Scholar]
  • André F. 1983. Pétrologie structurale et pétrogenèse des formations plutoniques septentrionales du Massif des Ballons (Vosges, France). Unpubl. mem., thèse Université Nancy 1, Faculté des sciences, 298 p. Available at: tel.archives-ouvertes.fr/tel-01782377 (last consult: 2020/05/05). [Google Scholar]
  • André F, Bébien J. 1983a. Déchirures continentales et plutonisme : étude pétrologique et structurale comparée de l’association ignée de Guévguéli (Macédoine grecque) et des formations plutoniques basiques situées en bordure nord du Massif des Ballons (Vosges, France). Bulletin de la Société géologique de France 25: 291–299. [CrossRef] [Google Scholar]
  • André F, Bébien J. 1983b. Minéralogie et pétrologie des cumulats gabbro-dioritiques situés en bordure septentrionale du massif des Ballons (Vosges méridionales, France) : cristallisation d’un magma basique en domaine « orogénique » intracontinental. Bulletin de minéralogie 106: 341–351. [CrossRef] [Google Scholar]
  • André F, Gagny C. 1981. Proposition d’un âge namurien pour le granite porphyroïde des Ballons, témoin vosgien du plutonisme à potentialité molybdifère au Carbonifère supérieur. Congrès national des Sociétés savantes 106: 287–296. [Google Scholar]
  • Arnold J, Jacoby WR, Schmeling H, Schott B. 2001. Continental collision and the dynamic and thermal evolution of the Variscan orogenic crustal root-numerical models. Journal of Geodynamics 31: 273–291. [CrossRef] [Google Scholar]
  • Averbuch O, Mansy J-L, Lamarche J, Lacquement F, Hanot F. 2004. Geometry and kinematics of the Boulonnais fold-and-thrust belt (N France): implications for the dynamics of the Northern Variscan thrust front. Geodinamica Acta 17: 163–178. [CrossRef] [Google Scholar]
  • Averbuch O, Piromallo C. 2012. Is there a remnant Variscan subducted slab in the mantle beneath the Paris basin? Implications for the late Variscan lithospheric delamination process and the Paris basin formation. Tectonophysics 558–559: 70–83. [CrossRef] [Google Scholar]
  • Ballèvre M, Bosse V, Ducassou C, Pitra P. 2009. Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. Comptes rendus geoscience 341: 174–201. [CrossRef] [Google Scholar]
  • Bambauer HU, Kroll H, Nager HE, Pentinghaus H. 1974. Feldspat-Mischkristalle: eine Übersicht. Bulletin de la Société française de minéralogie et de cristallographie 97: 313–345. [Google Scholar]
  • Banzet G. 1987. Interactions croÛte-manteau et genèse du plutonisme subalcalin du Haut-Dauphiné occidental (massifs cristallins externes, Alpes) : vaugnérites, durbachites et granitoïdes magnésio-potassiques. Géologie alpine 63: 95–117. [Google Scholar]
  • Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46: 605–626. [CrossRef] [Google Scholar]
  • Barbey P, Villaros A, Marignac C, Montel J-M. 2015. Multiphase melting, magma emplacement and P-T-time path in late-collisional context: the Velay example (Massif Central, France). Bulletin de la Société géologique de France 186: 93–116. [CrossRef] [Google Scholar]
  • Bell EA, Boehnke P, Barboni M, Harrison TM. 2019. Tracking chemical alteration in magmatic zircon using rare earth element abundances. Chemical Geology 510: 56–71. [CrossRef] [Google Scholar]
  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143: 602–622. [CrossRef] [Google Scholar]
  • Blumenfeld P, Bouchez J-L. 1988. Shear criteria in granite and migmatite deformed in the magmatic and solid states. Journal of Structural Geology 10: 361–372. [CrossRef] [Google Scholar]
  • Bonin B, Azzouni-Sekkal A, Bussy F, Ferrag S. 1998. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: petrologic constraints and geodynamic settings. Lithos 45: 45–70. [CrossRef] [Google Scholar]
  • Bonin B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78: 1–24. [CrossRef] [Google Scholar]
  • Bourgeois O, Ford M, Diraison M, Le Carlier de Veslud C, Gerbault M, Pik R, et al. 2007. Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland. International Journal of Earth Sciences 96: 1003–1031. [CrossRef] [Google Scholar]
  • Boutin R, Montigny R, Thuizat R. 1995. Chronologie K-Ar et 39Ar-40 du métamorphisme et du magmatisme des Vosges. Comparaison avec les massifs varisques avoisinants. Géologie de la France (1): 3–25. [Google Scholar]
  • Burg JP, Van den Driessche J, Brun JP. 1994. Syn-to post-thickening extension in the Variscan Belt of Western Europe: modes and structural consequences. Géologie de la France (3): 33–51. [Google Scholar]
  • Bussy F, Delitroz D, Fellay R, Hernandez J. 1998. The Pormenaz monzonite (Aiguilles-Rouges, Western Alps): an additional evidence for a 330 Ma-old magnesio-potassic magmatic suite in the Variscan Alps. Schweizerische mineralogische und petrographische Mitteilungen 78: 193–194. [Google Scholar]
  • Camboly J. 1966. Étude pétrographique et géochimique des granites de la région du Vic-Habeauru (Vosges) et de leurs enclaves. Unpubl. mem., Thèse Faculté des Sciences, Université de Nancy, 87 p. [Google Scholar]
  • Camboly J, Hameurt J, Rocci G. 1967. Relations génétiques entre vaugnérite et kersantite et hypothèse originale sur la genèse des lamprophyres des Vosges. Comptes rendus de l’Académie des sciences. Série D 264: 25–28. [Google Scholar]
