Chaîne varisque
Open Access
Review
Issue
BSGF - Earth Sci. Bull.
Volume 191, 2020
Chaîne varisque
Article Number 25
Number of page(s) 56
DOI https://doi.org/10.1051/bsgf/2020013
Published online 23 September 2020
  • Aerden DGAM. 1998. Tectonic evolution of the Montagne Noire and a possible orogenic model for syncollisional exhumation of deep rocks, Variscan belt, France. Tectonics 17: 62–79. https://doi.org/10.1029/97TC02342. [CrossRef] [Google Scholar]
  • Aerden DG, Malavieille J. 1999. Origin of a large-scale fold nappe in the Montagne Noire Variscan belt, France. J. Struct. Geol. 21: 1321–1333. [CrossRef] [Google Scholar]
  • Alexandre P. 2007. U-Pb zircon SIMS ages from the French Massif Central and implication for the pre-Variscan tectonic evolution in Western Europe. Comptes Rendus Geosci. 339: 613–621. [Google Scholar]
  • Alexandrov P, Cheilletz A, Deloule É, Cuney M. 2000. 319 ± 7 Ma crystallization age for the Blond granite (northwest Limousin, French Massif Central) obtained by U/Pb ion-probe dating of zircons. Comptes Rendus Académie Sci. – Ser. IIA-Earth Planet. Sci. 330: 617–622. [Google Scholar]
  • Alexandrov P, Floc’h J-P, Cuney M, Cheilletz A., 2001. Datation U-Pb à la microsonde ionique des zircons de l’unité supérieure de Gneiss dans le Sud Limousin, Massif Central. Comptes Rendus Académie Sci. – Ser. IIA-Earth Planet. Sci. 332: 625–632. [Google Scholar]
  • Altherr R, Kalt A. 1996. Metamorphic evolution of ultrahigh-pressure garnet peridotites from the Variscan Vosges Mts. (France). Chem. Geol. 134: 27–47. [Google Scholar]
  • Annen C, Sparks RSJ. 2002. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet. Sci. Lett. 203: 937–955. [CrossRef] [Google Scholar]
  • Arnaud F, Burg J-P. 1993. Microstructures des mylonites schisteuses : cartographie des chevauchements varisques dans les Cévennes et détermination de leur cinématique. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 317: 1441–1447. [Google Scholar]
  • Arnaud F, Boullier AM, Burg J-P. 2004. Shear structures and microstructures in micaschists: the Variscan Cévennes duplex (French Massif Central). J. Struct. Geol. 26: 855–868. [CrossRef] [Google Scholar]
  • Arnold J, Jacoby WR, Schmeling H, Schott B. 2001. Continental collision and the dynamic and thermal evolution of the Variscan orogenic crustal root – Numerical models. J. Geodyn. 31: 273–291. https://doi.org/10.1016/S0264-3707(00)00023-5. [CrossRef] [Google Scholar]
  • Arthaud F, Matte P. 1975. Les décrochements tardi-hercyniens du sud-ouest de l’Europe. Géométrie et essai de reconstitution des conditions de la déformation. Tectonophysics 25: 139–171. [CrossRef] [Google Scholar]
  • Arthaud F, Mattauer M, Proust F. 1966. La structure et la microtectonique des nappes hercyniennes de la Montagne Noire. In: Colloque « Étages Tectoniques », À La Baconnière, NeuchâTel, 247 p. [Google Scholar]
  • Artyushkov EV. 1973. Stresses in the lithosphere caused by crustal thickness inhomogeneities. J. Geophys. Res. 78: 7675–7708. https://doi.org/10.1029/JB078i032p07675. [CrossRef] [Google Scholar]
  • Audren C, Feybesse JL, Tegyey M, Triboulet C. 1987. Relations entre déformations et cristallisations et chemins « PTtd » des micaschistes polyphasés d’Echassières. Modèle d’évolution géodynamique. Géol Fr. 2: 43–45. [Google Scholar]
  • Autran A, Cogné J. 1980. La zone interne de l’orogène varisque dans l’Ouest de la France et sa place dans le développement de la chaîne hercynienne. Mém. BRGM 191–202. [Google Scholar]
  • Autran A, Guillot PL. 1978. L’évolution métamorphique du Limousin (Massif Central français) au Paléozoïque. Relation entre les cycles Calédonien et Varisque. In: La Chaîne Varisque d’Europe Moyenne et Occidentale, pp. 211–226. [Google Scholar]
  • Averbuch O, Piromallo C. 2012. Is there a remnant Variscan subducted slab in the mantle beneath the Paris basin? Implications for the late Variscan lithospheric delamination process and the Paris basin formation. Tectonophysics 558: 70–83. [CrossRef] [Google Scholar]
  • Ballèvre M, Balé P. 1992. Forage scientifique de Sancerre-Couy: tectonique et métamorphisme. Géologie Fr. 135–138. [Google Scholar]
  • Ballèvre M, Kienast JR, Paquette J-L. 1987. Le métamorphisme éclogitique dans la nappe hercynienne de Champtoceaux (Massif Armoricain). Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 305: 127–131. [Google Scholar]
  • Ballèvre M, Capdevila R, Guerrot C, Peucat J-J. 2002. Discovery of an alkaline orthogneiss in the eclogite-bearing Cellier Unit (Champtoceaux Complex, Armorican Massif): a new witness of the Ordovician rifting. Comptes Rendus Geosci. 334: 303–311. [CrossRef] [Google Scholar]
  • Ballèvre M, Bosse V, Ducassou C, Pitra P. 2009. Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. Comptes Rendus Geosci. 341: 174–201. [CrossRef] [Google Scholar]
  • Ballèvre M, Martínez Catalán JR, López-Carmona A, Pitra P, Abati J, Fernández RD, et al. 2014. Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: a joint French–Spanish project. Geol. Soc. Lond. Spec. Publ. 405: 77–113. https://doi.org/10.1144/SP405.13. [CrossRef] [Google Scholar]
  • Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46: 605–626. [CrossRef] [Google Scholar]
  • Barbarin B, Belin JM. 1982. Mise en évidence du cisaillement ductile hercynien « St Gervais-L’Hermitage » (Massif central français). CR Acad Sci Paris II 294: 1377–1380. [Google Scholar]
  • Barbey P, Marignac C, Montel JM, Macaudiere J, Gasquet D, Jabbori J. 1999. Cordierite growth textures and the conditions of genesis and emplacement of crustal granitic magmas: the Velay granite complex (Massif Central, France). J. Petrol. 40: 1425–1441. [CrossRef] [Google Scholar]
  • Barbey P, Cheilletz A, Laumonier B. 2001. The Canigou orthogneisses (Eastern Pyrenees, France, Spain): an Early Ordovician rapakivi granite laccolith and its contact aureole. Comptes Rendus Académie Sci. – Ser. II A-Earth Planet. Sci. 332: 129–136. [Google Scholar]
  • Barbey P, Villaros A, Marignac C, Montel J-M. 2015. Multiphase melting, magma emplacement and PT-time path in late-collisional context: the Velay example (Massif Central, France). Bull. Soc. Geol. Fr. 186: 93–116. [CrossRef] [Google Scholar]
  • Barboza SA, Bergantz GW, Brown M. 1999. Regional granulite facies metamorphism in the Ivrea zone: Is the Mafic Complex the smoking gun or a red herring? Geology 27: 447–450. [CrossRef] [Google Scholar]
  • Bard JP, Burg JP, Matte P, Ribeiro A. 1980. La chaine hercynienne d’Europe occidentale en termes de tectonique des plaques. Géologie Eur. 108: 233–46. [Google Scholar]
  • Batias P, Duthou JL. 1979. Age Viséen supérieur du granite porphyroïde de Vienne-Tournon (Massif Central français). In: Proc. 7e La Réun. Annu. Sci. Terre Lyon. [Google Scholar]
  • Bé Mézémé E. 2005. Contribution de la géochronologie U-Th-Pb sur monazite à la compréhension de la fusion crustale dans la chaîne Varisque française et implication géodynamique. Orléans. [Google Scholar]
  • Bé Mézémé E, Cocherie A, Faure M, Legendre O, Rossi P. 2006. Electron microprobe monazite geochronology of magmatic events: examples from Variscan migmatites and granitoids, Massif Central, France. Lithos 87: 276–288. [CrossRef] [Google Scholar]
  • Bea F, Montero P. 1999. Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim. Cosmochim. Acta 63: 1133–1153. [CrossRef] [Google Scholar]
  • Bébien J. 1971. Eléments nouveaux sur le volcanisme dévono-dinantien de l’extrémité sud-ouest du faisceau synclinal du Morvan. Cr Seances Acad Sci Paris 273: 466–8. [Google Scholar]
  • Becq-Giraudon J-F. 1993. Problèmes de la biostratigraphie dans le Paléozoïque supérieur continental (Stéphanien-Autunien) du Massif Central. Geodin. Acta 6: 219–224. [CrossRef] [Google Scholar]
  • Becq-Giraudon J-F, Montenat C, Van Den Driessche J. 1996. Hercynian high-altitude phenomena in the French Massif Central: tectonic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 122: 227–241. [CrossRef] [Google Scholar]
  • Bellot J-P. 2001. La structure de la croûte varisque du Sud-Limousin (Massif central français) et ses relations avec les minéralisations aurifères tardi-orogéniques: Apport des données géologiques, gitologiques, géophysiques et de la modélisation 3D. Université de Montpellier II. [Google Scholar]
  • Bellot J-P. 2007. Extensional deformation assisted by mineralised fluids within the brittle-ductile transition: Insights from the southwestern Massif Central, France. J. Struct. Geol. 29: 225–240. [CrossRef] [Google Scholar]
  • Bellot J-P, Roig J-Y. 2007. Episodic exhumation of HP rocks inferred from structural data and PT paths from the southwestern Massif Central (Variscan belt, France). J. Struct. Geol. 29: 1538–1557. [CrossRef] [Google Scholar]
  • Berger J, Femenias O, Mercier JCC, Demaiffe D. 2006. A Variscan slow-spreading ridge (MOR-LHOT) in Limousin (French Massif Central): magmatic evolution and tectonic setting inferred from mineral chemistry. Mineral. Mag. 70, 175–185. [CrossRef] [Google Scholar]
  • Berger J, Féménias O, Ohnenstetter D, Bruguier O, Plissart G, Mercier J-CC, et al. 2010a. New occurrence of UHP eclogites in Limousin (French Massif Central): age, tectonic setting and fluid-rock interactions. Lithos 118: 365–382. [CrossRef] [Google Scholar]
  • Berger J, Femenias O, Ohnenstetter D, Plissart G, Mercier J-C. 2010b. Origin and tectonic significance of corundum-kyanite-sapphirine amphibolites from the Variscan French Massif Central. J. Metamorph. Geol. 28: 341–360. [CrossRef] [Google Scholar]
  • Bernard-Griffiths J. 1975. Essai sur la signification des âges au strontium dans une série métamorphique: le Bas Limousin, Massif-Central français. Université de Clermont, Unité d’enseignement et de recherche de sciences. [Google Scholar]
  • Bernard-Griffiths J, Cornichet J. 1985. Origin of eclogites from South Brittany, France: a Sm/Nd isotopic and REE study. Chem. Geol. Isot. Geosci. Sect. 52: 185–201. [CrossRef] [Google Scholar]
  • Bernard-Griffiths J, Cantagrel J-M, Duthou J-L. 1977. Radiometric evidence for an Acadian tectonometamorphic event in western Massif Central Francais. Contrib. Mineral. Petrol. 61: 199–212. [CrossRef] [Google Scholar]
  • Bernard-Griffiths J, Gebauer D, Grunenfelder M, Piboule M. 1985. The tonalite belt of Limousin (French Central Massif); U-Pb zircon ages and geotectonic implications. Bull. Société Géologique Fr. 1: 523–529. [CrossRef] [Google Scholar]
  • Bertaux J, Becq-Giraudon J-F, Jacquemin H. 1993. Les bassins anthracifères de la région de Roanne (Loire, Massif central) marqueurs d’une tectonique active durant le Viséen. Géologie Fr. 4: 3–10. [Google Scholar]
  • Berthier F, Duthou JL, Roques M. 1979. Datation géochronologique Rb/Sr sur roches totales du granite de Guéret (Massif Central). Age fini-Dévonien de mise en place de l’un de ses facies types. Bull BRGM 1: 59–72. [Google Scholar]
  • Bertrand M. 1887. La chaine des Alpes et la formation du continent européen. Bull. Soc. Geol. Fr. 3: 440–442. [Google Scholar]
  • Bertrand JM, Leterrier J, Cuney M, Brouand M, Stussi JM, Delaperrière E, et al. 2001. Géochronologie U-Pb sur zircons de granitoïdes du Confolentais, du massif de Charroux-Civray (seuil du Poitou) et de Vendée. Géologie Fr. 1: 167–189. [Google Scholar]
  • Bird P. 1991. Lateral extrusion of lower crust from under high topography in the isostatic limit. J. Geophys. Res. 96: 10275. https://doi.org/10.1029/91JB00370. [CrossRef] [Google Scholar]
  • Bitri A, Truffert C, Bellot J-P, Bouchot V, Ledru P, Milési J-P, et al. 1999. Imagery of crustal-scale As-Au-Sb hydrothermal palaeofields in the Variscan belt: vertical seismic reflection (GeoFrance 3D: French Massif Central). Comptes Rendus Acad. Sci. Ser. II – A Earth Planet. Sci. 329: 771–777. [Google Scholar]
  • Bitri A, Brun J-P, Gapais D, Cagnard F, Gumiaux C, Chantraine J, et al. 2010. Deep reflection seismic imaging of the internal zone of the South Armorican Hercynian belt (western France)(ARMOR 2/Géofrance 3D Program). Comptes Rendus Geosci. 342: 448–452. [CrossRef] [Google Scholar]
  • Bodinier J-L, Burg J-P. 1981. Evolution métamorphique et tectonique des séries cristallophylliennes du Rouergue occidental : mise en évidence d’un chevauchement dans la région de Najac (Aveyron). Bull BRGM I: 315–339. [Google Scholar]
  • Bodinier J-L, Giraud A, Dupuy C, Leyreloup A, Dostal J. 1986. Caracterisation geochimique des metabasites associees a la suture meridionale hercynienne ; Massif Central francais et Chamrousse (Alpes). Bull. Société Géologique Fr. 2: 115–123. [CrossRef] [Google Scholar]