  • Carasco B. 1989. Lacustrine sedimentation in a Permian intermontane basin: the Villé graben (Vosges, France). Paleogeography, Paleoclimatology, Paleoecology 70: 179–186. [CrossRef] [Google Scholar]
  • Caruba R, Turco G. 1971. Mise au point sur la notation des faces du zircon. Élaboration d’une méthode d’indexation rapide des faces des zircons accessoires des roches par utilisation d’abaques. Bulletin de la Société française de minéralogie et de cristallographie 94: 427–436. [Google Scholar]
  • Chemenda AI, Mattauer M, Bokun A. 1996. Continental subduction and a mechanism for exhumation of high-pressure metamorphic rocks: new modelling and field data from Oman. Earth and Planetary Science Letters 143: 172–182. [CrossRef] [Google Scholar]
  • Chen F, Todt W, Hann HP. 2003. Zircon and garnet geochronology of eclogites from the Moldanubian zone of the Black Forest, Germany. Journal of Geology 111: 207–222. [CrossRef] [Google Scholar]
  • Chew DM, Petrus JA, Kamber BS. 2014. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology 363: 185–199. [CrossRef] [Google Scholar]
  • Condamine P, Médard E. 2014. Experimental melting of phlogopite-bearing mantle at 1 GPa: implications for potassic magmatism. Earth and Planetary Science Letters 397: 80–92. [CrossRef] [Google Scholar]
  • Costa S, Rey P. 1995. Crustal rejuvenation and growth during post-thickening collapse: insights from a crustal cross-section through a variscan metamorphic core complex. Geology 23: 905–908. [CrossRef] [Google Scholar]
  • Couzinié S, Laurent O, Moyen J-F, Zeh A, Bouilhol P, Villaros A. 2016. Post-collisional magmatism: crustal growth not identified by zircon Hf-O isotopes. Earth and Planetary Science Letters 456: 182–195. [CrossRef] [Google Scholar]
  • Couzinié S, Moyen J-F, Villaros A, Paquette J-L, Scarrow JH, Marignac C. 2014. Temporal relationships between Mg-K mafic magmatism and catastrophic melting of the Variscan crust in the southern part of Velay Complex (Massif Central, France). Journal of Geosciences 59: 69–86. [CrossRef] [Google Scholar]
  • Debon F, Guerrot C, Ménot R-P, Vivier G, Cocherie A. 1998. Late Variscan granites of the Belledonne massif (French Western Alps): an Early Visean magnesian plutonism. Schweizerische mineralogische und petrographische Mitteilungen 78: 67–85. [Google Scholar]
  • Debon F, Lemmet M. 1999. Evolution of Mg/Fe ratios in Late Variscan plutonic rocks from the external crystalline massif of the Alps (France, Italy, Switzerland). Journal of Petrology 40: 1151–1185. [CrossRef] [Google Scholar]
  • DeCelles PG, Robinson DM, Zandt G. 2002. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan plateau. Tectonics 21: 1062. https://doi.org/10.1029/2001TC001322. [CrossRef] [Google Scholar]
  • Delesse A. 1851. Sur la composition minéralogique et chimique des roches des Vosges. Annales des mines 19: 149–183. Available at: patrimoine.mines-paristech.fr/items/viewer/103#page/Image+74/mode/2up (last consult: 2020/05/05). [Google Scholar]
  • Donsimoni M. 1981. Le bassin houiller lorrain. Synthèse géologique. Mémoires du Bureau de recherches géologiques et minières 117, 102 p. [Google Scholar]
  • Durand M. 2014. Le bassin permien de Saint-Dié. In: Gély J-P, Hanot F, eds. Le bassin parisien, un nouveau regard sur la géologie. Paris: Association des géologues du Bassin, 139 p. [Google Scholar]
  • Dupuis NE, Braid JA, Brendan Murphy J, Shail R, Archibald DA, Nance D. 2015. 40Ar/39Ar phlogopite geochronology of lamprophyre dykes in Cornwall, UK: new age constraints on Early Permian post-collisional magmatism in the Rhenohercynian Zone, SW England. Journal of the Geological Society, London 172: 566–575. [CrossRef] [Google Scholar]
  • Echtler HP, Chauvet A. 1992. Carboniferous convergence and subsequent crustal extension In the southern Schwarzwald (SW Germany). Geodinamica Acta 5: 37–49. [CrossRef] [Google Scholar]
  • Edel JB, Fluck P. 1989. The Upper Rhenish Shield basement (Vosges, upper Rhinegraben and Schwarzwald): main structural features deduced from magnetic, gravimetric and geological data. Tectonophysics 169: 303–316. [CrossRef] [Google Scholar]
  • Edel J-B, Schneider J-L. 1995. The late Carboniferous to early Triasic geodynamic evolution of Variscan Europe in the light of magnetic overprints in Early Permian rhyolites from the Northern Vosges (France) and central Black Forest (Germany). Geophysical Journal International 122: 858–876 [CrossRef] [Google Scholar]
  • Edel JB, Schulmann K. 2009. Geophysical constraints and model of the “Saxothuringian and Rhenohercynian subductions-magmatic arc system” in NE France and SW Germany. Bulletin de la Société géologique de France 180: 545–558. [CrossRef] [Google Scholar]
  • Edel JB, Schulmann K, Skrzypek E, Cocherie A. 2013. Tectonic evolution of the European Variscan belt constrained by paleomagnetic, structural and anisotropy of magnetic susceptibility data from the Rhenohercynian magmatic arc (Northern Vosges, Eastern France). Journal of the Geological Society, London 170: 785–804. [CrossRef] [Google Scholar]
  • Eisbacher GH, Lüschen E, Wickert F. 1989. Crustal-scale thrusting and extension in the Hercynian Schwarzwald and Vosges, central Europe. Tectonics 8: 1–21. [CrossRef] [Google Scholar]
  • Eisele J, Gertisser R, Montenari M. 2000. Geochemistry and provenance of Devono-Carboniferous volcano-sedimentary sequences from the Southern Vosges Basin and the geodynamic implications for the Western Moldanubian Zone. In: Franke W, Haak V, Oncken O, Tanner D, eds. Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society, London, Special Publications 179: 433–444. [CrossRef] [Google Scholar]
  • Exley CS, Stone M, Floyd PA. 1983. Composition and petrogenesis of the Cornubian granite batholith and post-orogenic volcanic rocks in southwest England. In: Hancock PL, ed. The Variscan Fold belt in the British Isles. Bristol: Adam Higer Ltd, pp. 153–177. [Google Scholar]
  • Faryad SW, Kachlyk V. 2013. New evidence of blueschist facies rock and their geotectonic implication for Variscan suture(s) in the Bohemian Massif. Journal of Metamorphic Geology 31: 63–82. [CrossRef] [Google Scholar]
  • Faure M. 1995. Late orogenic carboniferous extensions in the Variscan French Massif Central. Tectonics 14: 132–153. [CrossRef] [Google Scholar]
  • Faure M, Bé Mézème E, Cocherie A, Rossi P, Chemenda A, Boutelier D. 2008. Devonian geodynamic evolution of the Variscan Belt, insights from the French Massif Central and Massif Armoricain. Tectonics 27: 27, TC2005. https://doi.org/2010.1029/2007TC002115. [CrossRef] [Google Scholar]
  • Faure M, Lardeaux J-M, Ledru P. 2009. A review of the pre-Permian geology of the Variscan French Massif Central. Comptes rendus géoscience 341: 202–213. [CrossRef] [Google Scholar]
  • Femenias O, Coussaert N, Berger J, Mercier J-C, Demaiffe D. 2004. Metasomatism and melting history of a Variscan lithospheric mantle domain: evidence from the Puy Beaunit xenoliths (French Massif Central). Contributions to Mineralogy and Petrology 148: 13–28. [CrossRef] [Google Scholar]
  • Finger F, Gerdes A, Rene M, Riegler G. 2009. The Saxo-Danubian Granite belt: magmatic response to post-collisional delamination of mantle lithosphere below the south-western sector of the Bohemian massif (Variscan orogen). Geologica Carpathica 60: 205–212. [CrossRef] [Google Scholar]
  • Fluck P. 1980. Métamorphisme et magmatisme dans les Vosges moyennes d’Alsace, contribution à l’histoire de la chaîne varisque. Sciences géologiques (bulletin et mémoires), Strasbourg 62: 1–247. [Google Scholar]
  • Fluck P, Edel J-B, Gagny C, Montigny R, Piqué A, Schneider J-L, et al. 1989. Carte synthétique et géotraverse N-S de la chaîne varisque des Vosges (France). Synthèse des travaux effectués depuis deux décennies. Comptes rendus de l’Académie des sciences. Série II 309: 907–912. [Google Scholar]
  • Foley S. 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28: 435–453. [CrossRef] [Google Scholar]
  • Förster MW, Prelevic D, Buhre S, Mertz-Kraus R, Foley SF. 2019. An experimental study of the role of partial melts of sediments versus mantle melts in the sources of potassic magmatism. Journal of Asian Earth Sciences 177: 76–88. [CrossRef] [Google Scholar]
  • Franke W. 2000. The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D, eds. Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society, London, Special Publications 179: 35–61. [CrossRef] [Google Scholar]
  • Franke W, Stein E. 2000. Exhumation of high-grade rocks in the Saxo-Thuringian Belt: geological constraints and geodynamic concepts. Geological Society, London, Special Publications 179: 337–354. [CrossRef] [Google Scholar]
  • Franke W. 2006. The Variscan orogen in Central Europe: construction and collapse. Geological Society, London, Memoirs 32: 333–343. [CrossRef] [Google Scholar]
  • Franke W, Cocks LRM, Torsvik TH. 2017. The Palaeozoic Variscan oceans revisited. Gondwana Research 48: 257–284. [CrossRef] [Google Scholar]
  • Furman T, Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos 48: 237–262. [CrossRef] [Google Scholar]
  • Gagny C. 1968. Pétrogenèse du Granite des Crêtes, Vosges méridionales − France. Thèse Fac. Sci. Univ. Nantes, 548 p. Available at: orage.univ-lorraine.fr/files/original/0ed0aab7e3ef1852f88f6696e12631bc.pdf (last consult: 2020/05/05). [Google Scholar]
  • Gagny C. 1978. Vaugnérites et durbachites sont des cumulats de magma granitique (l’exemple du magma des Crêtes, Vosges). Comptes rendus de l’Académie des sciences. Série D 287: 1361–1364. [Google Scholar]
  • Gardien V, Lardeaux J-M, Ledru P, Allemand P, Guillot S. 1997. Metamorphism during late orogenic extension: insights from the French Variscan Belt. Bulletin de la Société géologique de France 168: 271–286. [Google Scholar]
  • Gao M, Xu H, Zhang J, Foley SF. 2019. Experimental interaction of granitic melt and peridotite at 1.5 GPa: implications for the origin of post-collisional K-rich magmatism in continental subduction zones. Lithos 350–351: 105241. [CrossRef] [Google Scholar]
  • Gayk T, Kleinschrodt R. 2000. Hot contacts of garnet peridotites in middle/upper crustal levels: new constraints on the nature of the late Variscan high-T/low-P event in the Moldanubian (Central Vosges/NE France). Journal of Metamorphic Geology 18: 293–305. [CrossRef] [Google Scholar]