  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK. 2013. Zircon saturation re-revisited. Chem. Geol. 351: 324–334. https://doi.org/10.1016/j.chemgeo.2013.05.028. [CrossRef] [Google Scholar]
  • Bonijoly D, Castaing CH. 1984. Fracturation et genèse des bassins stéphaniens du Massif central français en régime compressif. Ann Soc Geol Nord 103: 187–199. [Google Scholar]
  • Bosse V, Feraud G, Ruffet G, Ballèvre M, Peucat J-J, De Jong K. 2000. Late Devonian subduction and early‐orogenic exhumation of eclogite‐facies rocks from the Champtoceaux Complex (Variscan belt, France). Geol. J. 35: 297–325. [CrossRef] [Google Scholar]
  • Bosse V, Féraud G, Ballevre M, Peucat J-J, Corsini M. 2005. Rb-Sr and 40Ar/39Ar ages in blueschists from the Ile de Groix (Armorican Massif, France): implications for closure mechanisms in isotopic systems. Chem. Geol. 220: 21–45. [CrossRef] [Google Scholar]
  • Bouchardon J-L, Santallier D, Briand B, Ménot R-P, Piboule M. 1989. Eclogites in the French Palaeozoic Orogen: geodynamic significance. Tectonophysics 169: 317–332. [CrossRef] [Google Scholar]
  • Bouilhol P, Leyreloup AF, Delor C, Vauchez A, Monié P. 2006. Relationships between lower and upper crust tectonic during doming: the mylonitic southern edge of the Velay metamorphic core complex (Cévennes-French Massif Central). Geodin. Acta 19: 137–153. [CrossRef] [Google Scholar]
  • Boutin R, Montigny R. 1993. Datation 40Ar-39Ar des amphibolites du complexes leptynoamphibolique du Plateau d’Aigurande: collision varisque à 390 Ma dans le Nord-Ouest du Massif Central français. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 316: 1391–1398. [Google Scholar]
  • Briand B. 1978. Métamorphisme inverse et chevauchement de type himalayen dans la série de la vallée du Lot. CR Acad Sci Paris 286: 729–731. [Google Scholar]
  • Briand B, Gay M. 1978. La série inverse de Saint-Geniez-d’Olt : évolution métamorphique et structurale. Bull. BRGM 3: 167–186. [Google Scholar]
  • Briand B, Piboule M. 1979. Les métabasites de la série de Marvejols (Massif central) : témoins d’un magmatisme tholéïtique d’arrière-arc cambro-ordovicien ? Bull BRGM 2(I): 131–171. [Google Scholar]
  • Briand B, Piboule M, Bouchardon JL. 1988. Diversite geochimique des metabasites des groupes leptyno-amphiboliques du Rouergue et de Marvejols (Massif Central) ; origine et implications. Bull. Société Géologique Fr. 4: 489–498. [CrossRef] [Google Scholar]
  • Briand B, Bouchardon J-L, Ouali H, Piboule M, Capiez P. 1995. Geochemistry of bimodal amphibolitic – Felsic gneiss complexes from eastern Massif Central, France. Geol. Mag. 132: 321–337. [CrossRef] [Google Scholar]
  • Briand B, Duthou J-L, Guerrot C, Chenevoy M. 2002. Les « granites à tablettes d’orthose » du Vivarais, témoins d’un magmatisme post-épaississement d’âge Dinantien inférieur ; identification d’une unité géologique Nord-Ouest-Vivarais. Comptes Rendus Geosci. 334: 741–747. [CrossRef] [Google Scholar]
  • Brichau S, Respaut J-P, Monié P. 2008. New age constraints on emplacement of the Cévenol granitoids, South French Massif Central. Int. J. Earth Sci. 97: 725–738. [CrossRef] [Google Scholar]
  • Brown M. 2001. Orogeny, migmatites and leucogranites: a review. J. Earth Syst. Sci. 110: 313–336. [CrossRef] [Google Scholar]
  • Brown M, Rushmer T. 1997. The role of deformation in the movement of granitic melt: views from the laboratory and the field. Deform. – Enhanc. Fluid Transp. Earth’s Crust Mantle 8: 111–144. [Google Scholar]
  • Brown M, Solar GS. 1998. Granite ascent and emplacement during contractional deformation in convergent orogens. J. Struct. Geol. 20: 1365–1393. [CrossRef] [Google Scholar]
  • Brueckne HK, Medaris LG. 2000. A general model for the intrusion and evolution of “mantle” garnet peridotites in high-pressure and ultra-high-pressure metamorphic terranes. J. Metamorph. Geol. 18: 123–133. [CrossRef] [Google Scholar]
  • Bruguier O, Becq-Giraudon JF, Bosch D, Lancelot JR. 1998. Late Visean hidden basins in the internal zones of the Variscan belt: U-Pb zircon evidence from the French Massif Central. Geology 26: 627–630. [CrossRef] [Google Scholar]
  • Bruguier O, Becq-Giraudon JF, Champenois M, Deloule E, Ludden J, Mangin D. 2003. Application of in situ zircon geochronology and accessory phase chemistry to constraining basin development during post-collisional extension: a case study from the French Massif Central. Chem. Geol. 201: 319–336. [CrossRef] [Google Scholar]
  • Buck WR. 1991. Modes of continental lithospheric extension. J. Geophys. Res. Solid Earth 96: 20161–20178. https://doi.org/10.1029/91JB01485. [CrossRef] [Google Scholar]
  • Burg J-P, Leyreloup A. 1989. Métamorphisme granulitique de roches granitiques en Rouergue (Massif Central). Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 309: 719–725. [Google Scholar]
  • Burg JP, Matte PJ. 1978. A cross section through the French Massif Central and the scope of its Variscan geodynamic evolution. Z. Dtsch. Geol. Ges. 429–460. [Google Scholar]
  • Burg J-P, Vanderhaeghe O. 1993. Structures and way-up criteria in migmatites, with application to the Velay dome (French Massif Central). J. Struct. Geol. 15: 1293–1301. [CrossRef] [Google Scholar]
  • Burg JP, Matte P, Leyreloup A, Marchand J. 1984. Inverted metamorphic zonation and large-scale thrusting in the Variscan Belt: an example in the French Massif Central. Geol. Soc. Lond. Spec. Publ. 14: 47–61. [CrossRef] [Google Scholar]
  • Burg J-P, Delor C, Leyreloup A. 1986. Le massif du Lévézou et les séries adjacentes du Rouergue oriental. Nouvelles données pétrographiques et structurales. Géologie Fr. 3: 229–272. [Google Scholar]
  • Burg J-P, Bale P, Brun J-P, Girardeau J. 1987. Stretching lineation and transport direction in the Ibero-Armorican arc during the siluro-devonian collision. Geodin. Acta 1: 71–87. https://doi.org/10.1080/09853111.1987.11105126. [CrossRef] [Google Scholar]
  • Burg J-P, Castaing C, Chantraine J, Hottin A-M, Kienast J-R, Mégnien C, et al. 1989a. Les formations métamorphiques traversées par le sondage de Sancere-Couy (programme GPF). Nouveau jalon de la chaîne varisqe. Comptes Rendus Acad. Sci. 2: 1819–1824. [Google Scholar]
  • Burg JP, Leyreloup AF, Romney F, Delor CP. 1989b. Inverted metamorphic zonation and Variscan thrust tectonics in the Rouergue area (Massif Central, France): PTt record from mineral to regional scale. Geol. Soc. Lond. Spec. Publ. 43: 423–439. [CrossRef] [Google Scholar]
  • Burg J-P, Brun J-P, Van Den Driessche J. 1990. Le sillon houiller du Massif Central français: faille de transfert pendant l’amincissement crustal de la chaîne. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 311: 147–152. [Google Scholar]
  • Burg J-P, Van den Driessche J, Brun J-P. 1993. Syn-to post-thickening extension in the Variscan Belt of Western Europe: modes and structural consequences. Géologie Fr. 3: 33–51. [Google Scholar]
  • Bussien D, Bussy F, Masson H, Magna T, Rodionov N. 2008. Variscan lamprophyres in the Lower Penninic domain (Central Alps): age and tectonic significance. Bull. Société Géologique Fr. 179: 369–381. [CrossRef] [Google Scholar]
  • Cabanis B, Guillot PL, Santallier D, Jaffrezic H, Meyer G, Treuil M. 1983. Apport des elements-traces a l’etude geochimique des metabasites du Bas Limousin. Bull. Société Géologique Fr. 7: 563–574. [CrossRef] [Google Scholar]
  • Caen-Vachette M. 1979. Age Cambrien des rhyolites transformées en leptynites dans la série métamorphique du Pilat (Massif Central français). C R Hebd Séanc Acad Sci Paris 289: 997–1000. [Google Scholar]
  • Caen-Vachette M, Couturié JP, Didier J. 1981. Age westphalien du granite de Rocles (Cévennes, massif Central Français). Comptes Rendus L’Académie Sci. 293: 957–960. [Google Scholar]
  • Caen-Vachette M, Gay M, Peterlongo J-M, Pitiot P, Vitel G. 1984. Age radiométrique du granite syntectonique du gouffre d’Enfer et du métamorphisme hercynien dans la série de basse pression du Pilat (Massif Central Français). Comptes-Rendus Séances Académie Sci. Sér. 2 Mécanique-Phys. Chim. Sci. Univers Sci. Terre 299: 1201–1204. [Google Scholar]
  • Cagnard F, Durrieu N, Gapais D, Brun J-P, Ehlers C. 2006. Crustal thickening and lateral flow during compression of hot lithospheres, with particular reference to Precambrian times. Terra Nova 18: 72–78. https://doi.org/10.1111/j.1365-3121.2005.00665.x. [CrossRef] [Google Scholar]
  • Campbell IH, Stepanov AS, Liang H-Y, Allen CM, Norman MD, Zhang Y-Q, et al. 2014. The origin of shoshonites: new insights from the Tertiary high-potassium intrusions of eastern Tibet. Contrib. Mineral. Petrol. 167. https://doi.org/10.1007/s00410-014-0983-9. [CrossRef] [Google Scholar]
  • Carlier De Veslud CL, Alexandre P, Cuney M, Ruffet G, Cheilletz A, Virlogeux D. 2004. Thermochronologie 40Ar/39Ar et evolution thermique des granitoides meso-varisques du complexe plutonique de Charroux-Civray (Seuil de Poitou)(4 fig.). Bull. Soc. Geol. Fr. 175: 147–156. [CrossRef] [Google Scholar]
  • Caron C. 1994. Les minéralisations Ph-Zn associées au paléozoique inférieur d’Europe méridionale. Traçage isotopique Pb-Pb des gites de l’iglesiente(SW Sardaigne) et des Cévennes et évolution du socle encaissant par la géochronologie U-Pb, 40Ar-39Ar et K-Ar. [Google Scholar]
  • Carrat HG, Zimmermann J-L. 1984. Ages K-Ar des roches volcaniques du Morvan. Comptes-Rendus Séances Académie Sci. Sér. 2 Mécanique-Phys. Chim. Sci. Univers Sci. Terre 299: 801–803. [Google Scholar]
  • Cartannaz C. 2006. Magmatismes et déformations polyphasés : exemple des massifs de Guéret et de millevaches (massif central français) : origine des magmas et contexte de mise en place. Besançon. [Google Scholar]
  • Cartannaz C, Rolin P, Cocherie A, Henry P, Rossy M. 2007a. Feuille Aubusson, 667 p. [Google Scholar]
  • Cartannaz C, Rolin P, Cocherie A, Marquer D, Legendre O, Fanning CM, et al. 2007b. Characterization of wrench tectonics from dating of syn-to post-magmatism in the north-western French Massif Central. Int. J. Earth Sci. 96: 271–287. [Google Scholar]
  • Cartier C, Faure M, Lardeux H. 2001. The Hercynian orogeny in the South Armorican Massif (Saint‐Georges‐sur‐Loire Unit, Ligerian Domain, France): rifting and welding of continental stripes. Terra Nova 13: 143–149. [CrossRef] [Google Scholar]
  • Castiñeiras P, Navidad M, Liesa M, Carreras J, Casas JM. 2008. U-Pb zircon ages (SHRIMP) for Cadomian and Early Ordovician magmatism in the Eastern Pyrenees: new insights into the pre-Variscan evolution of the northern Gondwana margin. Tectonophysics 461: 228–239. [CrossRef] [Google Scholar]
  • Chantraine J, Autran A, Cavelier C, et al. 1996. Carte géologique de la France. [Google Scholar]
  • Chantraine J, Autran A, Cavelier C, Clozier L. 2003. Carte géologique de la France à l’échelle du millionième. Bureau de recherches géologiques et minières. [Google Scholar]
  • Chardon D, Gapais D, Cagnard F. 2009. Flow of ultra-hot orogens: a view from the Precambrian, clues for the Phanerozoic. Tectonophysics 477: 105–118. [CrossRef] [Google Scholar]
  • Charles N, Faure M, Chen Y. 2009. The Montagne Noire migmatitic dome emplacement (French Massif Central): new insights from petrofabric and AMS studies. J. Struct. Geol. 31: 1423–1440. [CrossRef] [Google Scholar]
  • Chauvet A, Volland-Tuduri N, Lerouge C, Bouchot V, Monié P, Charonnat X, et al. 2012. Geochronological and geochemical characterization of magmatic-hydrothermal events within the Southern Variscan external domain (Cévennes area, France). Int. J. Earth Sci. 101: 69–86. https://doi.org/10.1007/s00531-011-0639-1. [CrossRef] [Google Scholar]
  • Chelle-Michou C, Laurent O, Moyen J-F, Block S, Paquette J-L, Couzinié S, et al. 2017. Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: formation of the West European crust in a nutshell. Gondwana Res. 46: 170–190. [Google Scholar]
  • Chemenda AI, Mattauer M, Bokun AN. 1996. Continental subduction and a mechanism for exhumation of high-pressure metamorphic rocks: new modelling and field data from Oman. Earth Planet. Sci. Lett. 143: 173–182. https://doi.org/10.1016/0012-821X(96)00123-9. [CrossRef] [Google Scholar]
  • Chenevoy M, Ravier J. 1971. Caractères généraux des métamorphismes du Massif Central. In: Symposium J. Jung, Clermont-Ferrand, pp. 109–132. [Google Scholar]