  • Gerdes A, Worner G, Finger F. 2000. Hybrids, magma mixing and enriched mantle melts in post-collisional Variscan granitoids: the Rastenberg Pluton, Austria. In: Franke W, Haak V, Oncken O, Tanner D, eds. Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society, London, Special Publications 179: 415–431. [CrossRef] [Google Scholar]
  • Gray R, Pysklywec RN. 2012. Geodynamic models of mature continental collision: evolution of an orogen from lithospheric subduction to continental retreat/delamination. Journal of Geophysical Resarch 117: B03408. https://doi.org/10.1029/2011JB008692. [Google Scholar]
  • Grimes CB, Wooden JL, Cheadle MJ, John BE. 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology 170: 46. [CrossRef] [Google Scholar]
  • Guillaume B, Martinod J, Espurt N. 2009. Variations of slab dip and overriding plate tectonics during subduction: insights from analogue modelling. Tectonophysics 463: 167–174. [CrossRef] [Google Scholar]
  • Guillong M, Meier DL, Allan MM, Einrich CA, Yardley BWD. 2008. SILLS: a Matlab-based program for the reduction of Laser Ablation ICP-MS data of homogeneous materials and inclusions. Mineralogical Association of Canada Short Course 40, Vancouver, BC: 328–333. [Google Scholar]
  • Guillot F, Desmons J, Ploquin A. 1993. Lithostratigraphy and geochemical composition of the Mt. Pourri volcanic basement, Middle Penninic W-Alpine zone, France. Schweizerische mineralogische und petrographische Mitteilungen 73: 319–334. [Google Scholar]
  • Hameurt J. 1966. Idées nouvelles sur la géologie des terrains cristallophylliens des Vosges moyennes lorraines. Comptes rendus de l’Académie des sciences. Série D 263: 1928–1931. [Google Scholar]
  • Hameurt J. 1970. Les terrains cristallins et cristallophylliens du versant occidental des Vosges moyennes. Mémoires du service de la carte géologique d’Alsace et de Lorraine 26: 402 p. [Google Scholar]
  • Hegner E, Chen F, Hann HP. 2001. Chronology of basin closure and thrusting in the internal zone of the Variscan belt in the Schwarzwald, Germany: evidence from zircon ages, trace element geochemistry, and Nd isotopic data. Tectonophysics 332: 169–184. [CrossRef] [Google Scholar]
  • Hegner E, Kölbl-Ebert M, Loeschke J. 1998. Post-collisional Variscan lamprophyres (Black Forest, Germany): 40Ar/39Ar phlogopite dating, Nd, Pb, Sr isotope, and trace element characteristics. Lithos 45: 395–411. [CrossRef] [Google Scholar]
  • Henk A. 1993. Late orogenic evolution in the Variscan Internides: the Saar-Nahe Basin, southwest Germany. Tectonophysics 223: 273–290. [CrossRef] [Google Scholar]
  • Henk A. 1997. Gravitational orogenic collapse vs plate-boundary stresses: a numerical modelling approach to the Permo-Carboniferous evolution of Central Europe. Geologische Rundschau 86: 39–55. [CrossRef] [Google Scholar]
  • Henk A, von Blankenburg F, Finger F, Schaltegger U, Zulauf G. 2000. Syn-convergent high-temperature metamorphism and magmatism in the Variscides: a discussion of potential heat sources. In: Franke W, Haak V, Oncken O, Tanner D, eds. Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society, London, Special Publications 179: 387–399. [CrossRef] [Google Scholar]
  • Hofmann AW. 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters 90: 297–314. [CrossRef] [Google Scholar]
  • Holub FV. 1997. Ultrapotassic plutonic rocks of the Durbachite Series in the Bohemian Massif: petrology, geochemistry and petrogenetic interpretation. J. Geol. Sci, Economic Geol. Mineralogy 31: 5–26. [Google Scholar]
  • Hoth S, Kuskowski N, Oncken O. 2008. Distant effects in bivergent orogenic belts − How retro wedge erosion triggers ressource formation in pro-foreland basins. Earth and Planetary Science Letters 273: 28–37. [CrossRef] [Google Scholar]
  • Houseman G, Molnar P. 2001. Mechanisms of lithospheric rejuvenation associated with continental orogeny. In Miller JA, Holdsworth REE, Buick IS, Hand M. eds.Continental reactivation and reworking. Geological Society, London, Special Publications 184: 13–38. [CrossRef] [Google Scholar]
  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211: 47–69. [CrossRef] [Google Scholar]
  • Janousek V, Farrow CM, Erban V. 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing geochemical data toolkit (GCDkit). Journal of Petrology 47: 1255–1259. [CrossRef] [Google Scholar]
  • Janousek V, Holub FV. 2007. The causal link between HP-HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. Proceedings of the Geologists’ Association 118: 75–86. [CrossRef] [Google Scholar]
  • Janousek V, Lewa O, Schulmann K, Maierova P. 2012. What drives remelting of thickened continental crust in the Bohemian Massif? Géologie de la France 2012–1: 130–131. [Google Scholar]
  • Janousek V. 2019. Variscan odyssey of the Bohemian Massif and the related plutonic activity. Geologica Carpathica 70: 50–53. [Google Scholar]
  • Jung J, Roques M. 1952. Introduction à l’étude zonéographique des formations cristallophylliennes. Bulletin du service de la carte géologique de la France 50: 1–64. [Google Scholar]
  • Kawabata H, Shimura T. 2019. Three-dimensional visualization of ternary prisms (T–prism): development of a spreadsheet-based tool for Earth and material sciences. Journal of Mineralogical and Petrological Sciences 114: 142–148. [CrossRef] [Google Scholar]
  • Kirkland CL, Smithies RH, Taylor RJM, Evans N, McDonald B. 2015. Zircon Th/U ratios in magmatic environs. Lithos 212–215: 397–414. [CrossRef] [Google Scholar]
  • Kratinová Z, Schulmann K, Edel J-B., Jezek J, Schaltegger U. 2007. Model of successive granite sheet emplacement in transtensional setting: integrated microstructural and anisotropy of magnetic susceptibility study. Tectonics 26: TC6003. https://doi.org/6010.1029/2006TC002035. [CrossRef] [Google Scholar]
  • Krawczyk CM, Stein E, Choi S, Oettinger G, Schuster K, Gotze H-J, et al. 2000. Geophysical constraints on exhumation mechanisms of high-pressure rocks: the Saxo-Thuringian case between the Franconian Line and Elbe Zone. In: Franke W, Haak V, Oncken O, Tanner D, eds. Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society, London, Special Publications 179: 303–322. [CrossRef] [Google Scholar]
  • Krmicek L, Romer RL, Ulrych J, Glodny J, Prelevic D. 2016. Petrogenesis of orogenic lamproites of the Bohemian massif: Sr-Nd-Pb-Li isotope constraints for Variscan enrichment of ultra-depleted mantle domains. Gondwana Research 35: 198–216. [CrossRef] [Google Scholar]
  • Kubínová S, Faryad SW, Verner K, Schmitz M, Holub F. 2017. Ultrapotassic dykes in the Moldanubian Zone and their significance for understanding of the post-collisional mantle dynamics during Variscan orogeny in the Bohemian Massif. Lithos 272–273: 205–221. [CrossRef] [Google Scholar]
  • Lakhrissi MA. 1996. Pétrologie, minéralogie, géochimie du volcanisme dévono-dinantien des Vosges méridionales (France). Sa place dans le contexte géodynamique varisque. Unpubl. mem., Thèse Doct. Univ. Lille, 414 p. Available at: ori.univ-lille1.fr/notice/view/univ-lille1-ori-133205 (last consult: 2020/05/12). [Google Scholar]
  • Lardeaux JM, Ledru P, Daniel I, Duchêne S. 2001. The Variscan French Massif Central — a new addition to the ultra-high pressure metamorphic “club”: exhumation processes and geodynamic consequences. Tectonophysics 332: 143–167. [CrossRef] [Google Scholar]
  • Lardeaux JM, Schulmann K, Faure M, Janousek V, Lexa O, Skrzypek E, et al. 2014. The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald, and Bohemian Massif revisited: differences and similarities. Geological Society, London, Special Publications 405: 7–43. [CrossRef] [Google Scholar]
  • Latouche L, Fabriès J, Guiraud M. 1992. Retrograde evolution in the Central Vosges mountains (northeastern France): implications for the metamorphic history of high-grade rocks during the Variscan orogeny. Tectonophysics 205: 387–407. [CrossRef] [Google Scholar]
  • Laurent O, Couzinié S, Zeh A, Vanderhaeghe O, Moyen J-F, Villaros A, et al. 2017. Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U-Pb dating in the eastern French Massif Central. International Journal of Earth Sciences 106: 421–451. [CrossRef] [Google Scholar]
  • Le Gall J, Doré F, Gresselin F, Pareyn C. 1989. Le magmatisme alcalin de la distension post-varisque dans le nord du Massif Armoricain : exemples des volcanites carbonifères du bassin de Carentan et des lamprophyres du Nord Cotentin. Annales de la Société géologique du Nord 108: 25–33. [Google Scholar]
  • Ledru P, Lardeaux J-M, Santallier D, Autran A, Quénardel J-M, Floc’H J-P, et al. 1989. Où sont les nappes dans le Massif central français ? [Where are the nappes in the French Massif central?]. Bulletin de la Société géologique de France 5(8): 605–618. [CrossRef] [Google Scholar]
  • Ledru P, Courrioux G, Dallain C, Lardeaux JM, Montel JM, Vanderhaeghe O, Vitel G. 2001. The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution. Tectonophysics 342: 207–237. [CrossRef] [Google Scholar]
  • Lefèvre C, Lakhrissi M, Schneider J-L. 1994. Les affinités magmatiques du volcanisme dinantien des Vosges méridionales (France) ; approche géochimique et interprétation. Comptes rendus de l’Académie des sciences. Série II 319: 79–86. [Google Scholar]
  • Lexa O, Schulmann K, Janousek V, Stipska P, Guy A, Racek M. 2011. Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root. Journal of Metamorphic Geology 29: 79–102. [CrossRef] [Google Scholar]
  • Ludwig KR. 2003. ISOPLOT 3.0: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 4. [Google Scholar]
  • Magni V, Allen MB, Van Hunen J, Bouillol P. 2017. Continental underplating after slab break-off. Earth and Planetary Science Letters 474: 59–67. [CrossRef] [Google Scholar]
  • Martin AM, Médard E, Righter K, Lanzirotti A. 2017. Intraplate mantle oxidation by volatile-rich silicic magmas. Lithos 292–293: 320–333. [CrossRef] [Google Scholar]
  • Matte P. 1998. Continental subduction and exhumation of HP rocks in Paleozoic orogenic belts: Uralides and Variscides. Geol. Soc. Sweden (G.F.F.) 120: 209–222. [Google Scholar]
  • Matte P. 2001. The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13: 122–128. [CrossRef] [Google Scholar]
  • McDonough WF, Sun S-S. 1995. The composition of the Earth. Chemical Geology 120: 223–253. [NASA ADS] [CrossRef] [Google Scholar]
  • Menant A, Jolivet L, Tuduri J, Loiselet C, Bertrand G, Guillou-Frottier L. 2018. 3D subduction dynamics: a first-order parameter of the transition from copper- to gold-rich deposits in Eastern Mediterranean region. Ore Geology Reviews 94: 118–135. [CrossRef] [Google Scholar]