  • Choukroune P, Gapais D, Matte P. 1983. Tectonique hercynienne et deformation cisaillante: La faille ductile senestre de la Marche (Massif Central Français). CR Acad Sci 296: 859–862. [Google Scholar]
  • Choulet F, Faure M, Fabbri O, Monié P. 2012. Relationships between magmatism and extension along the Autun-La Serre fault system in the Variscan Belt of the eastern French Massif Central. Int. J. Earth Sci. 101: 393–413. [CrossRef] [Google Scholar]
  • Clark AH, Scott DJ, Sandeman HA, Bromley AV, Farrar E. 1998. Siegenian generation of the Lizard ophiolite: U-Pb zircon age data for plagiogranite, Porthkerris, Cornwall. J. Geol. Soc. 155: 595–598. [CrossRef] [Google Scholar]
  • Cochelin B, Chardon D, Denèle Y, Gumiaux C, Le Bayon B. 2017. Vertical strain partitioning in hot Variscan crust: Syn-convergence escape of the Pyrenees in the Iberian-Armorican syntax. Bull. Société Géologique Fr. 188: 39. [CrossRef] [Google Scholar]
  • Cocherie A. 2007. Datations U-Pb (laser-ICPMS-MC) sur zircons et U-Th-Pb sur monazites de granitoïdes du Massif central (carte de Firminy). Rapport BRGM. [Google Scholar]
  • Cocherie A, Baudin T, Autran A, Guerrot C, Fanning CM, Laumonier B. 2005. U-Pb zircon (ID-TIMS and SHRIMP) evidence for the early ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). Bull. Société Géologique Fr. 176: 269–282. [CrossRef] [Google Scholar]
  • Cocks LRM, Torsvik TH. 2002. Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. J. Geol. Soc. 159: 631–644. [Google Scholar]
  • Cocks LRM, Torsvik TH. 2006. European geography in a global context from the Vendian to the end of the Palaeozoic. Geol. Soc. Lond. Mem. 32: 83–95. https://doi.org/10.1144/GSL.MEM2006.032.01.05. [CrossRef] [Google Scholar]
  • Collins WJ. 2002. Hot orogens, tectonic switching, and creation of continental crust. Geology 30: 535. https://doi.org/10.1130/0091-7613(2002)030<0535:HOTSAC>2.0.CO;2. [CrossRef] [Google Scholar]
  • Cook KL, Royden LH. 2008. The role of crustal strength variations in shaping orogenic plateaus, with application to Tibet: Crustal strength and plateau deformation. J. Geophys. Res. Solid Earth 113. https://doi.org/10.1029/2007JB005457. [Google Scholar]
  • Copard Y, Disnar J-R, Becq-Giraudon J-F, Boussafir M. 2000. Evidence and effects of fluid circulation on organic matter in intramontane coalfields (Massif Central, France). Int. J. Coal Geol. 44: 49–68. [CrossRef] [Google Scholar]
  • Costa S. 1989. Age radiométrique 39Ar–40Ar du métamorphisme des series du Lot et du charriage du groupe leptyno-amphibolique de Marvejols (MCF). Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 309: 561–567. [Google Scholar]
  • Costa S. 1990. De la collision continentale à l’extension tardi-orogénique, 100 millions d’années d’histoire varisque dans le Massif central français‎. Une étude chronologique par la méthode 40Ar–39Ar. Université Montpellier 2 Sciences et Techniques du Languedoc. [Google Scholar]
  • Costa S. 1992. East-west diachronism of the collisional stageInthe french Massif Central Implications for the European Variscan Orogen. Geodin. Acta 5: 51–68. [CrossRef] [Google Scholar]
  • Costa S, Maluski H. 1988. Datations par la méthode 39Ar-40Ar de matériel magmatique et métamorphique paléozoïque provenant du forage de Couy-Sancerre (Cher, France). Programme GPF. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 306: 351–356. [Google Scholar]
  • Costa S, Rey P, 1995. Lower crustal rejuvenation and growth during post-thickening collapse: Insights from a crustal cross section through a Variscan metamorphic core complex. Geology 23: 905–908. [CrossRef] [Google Scholar]
  • Costa S, Maluski H, Lardeaux J-M. 1993. 40Ar/39Ar chronology of Variscan tectono-metamorphic events in an exhumed crustal nappe: the Monts du Lyonnais complex (Massif Central, France). Chem. Geol. 105: 339–359. [CrossRef] [Google Scholar]
  • Couturié JP, Caen-Vachette M. 1980. Age Westphalien des leucogranites recoupant le granite de la Margeride (Massif Central français). CR Acad Sci Paris 291: 43–45. [Google Scholar]
  • Couturié JP, Vachette-Caen M, Vialette Y. 1979. Age Namurien d’un laccolite granitique différencié par gravité : le granite de la Margeride (Massif Central français). CR Acad Sci Paris 289: 449–452. [Google Scholar]
  • Couzinié S. 2017. Evolution of the continental crust and significance of the zircon record, a case study from the French Massif Central. Universiteit van Stellenbosch. [Google Scholar]
  • Couzinié S, Moyen J-F, Villaros A, Paquette J-L, Scarrow JH, Marignac C. 2014. Temporal relationships between Mg-K mafic magmatism and catastrophic melting of the Variscan crust in the southern part of Velay Complex (Massif Central, France). J. Geosci. 69–86. https://doi.org/10.3190/jgeosci.155. [Google Scholar]
  • Couzinié S, Laurent O, Moyen J-F, Zeh A, Bouilhol P, Villaros A. 2016. Post-collisional magmatism: Crustal growth not identified by zircon Hf-O isotopes. Earth Planet. Sci. Lett. 456: 182–195. https://doi.org/10.1016/j.epsl.2016.09.033. [Google Scholar]
  • Couzinié S, Laurent O, Poujol M, Mintrone M, Chelle-Michou C, Moyen J-F, et al. 2017. Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): Implications for the crustal evolution of the north Gondwana margin. Lithos 286: 16–34. [CrossRef] [Google Scholar]
  • Couzinié S, Laurent O, Chelle-Michou C, Bouilhol P, Paquette J-L, Gannoun A-M, et al. 2019. Detrital zircon U-Pb-Hf systematics of Ediacaran metasediments from the French Massif Central: Consequences for the crustal evolution of the north Gondwana margin. Precambrian Res. 324: 269–284. https://doi.org/10.1016/j.precamres.2019.01.016. [Google Scholar]
  • Cruden AR, Koyi H, Schmeling H. 1995. Diapiric basal entrainment of mafic into felsic magma. Earth Planet. Sci. Lett. 131: 321–340. https://doi.org/10.1016/0012-821X(95)00033-9. [CrossRef] [Google Scholar]
  • Cuney M, Friedrich M, Blumenfeld P, Bourguignon A, Boiron MC, Vigneresse JL, et al. 1990. Metallogenesis in the French part of the Variscan orogen. Part I: U preconcentrations in pre-Variscan and Variscan formations – a comparison with Sn, W and Au. Tectonophysics 177: 39–57. [CrossRef] [Google Scholar]
  • Cuney M, Stussi J-M, Brouand M, Dautel D, Michard A, Gros Y, et al. 1993. Géochimie et géochronologie U/Pb des diorites quartziques du Tallud et de Moncoutant: nouveaux arguments pour une extension de la Ligne Tonalitique Limousine en Vendée. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 316: 1383–1390. [Google Scholar]
  • Cuney M, Alexandrov P, de Veslud CLC, Cheilletz A, Raimbault L, Ruffet G, et al. 2002. The timing of W-Sn-rare metals mineral deposit formation in the Western Variscan chain in their orogenic setting: the case of the Limousin area (Massif Central, France). Geol. Soc. Lond. Spec. Publ. 204: 213–228. [CrossRef] [Google Scholar]
  • de Saint Blanquat M. 1993. La faille normale ductile du massif du Saint Barthélémy. Evolution hercynienne des massifs nord-pyrénéens catazonaux considérée du point de vue de leur histoire thermique. Geodin. Acta 6: 59–77. https://doi.org/10.1080/09853111.1993.11105239. [CrossRef] [Google Scholar]
  • Delfour J, Guerrot C. 1997. Âge Viséen inférieur du microgranite de Picampoix (Nièvre). Contribution à l’étude du magmatisme carbonifère du Morvan. Géologie Fr. 2: 3–12. [Google Scholar]
  • Delfour J, Beurrier M, Tegyey M, Lemiere B, Kerrien Y, Mouterde R, et al. 1989. Carte géologique de la France (1/50 000), feuille de Tarare (697). Orléans : BRGM. [Google Scholar]
  • Delor C, Leyreloup A, Bodinier J-L, Burg J-P. 1986. Découverte d’éclogites à glaucophane dans la klippe de Najac (Massif Central, France): nouveaux témoins océaniques d’un stade haute pression dans la chaîne de collision varisque. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 302: 739–744. [Google Scholar]
  • Delor C, Burg J-P, Guiraud M, Leyreloup A. 1987. Les métapélites à phengite-chloritoïde-grenat-staurotide-disthène de la klippe de Najac-Carmaux : nouveaux marqueurs d’un métamorphisme de haute pression varisque en Rouergue occidental. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 305: 589–595. [Google Scholar]
  • Deloule E, Alexandrov P, Cheilletz A, Laumonier B, Barbey P. 2002. In-situ U-Pb zircon ages for Early Ordovician magmatism in the eastern Pyrenees, France: the Canigou orthogneisses. Int. J. Earth Sci. 91: 398–405. [Google Scholar]
  • Demange M. 1980. Arguments for allochemistry of the cordierite migmatites in the agout massif (Montagne-Noire, France). Comptes Rendus Hebd. Séances Académie Sci. Sér. D 291: 367–370. [Google Scholar]
  • Demange M, Jamet P. 1985. Le stade majeur du métamorphisme est de type moyenne pression sur le flanc sud de la Montagne Noire dans la région de Labastide-Rouairoux (Tarn, France). Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 301: 603–606. [Google Scholar]
  • Demay A. 1948. Tectonique antéstéphanienne du Massif central. Impr. nationale. [Google Scholar]
  • Denèle Y, Laumonier B, Paquette J-L, Olivier P, Gleizes G, Barbey P. 2014. Timing of granite emplacement, crustal flow and gneiss dome formation in the Variscan segment of the Pyrenees. Geol. Soc. Lond. Spec. Publ. 405: 265–287. [Google Scholar]
  • Dewey JF, Burke KC. 1973. Tibetan, Variscan, and Precambrian basement reactivation: products of continental collision. J. Geol. 81: 683–692. [CrossRef] [Google Scholar]
  • Didier A, Bosse V, Boulvais P, Bouloton J, Paquette J-L, Montel J-M, et al. 2013. Disturbance versus preservation of U–Th–Pb ages in monazite during fluid–rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France). Contrib. Mineral. Petrol. 165: 1051–1072. [CrossRef] [Google Scholar]
  • D’Lemos RS, Strachan RA, Topley CG. 1990. The Cadomian orogeny in the North Armorican Massif: a brief review. Geol. Soc. Lond. Spec. Publ. 51: 3–12. https://doi.org/10.1144/GSL.SP1990.051.01.01. [CrossRef] [Google Scholar]
  • Do Couto D, Faure M, Augier R, Cocherie A, Rossi P, Li X-H, et al. 2016. Monazite U–Th–Pb EPMA and zircon U–Pb SIMS chronological constraints on the tectonic, metamorphic, and thermal events in the inner part of the Variscan orogen, example from the Sioule series, French Massif Central. Int. J. Earth Sci. 105: 557–579. [Google Scholar]
  • Domeier M. 2016. A plate tectonic scenario for the Iapetus and Rheic oceans. Gondwana Res. 36: 275–295. https://doi.org/10.1016/j.gr.2015.08.003. [CrossRef] [Google Scholar]
  • Domeier M, Torsvik TH. 2014. Plate tectonics in the late Paleozoic. Geosci. Front. 5: 303–350. https://doi.org/10.1016/j.gsf.2014.01.002. [CrossRef] [Google Scholar]
  • Doublier MP, Potel S, Wemmer K. 2006. Age and grade of metamorphism in the eastern Monts de Lacaune-implications for the collisional accretion in Variscan externides (French Massif Central). Geodin. Acta 19: 391–407. [CrossRef] [Google Scholar]
  • Doublier MP, Potel S, Wemmer K. 2015. The tectono-metamorphic evolution of the very low-grade hangingwall constrains two-stage gneiss dome formation in the Montagne Noire (Southern France). J. Metamorph. Geol. 33: 71–89. https://doi.org/10.1111/jmg.12111. [CrossRef] [Google Scholar]
  • Downes H, Duthou J-L. 1988. Isotopic and trace-element arguments for the lower-crustal origin of Hercynian granitoids and pre-Hercynian orthogneisses, Massif Central (France). Chem. Geol. 68: 291–308. [Google Scholar]
  • Downes H, Leyreloup A. 1986. Granulitic xenoliths from the French Massif Central – Petrology, Sr and Nd isotope systematics and model age estimates. Geol. Soc. Lond. Spec. Publ. 24: 319–330. [CrossRef] [Google Scholar]
  • Downes H, Dupuy C, Leyreloup AF. 1990. Crustal evolution of the Hercynian belt of Western Europe: Evidence from lower-crustal granulitic xenoliths (French Massif Central). Chem. Geol. 83: 209–231. [CrossRef] [Google Scholar]
  • Downes H, Kempton PD, Briot D, Harmon RS, Leyreloup AF. 1991. Pb and O isotope systematics in granulite facies xenoliths, French Massif Central: implications for crustal processes. Earth Planet. Sci. Lett. 102: 342–357. [CrossRef] [Google Scholar]
  • Downes H, Shaw A, Williamson BJ, Thirlwall MF. 1997. Sr, Nd and Pb isotopic evidence for the lower crustal origin of Hercynian granodiorites and monzogranites, Massif Central, France. Chem. Geol. 140: 289–289. [CrossRef] [Google Scholar]
  • Dubuisson G, Mercier J-C, Girardeau J, Frison J-Y. 1989. Evidence for a lost ocean in Variscan terranes of the western Massif Central, France. Nature 337: 729. [CrossRef] [Google Scholar]
  • Ducrot J, Lancelot JR, Reille JL. 1979. Datation en Montagne Noire d’un temoin d’une phase majeure d’amincissement crustal caracteristique de l’Europe prevarisque. Bull. Société Géologique Fr. 7: 501–505. [CrossRef] [Google Scholar]
  • Ducrot J, Lancelot JR, Marchand J. 1983. Datation U-Pb sur zircons de l’eclogite de la Borie (Haut-Allier, France) et consequences sur l’evolution ante-hercynienne de l’Europe occidentale. Earth Planet. Sci. Lett. 62: 385–394. [CrossRef] [Google Scholar]
  • Dufour E. 1985. Granulite facies metamorphism and retrogressive evolution of the Monts du Lyonnais metabasites (Massif Central, France). Lithos 18: 97–113. [CrossRef] [Google Scholar]
  • Duguet M. 2003. Evolution tectono-métamorphique des unités de type Thiviers-Payzac dans la chaîne hercynienne française (Massif Central et Vendée). Université d’Orléans. [Google Scholar]
  • Dupis A, Robin G, Durandeau A, Lameyre J, Vauchelle L. 1990. Etude geophysique de l’extremite occidentale du granite de Gueret. Bull. Société Géologique Fr. 6: 683–691. [CrossRef] [Google Scholar]
  • Dupraz J, Didier J. 1988. Le complexe anatectique du Velay (Massif central français): structure d’ensemble et évolution géologique. Géologie Fr. 4: 73–88. [Google Scholar]
  • Dupuy C, Leyreloup A, Vernieres J. 1979. The lower continental crust of the Massif Central (Bournac, France) – With special references to REE, U and Th composition, evolution, heat-flow production. Phys. Chem. Earth 11: 401–415. [CrossRef] [Google Scholar]
  • Dusséaux C. 2019. Topographic reconstructions of the Variscan belt of Western Europe through the study of fossil hydrothermal systems. University of Pymouth. [Google Scholar]
  • Dusséaux C, Gébelin A, Boulvais P, Gardien V, Grimes S, Mulch A. 2019. Meteoric fluid‐rock interaction in Variscan shear zones. Terra Nova. https://doi.org/10.1111/ter.12392. [Google Scholar]
  • Duthou JL. 1978. Les granitoides du Haut Limousin (Massif central francais). Chronologie Rb-Sr de leur mise en place. Le thermometamorphisme carbonifere. Bull. Société Géologique Fr. 7: 229–235. [Google Scholar]
  • Duthou JL, Piboule M, Gay M, Dufour E. 1981. Rb-Sr Dating of orthogranulites from the Monts du Lyonnais (Massif Central, France). Comptes Rendus Académie Sci. Sér. II 292: 749–752. [Google Scholar]
  • Duthou JL, Cantagrel J, Didier J, Vialette Y. 1984. Palaeozoic granitoids from the French Massif Central: age and origin studied by 87Rb/87Sr system. Phys. Earth Planet. Inter. 35: 131–144. [Google Scholar]
  • Duthou JL, Chenevoy M, Gay M. 1994. Rb-Sr middle Devonian age of cordierite bearing migmatites from Lyonnais area (French Massif Central). Comptes Rendus Acad. Sci. Ser. 2 Sci. Terre Planetes 319: 791–796. [Google Scholar]
  • Duthou J-L, Chenevoy M, Gay M. 1998. Présence d’un magmatisme d’âge Viséen moyen dans le versant sud du massif du Pilat, Massif central oriental ; conséquences. Comptes Rendus Académie Sci. – Ser. IIA-Earth Planet. Sci. 327: 749–754. [Google Scholar]
  • Echtler H. 1990. Geometry and kinematics of recumbent folding and low-angle detachment in the Pardailhan nappe (Montagne Noire, Southern French Massif Central). Tectonophysics 177: 109–123. [CrossRef] [Google Scholar]
  • Echtler H, Malavieille J. 1990. Extensional tectonics, basement uplift and Stephano-Permian collapse basin in a late Variscan metamorphic core complex (Montagne Noire, Southern Massif Central). Tectonophysics 177: 125–138. [CrossRef] [Google Scholar]
  • Edel JB, Schulmann K, Lexa O, Lardeaux JM. 2018. Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth Sci. Rev. 177: 589–612. [CrossRef] [Google Scholar]
  • Ellenberger F. 1967. Replis de micaschistes et tectonique d’infrastructure au sein du massif gneissique du Caroux (zone axiale de la Montagne Noire). Impr. Louis-Jean. [Google Scholar]
  • Engel W. 1984. Migration of folding and flysch sedimentation on the southern flank of the variscan belt (Montagne Noire, Mouthoumet massif, Pyrenees). Z. Dtsch. Geol. Ges. 279–292. [Google Scholar]
  • Engel W, Feist R, Franke W. 1978. Synorogenic gravitational transport in the Carboniferous of the Montagne Noire (S-France). Z. Dtsch. Geol. Ges. 461–472. [Google Scholar]
  • Engel W, Feist R, Franke W. 1981. Le Carbonifère anté-stéphanien de la Montagne Noire : rapports entre mise en place des nappes et sédimentation. Bureau de recherches géologiques et minières. [Google Scholar]
  • England PC, Thompson AB. 1984. Pressure–temperature–time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. J. Petrol. 25: 894–928. [CrossRef] [Google Scholar]
  • Escher A, Beaumont C. 1997. Formation, burial and exhumation of basement nappes at crustal scale: a geometric model based on the Western Swiss-Italian Alps. J. Struct. Geol. 19: 955–974. https://doi.org/10.1016/S0191-8141(97)00022-9. [CrossRef] [Google Scholar]
  • Faure M. 1995. Late orogenic carboniferous extensions in the Variscan French Massif Central. Tectonics 14: 132–153. [CrossRef] [Google Scholar]
  • Faure M, Pons J. 1991. Crustal thinning recorded by the shape of the Namurian-Westphalian leucogranite in the Variscan belt of the northwest Massif Central, France. Geology 19: 730. https://doi.org/10.1130/0091-7613(1991)019<0730:CTRBTS>2.3.CO;2. [CrossRef] [Google Scholar]
  • Faure M, Pin C, Mailhé D. 1979. Les roches mylonitiques associées au charriage du groupe leptyno-amphibolique sur les schistes du Lot dans la région de Marvejols (Lozère). CR Acad Sci Paris 288, 167–170. [Google Scholar]
  • Faure M, Prost AE, Lasne E. 1990. Déformation ductile extensive d’âge Namuro-Westphalien dans le plateau d’Aigurande, Massif central français. Bull. Société Géologique Fr. 6: 189–197. [CrossRef] [Google Scholar]
  • Faure M, Grolier J, Pons J. 1993. Extensional ductile tectonics of the Sioule metamorphic series (Variscan French Massif Central). Geol. Rundsch. 82: 461–474. [CrossRef] [Google Scholar]
  • Faure M, Leloix C, Roig J-Y. 1997. L’évolution polycyclique de la chaîne hercynienne. Bull. Société Géologique Fr. 168: 695–705. [Google Scholar]
  • Faure M, Charonnat X, Chauvet A. 1999. Structural map and tectonic evolution of the Cevennes para-autochthonous domain of the Hercynian belt (French Massif Central). Comptes Rendus Acad. Sci. Ser. II – A Earth Planet. Sci. 6: 401–407. [Google Scholar]
  • Faure M, Monié P, Pin C, Maluski H, Leloix C. 2002. Late Viséan thermal event in the northern part of the French Massif Central: new 40 Ar/39 Ar and Rb-Sr isotopic constraints on the Hercynian syn-orogenic extension. Int. J. Earth Sci. 91: 53–75. [CrossRef] [Google Scholar]
  • Faure M, Bé Mézème E, Cocherie A, Rossi P, Chemenda A, Boutelier D. 2008. Devonian geodynamic evolution of the Variscan Belt, insights from the French Massif Central and Massif Armoricain. Tectonics 27. [CrossRef] [Google Scholar]
  • Faure M, Lardeaux J-M, Ledru P. 2009a. A review of the pre-Permian geology of the Variscan French Massif Central. Comptes Rendus Geosci. 341: 202–213. [Google Scholar]
  • Faure M, Mezeme EB, Cocherie A, Melleton J, Rossi P. 2009b. The South Millevaches Middle Carboniferous crustal melting and its place in the French Variscan belt. Bull. Société Géologique Fr. 180: 473–481. [Google Scholar]
  • Faure M, Cocherie A, Mézème EB, Charles N, Rossi P. 2010. Middle Carboniferous crustal melting in the Variscan Belt: New insights from U–Th–Pbtot. monazite and U–Pb zircon ages of the Montagne Noire Axial Zone (southern French Massif Central). Gondwana Res. 18: 653–673. https://doi.org/10.1016/j.gr.2010.02.005. [CrossRef] [Google Scholar]
  • Faure M, Cocherie A, Gaché J, Esnault C, Guerrot C, Rossi P, et al. 2014. Middle Carboniferous intracontinental subduction in the Outer zone of the Variscan belt (Montagne Noire axial zone, French Massif Central): Multimethod geochronological approach of polyphase metamorphism. Geol. Soc. Lond. Spec. Publ. 405: 289–311. [CrossRef] [Google Scholar]
  • Faure M, Li X-H, Lin W. 2017. The northwest-directed “Bretonian phase” in the French Variscan Belt (Massif Central and Massif Armoricain): A consequence of the Early Carboniferous Gondwana-Laurussia collision. Comptes Rendus Géoscience 349: 126–136. [CrossRef] [Google Scholar]
  • Faure M, Li X-H, Lin W. 2017. The northwest-directed “Bretonian phase” in the French Variscan Belt (Massif Central and Massif Armoricain): A consequence of the Early Carboniferous Gondwana-Laurussia collision. Comptes Rendus Géoscience 349: 126–136. [CrossRef] [Google Scholar]
  • Feist R, Galtier J. 1985. Découverte de flores d’âge namurien probable dans le flysch à olistolites de Cabrières (Hérault). Implication sur la durée de la sédimentation synorogénique dans la Montagne Noire (France méridionale). Comptes-Rendus Séances Académie Sci. Sér. 2 Mécanique-Phys. Chim. Sci. Univers Sci. Terre 300: 207–212. [Google Scholar]
  • Feybesse J-L. 1981. Tectonique de la région de Laroquebrou (Cantal, Massif Central français). Rôle de la déformation ductile et évolution du Sillon Houiller. Clermont-Ferrand. [Google Scholar]
  • Feybesse J-L, Lardeaux J-M, Johan V, Tegyey M, Dufour E, Lemiere B, et al. 1988. La série de la Brévenne (Massif central français) : une unité dévonienne charriée sur le complexe métamorphique des Monts du Lyonnais à la fin de la collision varisque. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 307, 991–996. [Google Scholar]
  • Feybesse JL, Couturié JP, Ledru P, Johan, V. 1995. Les granites de la Margeride, de Chambon-le-Château et de Saint-Christophe-d’Allier (Massif Central) : des laccolites synchrones des derniers stades de l’épaississement varisque. Géologie Fr. 1: 27–45. [Google Scholar]
  • Floyd PA, Leveridge BE. 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc. 144: 531–542. [CrossRef] [Google Scholar]
  • Forestier F-H. 1961. Métamorphisme hercynien et antéhercynien dans le bassin du Haut-Allier (Massif central français). Faculté des Sciences de l’Université de Clermont-Ferrand. [Google Scholar]
  • Fortey RA, Cocks LRM. 2003. Palaeontological evidence bearing on global Ordovician-Silurian continental reconstructions. Earth-Sci. Rev. 61: 245–307. [Google Scholar]
  • Foster DA, Schafer C, Fanning CM, Hyndman DW. 2001. Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho-Bitterroot batholith. Tectonophysics 342: 313–350. [CrossRef] [Google Scholar]
  • Fowler MB, Henney PJ, Darbyshire DPF, Greenwood PB. 2001. Petrogenesis of high Ba-Sr granites: the Rogart pluton, Sutherland. J. Geol. Soc. 158: 521–534. https://doi.org/10.1144/jgs.158.3.521. [CrossRef] [Google Scholar]
  • François T. 2009. Contraintes géochimiques et géochronologiques sur l’origine et la mise en place des granites du Mont Lozère (Master 2). Université Montpellier 2 Sciences et Techniques du Languedoc. [Google Scholar]
  • Franke W. 1989. Variscan plate tectonics in Central Europe – Current ideas and open questions. Tectonophysics 169: 221–228. [CrossRef] [Google Scholar]
  • Franke W. 2000. The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol. Soc. Lond. Spec. Publ. 179: 35–61. [Google Scholar]
  • Franke W. 2014. Topography of the Variscan orogen in Europe: failed-not collapsed. Int. J. Earth Sci. 103: 1471–1499. https://doi.org/10.1007/s00531-014-1014-9. [CrossRef] [Google Scholar]
  • Franke W, Engel W. 1986. Synorogenic sedimentation in the Variscan Belt of Europe. Bull. Société Géologique Fr. 2: 25–33. [CrossRef] [Google Scholar]
  • Franke W, Doublier MP, Klama K, Potel S, Wemmer K. 2011. Hot metamorphic core complex in a cold foreland. Int. J. Earth Sci. 100: 753–785. [CrossRef] [Google Scholar]
  • Franke W, Cocks LRM, Torsvik TH. 2017. The Palaeozoic Variscan oceans revisited. Gondwana Res. 48: 257–284. https://doi.org/10.1016/j.gr.2017.03.005. [Google Scholar]
  • Gaertner (Von) HR. 1937. Der bau des Französischen Zentralplateaus. Geol Rundsch 48–68. [CrossRef] [Google Scholar]
  • Gardien V. 1990. Garnet and staurolite as relictual phases within the Low-Pressure facies series of the Pilat Unit (French Massif Central) – A record of polyphase tectonometamorphic reequilibration. Comptes Rendus Académie Sci. Sér. II 310: 233–240. [Google Scholar]
  • Gardien V. 1993. High to medium Pressure relics in the eastern Vivarais series (Eastern part of the French Massif-Central). Comptes Rendus Académie Sci. Sér. II 316: 1247–1254. [Google Scholar]