  • Ménard G, Molnar P. 1988. Collapse of a Hercynian Plateau into a late Paleozoic European basin and range province. Nature 334: 235–237. [CrossRef] [Google Scholar]
  • Ménillet F, Fluck P, Flageollet J-C., Maïaux C, Lougnon J. 1978. Gérardmer. Notice explicative de la Carte géologique de la France à 1/50 000. Bur. Rech. Géol. Min. eds, Orléans, 341: 73 p. [Google Scholar]
  • Ménillet F, Coulon M, Fourquin C, Paicheler J-C., Lougnon J-M., Lettermann M. 1989. Thann. Notice explicative de la Carte géologique de la France à 1/50 000. Bur. Rech. Géol. Min. eds, Orléans 412: 137 p. [Google Scholar]
  • Michon G. 1987. Les vaugnérites de l’Est du Massif central français : apport de l’analyse statistique multivariée à l’étude géochimique des éléments majeurs. Bulletin de la Société géologique de France 3(8): 591–600. [CrossRef] [Google Scholar]
  • Montel J-M, Weisbrod A. 1986. Characteristics and evolution of “vaugneritic magmas”: an analytical and experimental approach, on the example of the Cévennes Médianes (French Massif Central). Bulletin de minéralogie 109: 575–587. [CrossRef] [Google Scholar]
  • Montenari M. 1999. Calciclastic turbidites from the Southern Vosges basin (Central Variscan Belt): reconstruction of a lost Carboniferous Carbonate platform. Journal of Conference Abstracts EUG 10(4): 742. [Google Scholar]
  • Moore VM, Wiltscko DV. 2004. Syncollisional delamination and tectonic wedge development in convergent orogens. Tectonics 23: TC2005. https://doi.org/10.1029/2002TC001430. [CrossRef] [Google Scholar]
  • Morency C, Doin M-P. 2004. Numerical simulations of the mantle lithosphere delamination. Journal of Geophysical Research 109: B03410. https://doi.org/10.1029/2003JB002414. [CrossRef] [Google Scholar]
  • Moyen J-F, Laurent O, Chelle-Michou C, Couzinié S, Vanderhaeghe O, Zeh A, et al. 2017. Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos 277: 154–177. [CrossRef] [Google Scholar]
  • Oncken O. 1997. Transformation of a magmatic arc and an orogenic root during oblique collision and its consequences for the evolution of the European Variscides (Mid-German Crystalline Rise). Geologische Rundschau 86: 2–20. [CrossRef] [Google Scholar]
  • Oncken O, Plesch A, Weber J, Ricken W, Schrader S. 2000. Passive margin detachment during arc-continent collision (Central european Variscides). In: Franke W, Haak V, Oncken O, Tanner D, eds. Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society, London, Special Publications 179: 199–216. [CrossRef] [Google Scholar]
  • Pagel M, Leterrier J. 1980. The subalkaline potassic magmatism of the Ballons Massif (Southern Vosges, France): Shoshonitic affinity. Lithos 13: 1–10. [CrossRef] [Google Scholar]
  • Parat F, Holtz F, René M, Almeev R. 2010. Experimental constraints on ultrapotassic magmatism from the Bohemian Massif (durbachite series, Czech Republic). Contributions to Mineralogy and Petrology 159: 331–347. [CrossRef] [Google Scholar]
  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26: 2508–2518. [CrossRef] [Google Scholar]
  • Petrini, K, Burg JP. 1998. Relationship between deformation, plutonism and regional metamorphism in the Markstein area (southern Vosges). Géologie de la France 1998: 13–23. [Google Scholar]
  • Pettke T, Oberli F, Audétat A, Guillong M, Simon AC, Hanley JJ, et al. 2012. Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geology Reviews 44: 10–38. [CrossRef] [Google Scholar]
  • Piqué A, Fluck P, Schneider J-L, Whitechurch H. 1994. The Vosges Massif. In: Keppie JD, Chantraine J, Rolet J, Santallier DS, Piqué A, eds. Pre-Mesozoic geology in France and related areas. Berlin Heidelberg: Springer-Verlag, pp. 416–425. [CrossRef] [Google Scholar]
  • Prijac C, Doin MP, Gaulier JM, Guillocheau F. 2000. Subsidence of the Paris Basin and its bearing on the late Variscan lithosphere evolution: a comparison between Plate and Chablis models. Tectonophysics 323: 1–38. [CrossRef] [Google Scholar]
  • Pupin J-P. 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology 73: 207–220. [CrossRef] [Google Scholar]
  • Rey P, Burg J-P, Lardeaux J-M, Fluck P. 1989. Évolutions métamorphiques contrastées dans les Vosges orientales : témoins d’un charriage dans la chaîne varisque. Comptes rendus de l’Académie des sciences. Série II 309: 815–821. [Google Scholar]
  • Rey P, Burg J-P, Caron J-M. 1991. Tectonique extensive ductile et plutonisme viséo-namurien dans les Vosges. Comptes rendus de l’Académie des sciences. Série II 312: 1609–1616. [Google Scholar]
  • Ricken W, Shrader S, Oncken O, Plesch A. 2000. Turbidite basin and mass dynamics related to orogenic wedge growth; the Rheno-Hercynian case. In: Franke W, Haak V, Oncken O, Tanner D, eds. Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society, London, Special Publications 179: 257–280. [CrossRef] [Google Scholar]
  • Rossi P. 1986. Organisation et genèse d’un grand batholite orogénique, le batholite calco-alcalin de la Corse. Thèse Univ. Toulouse, Documents du BRGM 107, 292 p. [Google Scholar]