  • Gardien V, Lardeaux J-M. 1991. Découverte d’éclogites dans la synforme de Maclas: extension de l’unité supérieure des gneiss à l’Est du Massif Central. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 312: 61–68. [Google Scholar]
  • Gardien V, Lardeaux JM, Misseri M. 1988. The Monts du Lyonnais peridotites (MCF) – A record of Paleozoic upper mantle subduction. Comptes Rendus Acad. Sci. 307: 1967–1972. [Google Scholar]
  • Gardien V, Tegyey M, Lardeaux JM, Misseri M, Dufour E. 1990. Crust‐mantle relationships in the French Variscan chain: the example of the Southern Monts du Lyonnais unit (eastern French Massif Central). J. Metamorph. Geol. 8: 477–492. [CrossRef] [Google Scholar]
  • Gardien V, Thompson AB, Grujic D, Ulmer P. 1995. Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. J. Geophys. Res. Solid Earth 100: 15581–15591. [Google Scholar]
  • Gardien V, Lardeaux J-M, Ledru P, Allemand P, Guillot S. 1997. Metamorphism during late orogenic extension; insights from the French Variscan belt. Bull. Société Géologique Fr. 168: 271–286. [Google Scholar]
  • Gardien V, Vanderhaeghe O, Arnaud N, Cocherie A, Grange M, Lécuyer C. 2011. Thermal maturation and exhumation of a middle orogenic crust in the Livradois area (French Massif Central). Bull. Société Géologique Fr. 182: 5–24. [Google Scholar]
  • Gay M, Peterlongo JM, Caen-Vachette M. 1981. Age radiométrique des granites en massifs allongés et en feuillets minces syn-tectoniques dans les Monts du Lyonnais (Massif central français). CR Acad Sci Paris 293: 993–996. [Google Scholar]
  • Gay M, Briand B, Chenevoy M, Piboule M. 1982. Évolution structurale de la série métamorphique du Vivarais oriental (Massif central). Bull Bur Rech Geol Min Fr 3: 219–232. [Google Scholar]
  • Gebauer D, Bernard-Griffiths J, Grünenfelder M. 1981. U-Pb zircon and monazite dating of a mafic-ultramafic complex and its country rocks. Contrib. Mineral. Petrol. 76: 292–300. [Google Scholar]
  • Gébelin A. 2004. Déformation et mise en place des granites (360-300Ma) dans un segment de la chaîne Varisque (plateau de Millevaches, Massif Central). Université Montpellier II-Sciences et Techniques du Languedoc. [Google Scholar]
  • Gebelin A, Martelet G, Brunel M, Faure M, Rossi P. 2004. Late Hercynian leucogranites modelling as deduced from new gravity data: the example of the Millevaches massif (Massif Central, France). Bull. Société Géologique Fr. 175: 239–248. [CrossRef] [Google Scholar]
  • Gébelin A, Martelet G, Chen Y, Brunel M, Faure M. 2006. Structure of late Variscan Millevaches leucogranite massif in the French Massif Central: AMS and gravity modelling results. J. Struct. Geol. 28: 148–169. [CrossRef] [Google Scholar]
  • Gébelin A, Brunel M, Monié P, Faure M, Arnaud N. 2007. Transpressional tectonics and Carboniferous magmatism in the Limousin, Massif Central, France: Structural and 40Ar/39Ar investigations. Tectonics 26. [Google Scholar]
  • Gébelin A, Roger F, Brunel M. 2009. Syntectonic crustal melting and high-grade metamorphism in a transpressional regime, Variscan Massif Central, France. Tectonophysics 477: 229–243. [CrossRef] [Google Scholar]
  • Gerbault M, Martinod J, Hérail G. 2005. Possible orogeny-parallel lower crustal flow and thickening in the Central Andes. Tectonophysics 399: 59–72. [CrossRef] [Google Scholar]
  • Gèze B. 1949. Etude géologique de la Montagne Noire et des Cévennes méridionales. Société géologique de France. [Google Scholar]
  • Gibson RL. 1991. Hercynian low-pressure-high-temperature regional metamorphism and subhorizontal foliation development in the Canigou massif, Pyrenees, France – Evidence for crustal extension. Geology 19: 380–383. [CrossRef] [Google Scholar]
  • Girardeau J, Dubuisson G, Mercier J-CC. 1986. Cinématique de mise en place des ophiolites et nappes crystallophiliennes du Limousin, Ouest du Massif Central francais. Bull. Société Géologique Fr. 2: 849–860. [CrossRef] [Google Scholar]
  • Gleizes G, Leblanc D, Bouchez JL. 1997. Variscan granites of the Pyrenees revisited: their role as syntectonic markers of the orogen. Terra Nova 9: 38–41. https://doi.org/10.1046/j.1365-3121.1997.d01-9.x. [CrossRef] [Google Scholar]
  • Godard G. 1990. Découverte d’éclogites, de péridotites à spinelle et d’amphibolites à anorthite, spinelle et corindon dans le Morvan. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 310: 227–232. [Google Scholar]
  • Godard G. 2001. The Les Essarts eclogite-bearing metamorphic Complex (Vendée, Southern Armorican Massif, France). Géologie Fr. 1: 19–51. [Google Scholar]
  • Gordon SM, Whitney DL, Teyssier C, Fossen H, Kylander-Clark A. 2016. Geochronology and geochemistry of zircon from the northern Western Gneiss Region: Insights into the Caledonian tectonic history of western Norway. Lithos 246–247: 134–148. https://doi.org/10.1016/j.lithos.2015.11.036. [CrossRef] [Google Scholar]
  • Gourgaud A. 1973. Granites et migmatites du Forez au sud de Montbrison. Université de Clermont Ferrand. [Google Scholar]
  • Grolier J, Letourneur J. 1968. L’évolution tectonique du grand Sillon Houiller du Massif Central francais, paper presented at XXIII International Geological Congress, Int. Union Geod Geophys, Florence, Italy. [Google Scholar]
  • Guergouz C, Martin L, Vanderhaeghe O, Thébaud N, Fiorentini M. 2018. Zircon and monazite petrochronologic record of prolonged amphibolite to granulite facies metamorphism in the Ivrea-Verbano and Strona-Ceneri Zones, NW Italy. Lithos 308–309: 1–18. https://doi.org/10.1016/j.lithos.2018.02.014. [CrossRef] [Google Scholar]
  • Guillot PL, Doubinger J. 1971. Découverte d’Acritarches dans les schistes sériciteux de Génis (Dordogne). C R Hebd Séanc Acad Sci Paris 272: 2763–2764. [Google Scholar]
  • Guillot PL, Lefevre J. 1975. Découvertes de conodontes dans le calcaire à entroques de Génis en Dordogne (série métamorphique du Bas-Limousin). Comptes Rendus L’Académie Sci. Paris D 280: 1529–1530. [Google Scholar]
  • Hamet J, Mattauer M. 1977. Age hercynien, déterminé par la méthode Rb-Sr du granite de l’Aigoual, conséquences structurales. C R Somm Soc Géol Fr 2: 80–84. [Google Scholar]
  • Hamilton MA, Murphy JB. 2004. Tectonic significance of a Llanvirn age for the Dunn Point volcanic rocks, Avalon terrane, Nova Scotia, Canada: implications for the evolution of the Iapetus and Rheic oceans. Tectonophysics 379: 199–209. [CrossRef] [Google Scholar]
  • Hanmer SK. 1977. Age and tectonic implications of the Baie d’Audierne basic-ultrabasic complex. Nature 270: 336. [CrossRef] [Google Scholar]
  • Harrison TM, Watson EB. 1983. Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib. Mineral. Petrol. 84: 66–72. https://doi.org/10.1007/BF01132331. [CrossRef] [Google Scholar]
  • Hasalová P, Schulmann K, Lexa O, Štípská P, Hrouda F, Ulrich S, et al. 2008. Origin of migmatites by deformation‐enhanced melt infiltration of orthogneiss: A new model based on quantitative microstructural analysis. J. Metamorph. Geol. 26: 29–53. [CrossRef] [Google Scholar]
  • Hasalova P, Weinberg RF, MacRae C. 2011. Microstructural evidence for magma confluence and reusage of magma pathways: implications for magma hybridization, Karakoram Shear Zone in NW India. J. Metamorph. Geol. 29: 875–900. [CrossRef] [Google Scholar]
  • Heilimo E, Halla J, Hölttä P. 2010. Discrimination and origin of the sanukitoid series: Geochemical constraints from the Neoarchean western Karelian Province (Finland). Lithos 115: 27–39. https://doi.org/10.1016/j.lithos.2009.11.001. [CrossRef] [Google Scholar]
  • Henk A. 2000. Foreland-directed lower-crustal flow and its implications for the exhumation of high-pressure-high-temperature rocks. Geol. Soc. Lond. Spec. Publ. 179: 355–368. https://doi.org/10.1144/GSL.SP.2000.179.01.21. [CrossRef] [Google Scholar]
  • Henk A, von Blanckenburg F, Finger F, Schaltegger U, Zulauf G. 2000. Syn-convergent high-temperature metamorphism and magmatism in the Variscides: a discussion of potential heat sources. Geol. Soc. Lond. Spec. Publ. 179: 387–399. https://doi.org/10.1144/GSL.SP.2000.179.01.23. [Google Scholar]
  • Henry P, Le Pichon X, Goffé B. 1997. Kinematic, thermal and petrological model of the Himalayas: constraints related to metamorphism within the underthrust indian crust and topographic elevation. Tectonophysics 273: 31–56. https://doi.org/10.1016/S0040-1951(96)00287-9. [CrossRef] [Google Scholar]
  • Holliger P, Cuney M, Friedrich M, Turpin L. 1986. Age carbonifère de l’unité de Brame du complexe granitique peralumineux de Saint-Sylvestre (NO Massif Central) défini par les données isotopiques U-Pb sur zircon et monazite. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 303: 1309–1314. [Google Scholar]
  • Hottin A-M, Calvez JY. 1988. Résultats analytiques K-Ar et Rb-Sr sur quelques minéraux du forage de Sancerre-Couy. BRGM 137. [Google Scholar]
  • Houseman GA, McKenzie DP, Molnar P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res. Solid Earth 86: 6115–6132. [CrossRef] [Google Scholar]
  • Huerta AD, Royden LH, Hodges KV. 1996. The interdependence of deformational and thermal processes in mountain belts. Science 273: 637–639. https://doi.org/10.1126/science.273.5275.637. [CrossRef] [Google Scholar]
  • Isnard H. 1996. Datation par la méthode U–Pb sur monazites des granites du Mont Lozère et de l’Est de la Margeride (laccolites de Chambon-le- Château et de St-Christophe d’Allier). [Google Scholar]
  • Janousek V, Holub FV. 1997. Two distinct mantle sources of Hercynian magmas intruding the Moldanubian unit, Bohemian Massif, Czech Republic. J. Geosci. 42: 10–0. [Google Scholar]
  • Janoušek V, Braithwaite CJ, Bowes DR, Gerdes A. 2004. Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78: 67–99. [CrossRef] [Google Scholar]
  • Joanny V, Lardeaux J-M, Trolliard G, Boudeulle M. 1989. La transition omphacite→ diopside + plagioclase dans les éclogites du Rouergue (Massif Central Français): un exemple de précipitation discontinue. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 309: 1923–1930. [Google Scholar]
  • Joly A. 2007. Relations plutons et discontinuités lithosphériques: approche pluridisciplinaire de la mise en place de plutons granitiques le long du Sillon Houiller (Massif Central Français): apports des études de terrain et des données gravimétriques, magnétiques et ASM pour des modélisations 3D. PhD Thesis, Orléans. [Google Scholar]
  • Joly A, Martelet G, Chen Y, Faure M. 2008. A multidisciplinary study of a syntectonic pluton close to a major lithospheric-scale fault – Relationships between the Montmarault granitic massif and the Sillon Houiller Fault in the Variscan French Massif Central: 2. Gravity, aeromagnetic investigations, and 3-D geologic modelling. J. Geophys. Res. Solid Earth 113. [CrossRef] [Google Scholar]
  • Joly A, Faure M, Martelet G, Chen Y. 2009. Gravity inversion, AMS and geochronological investigations of syntectonic granitic plutons in the southern part of the Variscan French Massif Central. J. Struct. Geol. 31: 421–443. [CrossRef] [Google Scholar]
  • Jung J. 1953. Zoneographie et age des formations cristallophylliennes des massifs hercyniens francais [with discussion]. Bull. Société Géologique Fr. 6: 329–343. [CrossRef] [Google Scholar]
  • Kelsey DE, Clark C, Hand M. 2008. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: Examples using model metapelitic and metapsammitic granulites. J. Metamorph. Geol. 26: 199–212. [CrossRef] [Google Scholar]
  • Koné M. 1985. Mise en évidence de cisaillements ductiles tangentiel et décrochant dans le sud Livradois (Massif Central Français). Conséquences pour le « métamorphisme Livradois ». Comptes Rendus Acad. Sci. 301: 189–193. [Google Scholar]
  • Kössler P, Tait J, Bachtadse V, Soffel HC, Linnemann U. 1996. Paleomagnetic investigations of Lower Paleozoic rocks of the Thüringer Schiefergebirge. Terra Nostra – Schriften Alfred-Wegener-Stift. 96: 115–116. [Google Scholar]
  • Kossmat F. 1927. Gliederung der varistischen Gebirgsbaues. Abh Sächs Geol Land 1–39. [Google Scholar]
  • Kosztolanyi C. 1971. Géochronologie des gisements uranifères français par la méthode uranium-plomb. Influence du déséquilibre radioactif sur les résultats. Université de Nancy 1. [Google Scholar]
  • Kroner U, Romer RL. 2013. Two plates – Many subduction zones: the Variscan orogeny reconsidered. Gondwana Res. 24, 298–329. [CrossRef] [Google Scholar]
  • Kruckenberg SC, Vanderhaeghe O, Ferré EC, Teyssier C, Whitney DL. 2011. Flow of partially molten crust and the internal dynamics of a migmatite dome, Naxos, Greece: internal dynamics of the naxos dome. Tectonics 30. https://doi.org/10.1029/2010TC002751. [Google Scholar]
  • Kusbach V, Ulrich S, Schulmann K. 2012. Ductile deformation and rheology of sub-continental mantle in a hot collisional orogeny: Example from the Bohemian Massif. J. Geodyn. 56: 108–123. [CrossRef] [Google Scholar]
  • Kusbach V, Janoušek V, Hasalová P, Schulmann K, Fanning CM, Erban V, et al. 2015. Importance of crustal relamination in origin of the orogenic mantle peridotite-high-pressure granulite association: example from the Náměšt’ Granulite Massif (Bohemian Massif, Czech Republic). J. Geol. Soc. 172: 479–490. [CrossRef] [Google Scholar]
  • Labrousse L, Prouteau G, Ganzhorn A-C. 2011. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology 39: 1171–1174. [CrossRef] [Google Scholar]
  • Lafon JM. 1986. Géochronologie U-Pb appliquée à deux segments du massif central français, le Rouergue oriental et le Limousin central (PhD Thesis). [Google Scholar]
  • Lafon J-M, Respaut J-P. 1988. Géochronologie U-Pb et leucogranites varisques: cas des massifs de Grandrieu (Lozère) et de la Porcherie (Limousin), Massif Central français. Bull. Minéralogie 111: 225–237. [Google Scholar]
  • Lagarde J-L, Dallain C, Ledru P, Courrioux G. 1994. Strain patterns within the late Variscan granitic dome of Velay, French Massif Central. J. Struct. Geol. 16: 839–852. [CrossRef] [Google Scholar]
  • Lameyre J, Durandeau A, Laurent O, Sagon JP, Vauchelle L, Duzelier D, et al. 1988. Démonstration, par sondage, de la présence du gneiss d’Aubusson sous les granites du batholite de Guéret (Massif Central français) et de la nature tectonique du contact. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 307: 2077–2083. [Google Scholar]
  • Lapierre H, Basile C, Berly T, Canard E. 2008. Potassic late orogenic Stephanian volcanism in the Southwest French Massif central (Decazeville, Figeac, Lacapelle-Marival basins): an example for mantle metasomatism along strike-slip faults? Bull. Société Géologique Fr. 179: 491–502. [CrossRef] [Google Scholar]
  • Lardeaux J-M. 2014. Deciphering orogeny: a metamorphic perspective Examples from European Alpine and Variscan belts: Part II: Variscan metamorphism in the French Massif Central – A review. Bull. Soc. Geol. Fr. 185: 281–310. https://doi.org/10.2113/gssgfbull.185.5.281. [CrossRef] [Google Scholar]
  • Lardeaux J-M, Dufour E. 1987. Champs de déformation superposés dans la chaîne varisque. Exemple de la zone nord des Monts du Lyonnais (Massif central français). Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 305: 61–64. [Google Scholar]
  • Lardeaux JM, Ledru P, Daniel I, Duchene S. 2001. The Variscan French Massif Central—a new addition to the ultra-high pressure metamorphic “club”: exhumation processes and geodynamic consequences. Tectonophysics 332: 143–167. [CrossRef] [Google Scholar]
  • Lardeaux JM, Schulmann K, Faure M, Janoušek V, Lexa O, Skrzypek E, et al. 2014. The moldanubian zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. Geol. Soc. Lond. Spec. Publ. 405: 7–44. [Google Scholar]
  • Lasnier B. 1968. Découverte de roches éclogitiques dans le groupe leptyno-amphibolique des monts du Lyonnais (Massif central français). Bull. Société Géologique Fr. 7: 179–185. [CrossRef] [Google Scholar]
  • Lasnier B. 1971. Les peridotites et pyroxenolites a grenat du Bois des Feuilles (Monts du Lyonnais) (France). Contrib. Mineral. Petrol. 34: 29–42. [CrossRef] [Google Scholar]
  • Lasserre M, Tempier P, Philibert J. 1980. Géochronologie Rb/Sr d’une intrusion cambrienne de la région de Saint-Flour (Massif Central français). Comptes Rendus Académie Sci. 737–740. [Google Scholar]
  • Laumonier B, Marignac C, Kister P. 2010. Polymetamorphism and crustal evolution of the eastern Pyrenees during the Late Carboniferous Variscan orogenesis. Bull. Soc. Geol. Fr. 181: 411–428. https://doi.org/10.2113/gssgfbull.181.5.411. [Google Scholar]
  • Laurent O, Martin H, Doucelance R, Moyen J-F, Paquette J-L. 2011. Geochemistry and petrogenesis of high-K “sanukitoids” from the Bulai pluton, Central Limpopo Belt, South Africa: Implications for geodynamic changes at the Archaean–Proterozoic boundary. Lithos 123: 73–91. https://doi.org/10.1016/j.lithos.2010.12.009. [CrossRef] [Google Scholar]
  • Laurent O, Rapopo M, Stevens G, Moyen JF, Martin H, Doucelance R, et al. 2014. Contrasting petrogenesis of Mg-K and Fe-K granitoids and implications for post-collisional magmatism: Case study from the Late-Archean Matok pluton (Pietersburg block, South Africa). Lithos 196-197: 131–149. https://doi.org/10.1016/j.lithos.2014.03.006. [CrossRef] [Google Scholar]
  • Laurent O, Couzinié S, Zeh A, Vanderhaeghe O, Moyen J-F, Villaros A, et al. 2017. Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U-Pb dating in the eastern French Massif Central. Int. J. Earth Sci. 106: 421–451. [Google Scholar]
  • Le Breton N, Duthou J-L, Grolier J, Lacour A, Meyer G, Treuil M. 1986. Les diatexites à cordiérite d’Aubusson (Creuse, France) : pétrographie, composition, âge. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 303: 1557–1562. [Google Scholar]
  • Le Corre C, Auvray B, Ballevre M, Robardet M. 1991. Le Massif Armoricain / The Armorican Massif. Sci. Géologiques Bull. 44: 31–103. https://doi.org/10.3406/sgeol.1991.1865. [CrossRef] [Google Scholar]
  • Ledru P, Autran A. 1987. L’édification de la chaîne varisque dans le Limousin, rôle de la faille d’Argentat à la limite Limousin-Millevaches. Géol Prof Fr. Thème 3: 51–91. [Google Scholar]
  • Ledru P, Marot A, Herrouin Y. 1986. Le synclinorium de Saint-Georges-sur-Loire : une unité ligérienne charriée sur le domaine centre armoricain. Découverte de métabasite à glaucophane sur la bordure sud de cette unité. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 303: 963–968. [Google Scholar]
  • Ledru P, Lardeaux J-M, Santallier D, Autran A, Quenardel JM, Floc’h JP, et al. 1989. Où sont les nappes dans le Massif central français ? Bull. Société Géologique Fr. 605–618. [Google Scholar]
  • Ledru P, Costa S, Echtler H. 1994. The massif central: structure. Pre-Mesoz. Geol. Fr. Relat. Areas 305–323. [CrossRef] [Google Scholar]
  • Ledru P, Courrioux G, Dallain C, Lardeaux JM, Montel JM, Vanderhaeghe O, et al. 2001. The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution. Tectonophysics 342: 207–237. [CrossRef] [Google Scholar]
  • Legendre C, Briand B, Thierry J, Lebret P, Joly A, Bertin C. 2009. Notice explicative de la carte géologique de Saint-Geniez-d’Olt (861) au 1/50 000. Éditions BRGM Orléans. [Google Scholar]
  • Leloix C, Faure M, Feybesse J-L. 1999. Hercynian polyphase tectonics in the northeast French Massif Central: the closure of the Brévenne Devonian-Dinantian rift. Int. J. Earth Sci. 88: 409–421. [CrossRef] [Google Scholar]
  • Lenoir X, Garrido CJ, Bodinier J-L, Dautria J-M. 2000. Contrasting lithospheric mantle domains beneath the Massif Central (France) revealed by geochemistry of peridotite xenoliths. Earth Planet. Sci. Lett. 181: 359–375. https://doi.org/10.1016/S0012-821X(00)00216-8. [CrossRef] [Google Scholar]
  • Lerouge G, Quenardel J-M. 1988. Les zones de cisaillement carboniferes dans les plutons vendeens et leurs prolongations dans le Nord-ouest du Masif central francais. Bull. Société Géologique Fr. 4: 831–838. [CrossRef] [Google Scholar]
  • Lescuyer J-L, Cocherie A. 1992. Datation sur monozircons des métadacites de Sériès : arguments pour un âge protérozoïque terminal des schistes X de la Montagne Noire (Massif central français). Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 31: 1071–1077. [Google Scholar]
  • Letterrier J. 1978. Aspects chimiques des interactons entre les magmas basiques et leur encaissant pelitique dans le plutonisme. Bull. Société Géologique Fr. 7: 21–28. [CrossRef] [Google Scholar]
  • Lexa O, Schulmann K, Janoušek V, Štípská P, Guy A, Racek M. 2011. Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root. J. Metamorph. Geol. 29: 79–102. [Google Scholar]
  • Leyreloup A. 1974. Les enclaves catazonales remontées par les éruptions néogènes de France : nature de la croûte inférieure. Contrib. Mineral. Petrol. 46: 17–27. [CrossRef] [Google Scholar]
  • Linnemann U, Gerdes A, Drost K, Buschmann B. 2007. The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA-ICP-MS U-Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). Spec. Pap. – Geol. Soc. Am. 423: 61. [Google Scholar]
  • Lister GS, Baldwin SL. 1993. Plutonism and the origin of metamorphic core complexes. Geology 21: 607–610. [CrossRef] [Google Scholar]
  • Lotout C, Pitra P, Poujol M, Van Den Driessche J. 2017. Ordovician magmatism in the Lévézou massif (French Massif Central): tectonic and geodynamic implications. Int. J. Earth Sci. 106: 501–515. [Google Scholar]
  • Lotout C, Pitra P, Poujol M, Anczkiewicz R, Van Den Driessche J. 2018. Timing and duration of Variscan high-pressure metamorphism in the French Massif Central: A multimethod geochronological study from the Najac Massif. Lithos 308: 381–394. [CrossRef] [Google Scholar]
  • Maillet N, Piboule M, Santallier D, Cabanis B. 1984. Diversité d’origine des ultrabasites dans la série métamorphique du Limousin. BRGM 81: 1–24. [Google Scholar]
  • Malavieille J. 2010. Impact of erosion, sedimentation, and structural heritage on the structure and kinematics of orogenic wedges: Analog models and case studies. GSA Today 4–10. https://doi.org/10.1130/GSATG48A.1. [CrossRef] [Google Scholar]
  • Malavieille J, Guihot P, Costa S, Lardeaux JM, Gardien V. 1990. Collapse of the thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and St. Etienne Late Carboniferous basin. Tectonophysics 177: 139–149. [CrossRef] [Google Scholar]
  • Maluski H, Monié P. 1988. 40Ar–39Ar laser probe multi-dating inside single biotites of a Variscan orthogeneiss (Pinet, Massif Central, France). Chem. Geol. Isot. Geosci. Sect. 73: 245–263. [CrossRef] [Google Scholar]
  • Maluski H, Costa S, Echtler H. 1991. Late variscan tectonic evolution by thinning of earlier thickened crust. An 40Ar/39Ar study of the Montagne Noire, southern Massif Central, France. Lithos 26: 287–304. [CrossRef] [Google Scholar]
  • Marchand J. 1981. Ecaillage d’un « mélange tectonique » profond : le complexe cristallophyllien de Champtoceaux (Bretagne méridionale). CR Acad Sci Paris 293: 223–228. [Google Scholar]
  • Marignac C, Leroy J, Macaudière J, Pichavant M, Weisbrod A. 1980. Evolution tectonométamorphique d’un segment de l’orogène hercynien: les Cévennes médianes, Massif central français. CR Acad Sci Paris 291: 605–608. [Google Scholar]
  • Martin H, Smithies RH, Rapp R, Moyen J-F, Champion D. 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79: 1–24. https://doi.org/10.1016/j.lithos.2004.04.048. [CrossRef] [Google Scholar]
  • Martínez Catalán JR, Arenas R, García FD, Cuadra PG, Gómez-Barreiro J, Abati J, et al. 2007. Space and time in the tectonic evolution of the northwestern Iberian Massif: Implications for the Variscan belt. In: Geological Society of America Memoirs. Geological Society of America, pp. 403–423. https://doi.org/10.1130/2007.1200(21). [Google Scholar]
  • Martínez Catalán JR, Arenas R, Abati J, Martínez SS, García FD, Suárez JF, et al. 2009. A rootless suture and the loss of the roots of a mountain chain: The Variscan belt of NW Iberia. Comptes Rendus Geosci. 341: 114–126. https://doi.org/10.1016/j.crte.2008.11.004. [CrossRef] [Google Scholar]
  • Mattauer M, Etchecopar A. 1976. Arguments en faveur de chevauchements de type himalayen dans la chaîne hercynienne du Massif Central français. Coll Int CNRS Paris 268: 261–267. [Google Scholar]
  • Mattauer M, Laurent P, Matte P. 1996. Plissement hercynien synschisteux post-nappe et étirement subhorizontal dans le versant sud de la Montagne noire (Sud du Massif central, France). Comptes Rendus Académie Sci. Sér. 2 Sci. Terre Planètes 322: 309–315. [Google Scholar]
  • Matte P. 1986. Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126: 329–374. [CrossRef] [Google Scholar]
  • Matte P. 1991. Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196: 309–337. https://doi.org/10.1016/0040-1951(91)90328-P. [CrossRef] [Google Scholar]
  • Matte P. 2001. The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13: 122–128. [CrossRef] [Google Scholar]
  • Matte P, Lancelot J, Mattauer M. 1998. La zone axiale hercynienne de la Montagne Noire n’est pas un “metamorphic core complex” extensif mais un anticlinal post-nappe à coeur anatectique. Geodin. Acta 11: 13–22. [Google Scholar]