  • Rossi P, Oggiano G, Cocherie A. 2009. A restored section of the “southern Variscan realm” across the Corsica-Sardinia microcontinent. Comptes rendus géoscience 341: 224–238. [CrossRef] [Google Scholar]
  • Rubatto D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology 184: 123–138. [CrossRef] [Google Scholar]
  • Sabatier H. 1980. Vaugnérites et granites : une association particulière de roches grenues. Bulletin de minéralogie 103: 507–522. [CrossRef] [Google Scholar]
  • Sabatier H. 1991. Vaugnerites: special lamprophyre-derived mafic enclaves in some Hercynian granites from Western and Central Europe. In: Didier J, Barbarin B, eds. Enclaves and Granite Petrology. Amsterdam: Elsevier, pp. 63–81. [Google Scholar]
  • Sawyer EW. 2008. Atlas of migmatites. The Canadian Mineralogist Special Publication. Canadian Science Publishing eds, 389 p. [Google Scholar]
  • Scarrow JH, Bea F, Montero P, Molina JF. 2008. Shoshonites, vaugnerites and potassic lamprophyres: similarities and differences between ’ultra’-high-K rocks. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 99: 159–175. [CrossRef] [Google Scholar]
  • Scarrow JH, Bea F, Montero P, Molina JF, Vaughan APM. 2006. A precise late Permian 40Ar/39Ar age for Central Iberian camptonitic lamprophyres. Geologica Acta 4: 451–459. [Google Scholar]
  • Scarrow JH, Molina JF, Bea F, Montero P, Vaughan APM. 2011. Lamprophyre dikes as tectonic markers of late orogenic transtension timing and kinematics: a case study from the Central Iberian Zone. Tectonics 30: TC4007. https://doi.org/10.1029/2010TC002755. [CrossRef] [Google Scholar]
  • Schäfer F, Oncken O, Kemnitz H, Romer RL. 2000. Upper-plate deformation during collisional orogeny: a case study from the German Variscides (Saxo-Thuringian Zone). In: Franke W, Haak V, Oncken O, Tanner D, eds. Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society, London, Special Publications 179: 281–302. [CrossRef] [Google Scholar]
  • Schaltegger U, Corfu F. 1992. The age and source of late Hercynian magmatism in the central Alps: evidence from precise U-Pb ages and initial Hf isotopes. Contributions to Mineralogy and Petrology 111: 329–344. [CrossRef] [Google Scholar]
  • Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulman K, Gebauer D. 1999. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology 134: 186–201. [CrossRef] [Google Scholar]
  • Schaltegger U, Schneider J-L, Maurin J-C, Corfu F. 1996. Precise U–Pb chronometry of 345–340 Ma old magmatism related to syn-convergence extension in the Southern Vosges/Central Variscan Belt. Earth and Planetary Science Letters 144: 403–419. [CrossRef] [Google Scholar]
  • Schiller D, Finger F. 2019. Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions. Contributions to Mineralogy and Petrology 174: 51. [CrossRef] [Google Scholar]
  • Schneider J-L. 1990. Enregistrement de la dynamique varisque dans les bassins volcano-sédimentaires dévono-dinantiens. Exemple des Vosges du sud (zone moldanubienne). Unpubl. PhD Thesis, Université de Strasbourg, 222 p. [Google Scholar]
  • Schott B, Schmelling H. 1998. Delamination and detachment of a lithospheric root. Tectonophysics 296: 225–247. [CrossRef] [Google Scholar]
  • Schulmann K, Schaltegger U, Jezek J, Thompson AB, Edel J-B. 2002. Rapid burial and exhumation during orogeny: thickening and synconvergent exhumation of thermally weakened and thinned crust (Variscan orogen in western Europe). American Journal of Science 302: 856–879. [CrossRef] [Google Scholar]
  • Schulmann K, Lexa O, Janousek V, Lardeaux J-M, Edel JB. 2014. Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42: 275–278. [CrossRef] [Google Scholar]
  • Seifert T. 2008. Metallogeny and Petrogenesis of Lamprophyres in the Mid-European Variscides: Post-collisional Magmatism and Its Relationship to Late-Variscan Ore Forming Processes in the Erzgebirge (Bohemian Massif). IOS Press, 303 p. [Google Scholar]
  • Siebel W, Eroglu S, Shang C, Rohrmuller J. 2012. Zircon geochronology and Sr-Nd isotope geochemistry of two Variscan granitoids from the Odenwald-Spessart crystalline complex (Mid-German Crystalline Rise). Mineralogy and Petrology 105: 187–200. [CrossRef] [Google Scholar]
  • Skrzypek E, Tabaud A-S, Edel J-B, Schulmann K, Cocherie A, Guerrot C, et al. 2012a. The significance of Late Devonian ophiolites in the Variscan orogen: a record from the Vosges Klippen Belt. International Journal of Earth Sciences 101: 951–972. [CrossRef] [Google Scholar]
  • Skrzypek E, Stípská P, Cocherie A. 2012b. The origin of zircon and the significance of U-Pb ages in high-grade metamorphic rocks: a case study from the Variscan orogenic root (Vosges Mountains, NE France). Contributions to Mineralogy and Petrology 164: 935–957. [CrossRef] [Google Scholar]
  • Skrzypek E, Schulmann K, Tabaud A-S, Edel J-B. 2014. Palaeozoic evolution of the Variscan Vosges Mountains. Geological Society, London, Special Publications 405: 45–75. [CrossRef] [Google Scholar]
  • Sláma J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, et al. 2008. Plesovice zircon − A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249: 1–35. [CrossRef] [Google Scholar]
  • Soder CG, Romer RL. 2018. Post-collisional potassic-ultrapotassic magmatism of the Variscan Orogen: implications for mantle metasomatism during continental subduction. Journal of Petrology 59: 1007–1034. [CrossRef] [Google Scholar]
  • Solgadi F, Moyen J-F, Vanderhaeghe O, Sawyer EW, Reisberg L. 2007. The role of crustal anatexis and mantle-derived magmas in the genesis of synorogenic Hercynian granites of the Livradois area, French Massif Central. Canadian Mineralogist 45: 581–606. [CrossRef] [Google Scholar]
  • Stollhofen H. 1998. Facies architecture variations and seismogenic structures in the Carboniferous-Permian Saar-Nahe Basin (SW Germany): evidence for extension-related transfer fault activity. Sedimentary Geology 119: 47–83. [CrossRef] [Google Scholar]
  • Sun S-S, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42: 313–345. [CrossRef] [Google Scholar]
  • Sunagawa I. (1981). Characteristics of crystal growth in nature as seen from the morphology of mineral crystals. Bulletin de minéralogie 104: 81–87. [CrossRef] [Google Scholar]
  • Tabaud A-S. 2012. Le magmatisme des Vosges: conséquence des subductions paléozoïques (datation, pétrologie, géochimie, ASM). Thèse Université de Strasbourg NNT: 2012STRAH003: 227 p. Available at: tel.archives-ouvertes.fr/tel-00755354 (last consult: 2020/05/05). [Google Scholar]
  • Tabaud A-S, Whitechurch H, Rossi P, Schulmann K, Guerrot C, Cocherie A. 2014. Devonian-Permian magmatic pulses in the northern Vosges Mountains (NE France): result of continuous subduction of the Rhenohercynian Ocean and Avalonian passive margin. Geological Society, London, Special Publications 405: 197–223. [CrossRef] [Google Scholar]
  • Tabaud A-S, Janouzek V, Skrzypek E, Schulmann K, Rossi P, Whitechurch H, et al. 2015. Chronology, petrogenesis and heat sources for successive Carboniferous magmatic events in the Southern-Central Variscan Vosges Mts (NE France). Journal of the Geological Society, London 172: 87–102. [CrossRef] [Google Scholar]
  • Théobald N, Thiébaut J, Bernatzky M. 1974. Giromagny. Notice explicative de la Carte géologique de la France à 1/50 000. Bur. Rech. Géol. Min. eds 411: 23 p. [Google Scholar]
  • Turpin L, Velde D, Pinte, G. 1988. Geochemical comparison between minettes and kersantites from the Western European Hercynian orogen: trace element and Pb-Sr-Nd isotope constraints on their origin. Earth and Planetary Science Letters 87: 73–86. [CrossRef] [Google Scholar]
  • Vaida M, Hann HP, Sawatzki G, Frisch W. 2004. Ordovician and Silurian protolith ages of metamorphosed clastic sedimentary rocks from the southern Schwarzwald, SW Germany: a palynological study and its bearing on the Early Palaeozoic geotectonic evolution. Geological Magazine 141: 629–643. [CrossRef] [Google Scholar]
  • von Eller J-P, Fluck P, Hameurt J. 1970. Carte géologique des Vosges moyennes, partie centrale et partie orientale. Bulletin du Service de la carte géologique d’Alsace et de Lorraine 23: 29–50. Available at: https://www.persee.fr/doc/sgeol_0037-2560_1970_num_23_1_1366 (last consult:2018/12/26). [Google Scholar]
  • von Eller J-P, Fluck P, Hameurt J, Ruhland M. 1972. Présentation d’une carte structurale du socle vosgien. Sciences Géologiques. Bulletin 25: 3–20. Available at: https://www.persee.fr/doc/sgeol_0302-2692_1972_num_25_1_1401 (last consult: 2018/12/30). [CrossRef] [Google Scholar]
  • von Raumer JF, Finger F, Vesela P, Stampfli GM. 2013. Durbachites-Vaugnerites-a geodynamic marker in the Central European Variscan orogen. Terra Nova 26: 85–95. [CrossRef] [Google Scholar]
  • von Seckendorff V, Arz C, Lorenz V. 2004a. Magmatism of the late Variscan intermontane Saar-Nahe Basin (Germany): a review. Geological Society, London, Special Publications 223: 361–391. [CrossRef] [Google Scholar]
  • von Seckendorff V, Timmerman MJ, Kramer W, Wrobel P. 2004b. New 40Ar/39Ar ages and geochemistry of late Carboniferous-early Permian lamprophyres and related volcanic rocks in the Saxothuringian Zone of the Variscan Orogen (Germany). Geological Society, London, Special Publications 223: 335–359. [CrossRef] [Google Scholar]
  • Wang X, Griffin WL, Chen J, Huang P, Li X. 2011. U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: improved zircon-melt distribution coefficients. Acta Geologica Sinica − English Edition 85: 164–174. [CrossRef] [Google Scholar]
  • Watson EB, Harrison TM. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64: 295–304. [CrossRef] [Google Scholar]
  • Watson EB, Wark DA, Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology 151: 413–433. [CrossRef] [Google Scholar]
  • Whitney DL, Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95: 185–187. [CrossRef] [Google Scholar]
  • Wickert F, Eisbacher GH. 1988. Two-sided Variscan thrust tectonics in the Vosges Mountains, northeastern France. Geodinamica Acta 2: 101–120. [CrossRef] [Google Scholar]
  • Wiebe RA, Collins WJ. 1998. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. Journal of Structural Geology 20: 1273–1289. [CrossRef] [Google Scholar]
  • Zeitlhofer H, Grasemann B, Petrakakis K. 2016. Variscan potassic dyke magmatism of durbachitic affinity at the southern end of the Bohemian Massif (Lower Austria). International Journal of Earth Sciences 105: 1175–1197. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.