  • Maurel O, Monié P, Respaut JP, Leyreloup AF, Maluski H. 2003. Pre-metamorphic 40Ar/39Ar and U-Pb ages in HP metagranitoids from the Hercynian belt (France). Chem. Geol. 193: 195–214. [CrossRef] [Google Scholar]
  • McCarthy A, Chelle-Michou C, Müntener O, Arculus R, Blundy J. 2018. Subduction initiation without magmatism: The case of the missing Alpine magmatic arc. Geology 46: 1059–1062. https://doi.org/10.1130/G45366.1. [CrossRef] [Google Scholar]
  • Melleton J, Faure M, Cocherie A. 2009. Monazite U-Th/Pb chemical dating of the Early Carboniferous syn-kinematic MP/MT metamorphism in the Variscan French Massif Central. Bull. Société Géologique Fr. 180: 283–292. [CrossRef] [Google Scholar]
  • Melleton J, Cocherie A, Faure M, Rossi P. 2010. Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U-Pb data and the North Gondwana connection in the west European Variscan belt. Gondwana Res. 17: 13–25. [Google Scholar]
  • Ménard G, Molnar P. 1988. Collapse of a Hercynian Tibetan plateau into a late Palaeozoic European Basin and Range province. Nature 334: 235. [CrossRef] [Google Scholar]
  • Mercier JCC, Girardeau J, Prinzhofer A, Dubuisson G. 1985. Les complexes ophiolitiques du Limousin : structure, pétrologie et géochimie. Rapp. GPF2 Thème 3: 95–3. [Google Scholar]
  • Mercier L, Lardeaux J-M, Davy P. 1991a. On the tectonic significance of retrograde P-T-t paths in eclogites of the French Massif Central. Tectonics 10: 131–140. [CrossRef] [Google Scholar]
  • Mercier L, Van Roermund HLM, Lardeaux JM. 1991b. Comparison of PTt paths in allochthonous high pressure metamorphic terrains from the Scandinavian Caledonides and the french Massif Central: contrasted thermal structures during uplift. Geol. Rundsch. 80: 333–348. [CrossRef] [Google Scholar]
  • Mialhe J. 1980. Le massif granitique de la Borne (Cévennes). Etude pétrographique, géochimique, géochronologique et structurale (Doctorat). Université de Clermont Ferrand. [Google Scholar]
  • Michon G. 1987. Les vaugnerites de l’Est du Massif central français : apport de l’analyse statistique multivariée à l’étude géochimique des éléments majeurs. Bull. Soc. Geol. Fr. 8: 591–600. [Google Scholar]
  • Milési J-P, Lescuyer J-L. In press. The chessy zn-Cu-ba massive sulphide deposit and the Devonian brevenne volcanosedimentary belt (eastern massif central, France). BRGM. [Google Scholar]
  • Mollier B, Bouchez JL. 1982. Structuration magmatique du complexe granitique de Brâme-St Sylvestre-St Goussaud (Limousin, Massif Central Français). CR Acad Sci Ser 2 294: 1329–1334. [Google Scholar]
  • Molnar P, Lyon-Caen H. 1988. Some simple physical aspects of the support, structure, and evolution of mountain belts. In: Geological Society of America Special Papers. Geological Society of America, pp. 179–208. https://doi.org/10.1130/SPE218-p179. [CrossRef] [Google Scholar]
  • Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys. 31: 357. https://doi.org/10.1029/93RG02030. [CrossRef] [Google Scholar]
  • Monié P, Respaut JP, Brichau S, Bouchot V, Faure M, Roig JY. 2000. 40Ar/39Ar and U-Pb geochronology applied to Au-W-Sb metallogenesis in the Cévennes and Châtaigneraie districts (Southern Massif Central, France). Orog. Gold Depos. Eur. Doc BRGM 297: 77–79. [Google Scholar]
  • Monier G. 1980. Pétrologie des granites du Sud-Millevaches (MCF). Minéralogie, géochimie, géochronologie (Doctorat 3e Cycle). Université de Clermont Ferrand. [Google Scholar]
  • Montel J-M. 1985. Xénolithes peralumineux dans les dolérites du Peyron, en Velay (Massif Central, France). Indications sur l’évolution de la croûte profonde tardihercynienne. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 301: 615–620. [Google Scholar]
  • Montel JM, Abdelghaffar R. 1993. Les granites tardi-migmatitiques du Velay (Massif Central) : principales caractéristiques pétrographiques et géochimiques. Géologie Fr. 1: 15–28. [Google Scholar]
  • Montel JM, Marignac C, Barbey P, Pichavant M. 1992. Thermobarometry and granite genesis: the Hercynian low-P, high-T Velay anatectic dome (French Massif Central). J. Metamorph. Geol. 10: 1–15. [CrossRef] [Google Scholar]
  • Montel J-M, Bouloton J, Veschambre M, Pellier C, Ceret K. 2002. Âges stéphaniens des microgranites du Velay (Massif central français). Géologie Fr. 15–20. [Google Scholar]
  • Mougeot R, Respaut J-P, Ledru P, Marignac C. 1997. U-Pb chronology on accessory minerals of the Velay anatectic dome (French Massif Central). Eur. J. Mineral. 9: 141–156. [CrossRef] [Google Scholar]
  • Moyen J-F, Laurent O, Chelle-Michou C, Couzinié S, Vanderhaeghe O, Zeh A. 2017. Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos 277: 154–177. [CrossRef] [Google Scholar]
  • Murphy JB, Gutierrez-Alonso G, Nance RD, Fernandez-Suarez J, Keppie JD, Quesada C, et al. 2006. Origin of the Rheic Ocean: Rifting along a Neoproterozoic suture? Geology 34: 325–328. [CrossRef] [Google Scholar]
  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, et al. 2010. Evolution of the Rheic ocean. Gondwana Res. 17: 194–222. [CrossRef] [Google Scholar]
  • Nicolas A, Bouchez JL, Blaise J, Poirier JP. 1977. Geological aspects of deformation in continental shear zones. Tectonophysics 42: 55–73. [CrossRef] [Google Scholar]
  • Nicollet C. 1977. Une nouvelle éclogite à disthène et corindon primaires dans les complexes leptyno-amphiboliques du Massif central français (Lévezou, Rouergue). Bull Soc Fr Miner. Cristal. 100: 334–337. [Google Scholar]
  • Nicollet C. 1978. Pétrologie et tectonique des terrains cristallins anté-permiens du versant sud du dôme du Lévezou (Rouergue, Massif central). Bull BRGM 3: 225–263. [Google Scholar]
  • Nicollet C, Leyreloup A. 1978. Pétrologie des niveaux trondhjémitiques de haute pression associés aux éclogites et amphibolites des complexes leptyno-amphiboliques du Massif Central français. Can. J. Earth Sci. 15: 696–707. [CrossRef] [Google Scholar]
  • O’Brien PJ, Rötzler J. 2003. High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. J. Metamorph. Geol. 21: 3–20. [CrossRef] [Google Scholar]
  • Pagel M, Costa S, Galibert F, Lancelot J, Maluski H, Meyer A, et al. 1992. Forage scientifique de Sancerre-Couy: Géochronologie Sm-Nd, U-Pb, Ar-Ar, Rb-Sr et chronométrie par traces de fission sur le socle. Géologie Fr. 3: 129. [Google Scholar]
  • Paquette J-L, Monchoux P, Couturier M. 1995. Geochemical and isotopic study of a norite-eclogite transition in the European Variscan belt: Implications for U/Pb zircon systematics in metabasic rocks. Geochim. Cosmochim. Acta 59: 1611–1622. [CrossRef] [Google Scholar]
  • Paquette J-L, Ballèvre M, Peucat J-J, Cornen G. 2017. From opening to subduction of an oceanic domain constrained by LA-ICP-MS U-Pb zircon dating (Variscan belt, Southern Armorican Massif, France). Lithos 294: 418–437. [CrossRef] [Google Scholar]
  • Paris F, Robardet M. 1990. Early Palaeozoic palaeobiogeography of the Variscan regions. Tectonophysics 177: 193–213. [CrossRef] [Google Scholar]
  • Peiffer M-T. 1986. La signification de la ligne tonalitique du Limousin. Son implication dans la structuration varisque du Massif Central français. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 303: 305–310. [Google Scholar]
  • Perchuk LL, Podladchikov YY, Polyakov AN. 1992. Hydrodynamic modelling of some metamorphic processes. J. Metamorph. Geol. 10: 311–319. https://doi.org/10.1111/j.1525-1314.1992.tb00086.x. [CrossRef] [Google Scholar]
  • Percival JA. 1992. Exposed crustal cross sections as windows on the lower crust. Cont. Low. Crust Dev. Geotecton. 317–362. [Google Scholar]
  • Petitpierre E, Duthou JL. 1980. Age westphalien par la méthode Rb/Sr du leucogranite de Crevant, Plateau d’Aigurande (Massif Central français). CR Acad Sci 291: 163–166. [Google Scholar]
  • Piboule M, Briand B. 1985. Geochemistry of eclogites and associated rocks of the southeastern area of the French Massif Central: origin of the protoliths. Chem. Geol. 50: 189–199. [CrossRef] [Google Scholar]
  • Pin C. 1979. Géochronologie U-Pb et microtectonique des séries métamorphiques anté-stéphaniennes de l’Aubrac et de la région de Marvejols (Massif Central). PhD Thesis, Université Montpellier II-Sciences et Techniques du Languedoc. [Google Scholar]
  • Pin C. 1981. Old inherited zircons in two synkinematic variscan granitoids: the’granite du Pinet’and the’Orthogneiss de Marvejols’(Southern French Massif Central). Neues Jahrb. Für Mineral. Abh. 142: 27–48. [Google Scholar]
  • Pin C. 1990. Variscan oceans: ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysics 177: 215–227. [CrossRef] [Google Scholar]
  • Pin C, Duthou J-L. 1990. Sources of Hercynian granitoids from the French Massif Central: Inferences from Nd isotopes and consequences for crustal evolution. Chem. Geol. 83: 281–296. https://doi.org/10.1016/0009-2541(90)90285-F. [CrossRef] [Google Scholar]
  • Pin C, Lancelot JR. 1978. Un exemple de magmatisme cambrien dans le Massif central; les metadiorites quartziques intrusives dans la serie du Lot. Bull. Société Géologique Fr. 7: 203–208. [CrossRef] [Google Scholar]
  • Pin C, Lancelot J. 1982. U-Pb dating of an early Paleozoic bimodal magmatism in the French Massif Central and of its further metamorphic evolution. Contrib. Mineral. Petrol. 79: 1–12. [Google Scholar]
  • Pin C, Marini F. 1993. Early Ordovician continental break-up in Variscan Europe: Nd Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif Central, France. Lithos 29: 177–196. [CrossRef] [Google Scholar]
  • Pin C, Paquette J-L. 1997. A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France). Contrib. Mineral. Petrol. 129: 222–238. [CrossRef] [Google Scholar]
  • Pin C, Paquette JL. 2002. Sr-Nd isotope and trace element evidence for a Late Devonian active margin in northern Massif-Central (France). Geodin. Acta 15: 63–77. [Google Scholar]
  • Pin C, Vielzeuf D. 1983. Granulites and related rocks in Variscan median Europe: a dualistic interpretation. Tectonophysics 93: 47–74. [CrossRef] [Google Scholar]
  • Pitra P, Poujol M, Van Den Driessche J, Poilvet J-C, Paquette J-L. 2012. Early Permian extensional shearing of an ordovician granite: The saint-eutrope “c/s-like” orthogneiss (montagne noire, French massif central). Comptes Rendus Géoscience 344: 377–384. [CrossRef] [Google Scholar]
  • Poilvet J-C, Poujol M, Pitra P, Van den Driessche J, Paquette J-L. 2011. The Montalet granite, Montagne Noire, France: An Early Permian syn-extensional pluton as evidenced by new U-Th-Pb data on zircon and monazite. Comptes Rendus Géoscience 343: 454–461. [CrossRef] [Google Scholar]
  • Prelević D, Akal C, Foley SF, Romer RL, Stracke A, Van Den Bogaard P. 2012. Ultrapotassic Mafic Rocks as Geochemical Proxies for Post-collisional Dynamics of Orogenic Lithospheric Mantle: the Case of Southwestern Anatolia, Turkey. J. Petrol. 53: 1019–1055. https://doi.org/10.1093/petrology/egs008. [CrossRef] [Google Scholar]
  • Quenardel J-M, Rolin P. 1984. Palaeozoic evolution of the Plateau d’Aigurande (NW Massif Central, France). Geol. Soc. Lond. Spec. Publ. 14: 63–70. [CrossRef] [Google Scholar]
  • Quenardel J-M, Santallier D, Burg J-P, Bril H, Cathelineau M, Marignac C. 1991. Le Massif Central / The central massif. Sci. Géologiques Bull. 44: 105–206. https://doi.org/10.3406/sgeol.1991.1866. [CrossRef] [Google Scholar]
  • Rabin M, Trap P, Carry N, Fréville K, Cenki-Tok B, Lobjoie C, et al. 2015. Strain partitioning along the anatectic front in the Variscan Montagne Noire massif (southern French Massif Central). Tectonics 34: 1709–1735. [CrossRef] [Google Scholar]
  • Ramberg H. 1968. Fluid dynamics of layered systems in the field of gravity, a theoretical basis for certain global structures and isostatic adjustment. Phys. Earth Planet. Inter. 1: 63–87. https://doi.org/10.1016/0031-9201(68)90051-4. [CrossRef] [Google Scholar]
  • Rapp RP, Norman MD, Laporte D, Yaxley GM, Martin H, Foley SF. 2010. Continent Formation in the Archean and Chemical Evolution of the Cratonic Lithosphere: Melt-Rock Reaction Experiments at 3-4 GPa and Petrogenesis of Archean Mg-Diorites (Sanukitoids). J. Petrol. 51: 1237–1266. https://doi.org/10.1093/petrology/egq017. [CrossRef] [Google Scholar]
  • Ravier J, Chenevoy M. 1979. Occurence of granulitic formations denoting the presence of a crustal lineament in the Sioule metamorphic series (Massif Central Français). Comptes Rendus Hebd. Séances Académie Sci. Sér. D 288: 1703–1706. [Google Scholar]
  • Respaut J-P. 1984. Géochronologie et géochimie isotopique U-Pb de la minéralisation aurifère de la mine des Pierres Plantées (Lozère) et de son encaissant : le massif granitique de la Margeride. Montpellier. [Google Scholar]
  • Rey P, Vanderhaeghe O, Teyssier C. 2001. Gravitational collapse of the continental crust: definition, regimes and modes. Tectonophysics 342: 435–449. https://doi.org/10.1016/S0040-1951(01)00174-3. [CrossRef] [Google Scholar]
  • Rey PF, Teyssier C, Whitney DL. 2009. The role of partial melting and extensional strain rates in the development of metamorphic core complexes. Tectonophysics 477: 135–144. https://doi.org/10.1016/j.tecto.2009.03.010. [CrossRef] [Google Scholar]
  • Rey PF, Teyssier C, Kruckenberg SC, Whitney DL. 2011. Viscous collision in channel explains double domes in metamorphic core complexes. Geology 39: 387–390. [CrossRef] [Google Scholar]
  • R’Kha Chaham K, Couturie J-P, Duthou J-L, Fernandez A, Vitel G. 1990. L’orthogneiss ø eillé de l’Arc de Fix : un nouveau témoin d’âge cambrien d’un magmatisme hyper alumineux dans le Massif Central français. Comptes Rendus Académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. Univers Sci. Terre 311: 845–850. [Google Scholar]
  • Robardet M. 2003. The Armorica “microplate”: fact or fiction? Critical review of the concept and contradictory palaeobiogeographical data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 195: 125–148. [CrossRef] [Google Scholar]
  • Robardet M, Blaise J, Bouyx E, Gourvennec R, Lardeux H, Le Herisse A, et al. 1993. Paléogéographie de l’Europe occidentale de l’Ordovicien au Dévonien = Palaeogeography of Western Europe from the Ordovician to the Devonian. Bull. Société Géologique Fr. [Google Scholar]
  • Roger F, Respaut J-P, Brunel M, Matte P, Paquette J-L. 2004. Première datation U/Pb des orthogneiss ø eillés de la zone axiale de la Montagne noire (Sud du Massif central) : nouveaux témoins du magmatisme ordovicien dans la chaı̂ne Varisque. Comptes Rendus Geosci. 336: 19–28. [CrossRef] [Google Scholar]
  • Roger F, Teyssier C, Respaut J-P, Rey PF, Jolivet M, Whitney DL, et al. 2015. Timing of formation and exhumation of the Montagne Noire double dome, French Massif Central. Tectonophysics 640: 53–69. [CrossRef] [Google Scholar]
  • Roig J-Y, Faure M. 2000. La tectonique cisaillante polyphasee du Sud Limousin (Massif central francais) et son interpretation dans un modele d’evolution polycyclique de la chaine hercynienne. Bull. Société Géologique Fr. 171: 295–307. [CrossRef] [Google Scholar]
  • Roig J-Y, Faure M, Ledru P. 1996. Polyphase wrench tectonics in the southern french Massif Central: kinematic inferences from pre-and syntectonic granitoids. Geol. Rundsch. 85: 138–153. [Google Scholar]
  • Roig J-Y, Faure M, Maluski H. 2002. Superimposed tectonic and hydrothermal events during the late-orogenic extension in the Western French Massif Central: a structural and 40Ar/39Ar study. Terra Nova 14: 25–32. [CrossRef] [Google Scholar]
  • Rolin P, Duthou JL, Quenardel JM. 1982. Datation Rb/Sr des leucogranites de Crozant et d’Orsennes : Conséquences sur l’âge de la derniere phase de tectonique tangentielle du Plateau d’Aigurande (NW du Massif Central Français). CR Acad Sci Ser II 294: 799–802. [Google Scholar]
  • Rolin P, Marquer D, Colchen M, Cartannaz C, Cocherie A, Thiery V, et al. 2009. Famenno-Carboniferous (370-320 Ma) strike slip tectonics monitored by syn-kinematic plutons in the French Variscan belt (Massif Armoricain and French Massif Central). Bull. Société Géologique Fr. 180: 231–246. [Google Scholar]
  • Rolin P, Marquer D, Cartannaz C, Rossi P. 2014. Carboniferous magmatism related to progressive pull-apart opening in the western French Massif Central. Bull. Société Géologique Fr. 185: 171–189. [Google Scholar]
  • Roques M. 1971. Structure géologique du Massif central. In: Géologie, géomorphologie et structure profonde du Massif Central Français. Symp J Jung, Clermont-Ferrand, pp. 17–32. [Google Scholar]
  • Rosenberg CL. 2001. Deformation of partially molten granite: a review and comparison of experimental and natural case studies. Int. J. Earth Sci. 90: 60–76. [CrossRef] [Google Scholar]
  • Royden L. 1996. Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust. J. Geophys. Res. Solid Earth 101: 17679–17705. https://doi.org/10.1029/96JB00951. [CrossRef] [Google Scholar]
  • Royden LH. 1997. Surface deformation and Lower Crustal Flow in Eastern Tibet. Science 276: 788–790. https://doi.org/10.1126/science.276.5313.788. [CrossRef] [Google Scholar]
  • Rubio Pascual FJ, López-Carmona A, Arenas R. 2016. Thickening vs. extension in the Variscan belt: P–T modelling in the Central Iberian autochthon. Tectonophysics 681: 144–158. https://doi.org/10.1016/j.tecto.2016.02.033. [CrossRef] [Google Scholar]
  • Sabatier H. 1991. Vaugnerites: special lamprophyre-derived mafic enclaves in some Hercynian granites from Western and Central Europe. Enclaves Granite Petrol. Elsevier Amst. 63–81. [Google Scholar]
  • Saint-Joanis R. 1975. Étude géologique du socle cristallin du Bas- Livradois (Massif central français) dans le périmètre de la feuille d’Issoire. Université Blaise Pascal, Clermont-Ferrand. [Google Scholar]
  • Sandiford M, Powell R. 1990. Some isostatic and thermal consequences of the vertical strain geometry in convergent orogens. Earth Planet. Sci. Lett. 98: 154–165. https://doi.org/10.1016/0012-821X(90)90056-4. [CrossRef] [Google Scholar]
  • Santallier D. 1981. Les roches basiques dans la série métamorphique du Bas-Limousin, Massif Central (France) (PhD Thesis). [Google Scholar]
  • Santallier D, Briand B, Menot RP, Piboule M. 1988. Les complexes leptyno-amphiboliques (CLA) : revue critique et suggestions pour un meilleur emploi de ce terme. Bull. Société Géologique Fr. 4: 3–12. [Google Scholar]
  • Sawyer EW. 1994. Melt segregation in the continental crust. Geology 22: 1019–1022. [CrossRef] [Google Scholar]
  • Sawyer EW. 1998. Formation and evolution of granite magmas during crustal reworking: the significance of diatexites. J. Petrol. 39: 1147–1167. [CrossRef] [Google Scholar]
  • Sawyer EW, Cesare B, Brown M. 2011. When the continental crust melts. Elements 7: 229–234. [CrossRef] [Google Scholar]
  • Schaltegger U, Gebauer D. 1999. Pre-Alpine geochronology of the central, western and southern Alps. Schweiz. Mineral. Petrogr. Mitteilungen 79: 79–87. [Google Scholar]
  • Schenk V. 1980. U-Pb and Rb-Sr radiometric dates and their correlation with metamorphic events in the granulite-facies basement of the Serre, southern Calabria (Italy). Contrib. Mineral. Petrol. 73: 23–38. [Google Scholar]
  • Schenk V. 1981. Synchronous uplift of the lower crust of the Ivrea Zone and of southern Calabria and its possible consequences for the Hercynian orogeny in southern Europe. Earth Planet. Sci. Lett. 56: 305–320. [CrossRef] [Google Scholar]
  • Schenk V. 1989. PTt path of the lower crust in the Hercynian fold belt of southern Calabria. Geol. Soc. Lond. Spec. Publ. 43: 337–342. [CrossRef] [Google Scholar]
  • Schulmann K, Lexa O, Štípská P, Racek M, Tajčmanová L, Konopásek J, et al. 2008. Vertical extrusion and horizontal channel flow of orogenic lower crust: key exhumation mechanisms in large hot orogens? J. Metamorph. Geol. 26: 273–297. [CrossRef] [Google Scholar]
  • Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux J-M, Edel J-B, et al. 2009. An Andean type Palaeozoic convergence in the Bohemian massif. Comptes Rendus Geosci. 341: 266–286. [CrossRef] [Google Scholar]
  • Schulmann K, Catalán JRM, Lardeaux JM, Janoušek V, Oggiano G. 2014. The Variscan orogeny: extent, timescale and the formation of the European crust. Geol. Soc. Lond. Spec. Publ. 405: 1–6. [CrossRef] [Google Scholar]
  • Schulz B. 2009. EMP-monazite age controls on PT paths of garnet metapelites in the Variscan inverted metamorphic sequence of La Sioule, French Massif Central. Bull. Société Géologique Fr. 180: 271–282. [Google Scholar]
  • Schulz B. 2014. Early Carboniferous PT path from the Upper Gneiss Unit of Haut-Allier (French Massif Central)-reconstructed by geothermobarometry and EMP-Th-U-Pb monazite dating. J. Geosci. 59: 327–349. [CrossRef] [Google Scholar]
  • Schulz B, Triboulet C, Audren C, Feybesse J-L. 1996. Zoned garnets in metapelites and PT-deformation path interpretation of the Variscan inverted metamorphic sequence of Haut-Allier, French Massif Central. Z. Dtsch. Geol. Ges. 249–273. [Google Scholar]
  • Schulz B, Triboulet C, Audren C, Feybesse J-L. 2001. PT-paths from metapelite garnet zonations, and crustal stacking in the Variscan inverted metamorphic sequence of La Sioule, French Massif Central. Z. Dtsch. Geol. Ges. 152: 1–26. [Google Scholar]
  • Scotese CR, McKerrow WS. 1990. Revised world maps and introduction. Geol. Soc. Lond. Mem. 12: 1–21. [CrossRef] [Google Scholar]
  • Searle MP, Cottle JM, Streule MJ, Waters DJ. 2009. Crustal melt granites and migmatites along the Himalaya: melt source, segregation, transport and granite emplacement mechanisms. Earth Environ. Sci. Trans. R. Soc. Edinb. 100: 219–233. [Google Scholar]
  • Shail RK, Leveridge BE. 2009. The Rhenohercynian passive margin of SW England: Development, inversion and extensional reactivation. Comptes Rendus Geosci. 341: 140–155. [CrossRef] [Google Scholar]
  • Shaw J, Johnston ST. 2016. Terrane wrecks (coupled oroclines) and paleomagnetic inclination anomalies. Earth-Sci. Rev. 154: 191–209. [CrossRef] [Google Scholar]
  • Sider H, Ohnenstetter M. 1986. Field and petrological evidence for the development of an ensialic marginal basin related to the Hercynian orogeny in the Massif Central, France. Geol. Rundsch. 75: 421–443. [CrossRef] [Google Scholar]
  • Sintubin M, Debacker TN, Van Baelen H. 2009. Early Palaeozoic orogenic events north of the Rheic suture (Brabant, Ardenne): A review. Comptes Rendus Geosci. 341: 156–173. https://doi.org/10.1016/j.crte.2008.11.012. [CrossRef] [Google Scholar]
  • Skrzypek E, Tabaud A-S, Edel J-B, Schulmann K, Cocherie A, Guerrot C, et al. 2012. The significance of Late Devonian ophiolites in the Variscan orogen: a record from the Vosges Klippen Belt. Int. J. Earth Sci. 101: 951–972. [CrossRef] [Google Scholar]
  • Skrzypek E, Schulmann K, Tabaud A-S, Edel J-B. 2014. Palaeozoic evolution of the Variscan Vosges mountains. Geol. Soc. Lond. Spec. Publ. 405: 45–75. [CrossRef] [Google Scholar]
  • Solar GS, Pressley RA, Brown M, Tucker RD. 1998. Granite ascent in convergent orogenic belts: testing a model. Geology 26: 711–714. [CrossRef] [Google Scholar]
  • Solgadi F, Moyen JF, Vanderhaeghe O, Sawyer E, Reisberg L. 2007. Mantle implication in syn-orogenic granitoids from the Livradois, MCF. Can. Mineral. 45: 581–606. [Google Scholar]
  • Souquet P, Delvolvé J-J, Brusset S. 2003. Identification of an underfilled foreland basin system in the Upper Devonian of the Central Pyrenees: implications for the Hercynian orogeny. Int. J. Earth Sci. 92: 316–337. [CrossRef] [Google Scholar]
  • Spear FS, Cheney JT. 1989. A petrogenetic grid for pelitic schists in the system SiO2–Al2O3–FeO–MgO–K2OH2O. Contrib. Mineral. Petrol. 101: 149–164. [CrossRef] [Google Scholar]
  • Stampfli GM, Borel GD. 2004. The TRANSMED Transects in Space and Time: Constraints on the Paleotectonic Evolution of the Mediterranean Domain. In: Cavazza W, Roure F, Spakman W, Stampfli GM, Ziegler PA, eds. The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 53–80. https://doi.org/10.1007/978-3-642-18919-7_3. [CrossRef] [Google Scholar]
  • Stampfli GM, Hochard C, Vérard C, Wilhem C. 2013. The formation of Pangea. Tectonophysics 593: 1–19. [CrossRef] [Google Scholar]
  • Stille H. 1924. Grundfragen der vergleichenden Tektonik. Brontrager Berl. 433. [Google Scholar]
  • Suess E. 1883. Das Antlitz der Erde. Vienna: Tempsky F. [Google Scholar]
  • Tait JA, Bachtadse V, Franke W, Soffel HC. 1997. Geodynamic evolution of the European Variscan fold belt: palaeomagnetic and geological constraints. Geol. Rundsch. 86: 585. https://doi.org/10.1007/s005310050165. [CrossRef] [Google Scholar]
  • Tait J, Schätz M, Bachtadse V, Soffel H. 2000. Palaeomagnetism and Palaeozoic palaeogeography of Gondwana and European terranes. Geol. Soc. Lond. Spec. Publ. 179: 21–34. [CrossRef] [Google Scholar]
  • Talbot CJ. 1979. Infrastructural migmatitic upwelling in East Greenland interpreted as thermal convective structures. Precambrian Res. 8: 77–93. https://doi.org/10.1016/0301-9268(79)90039-1. [CrossRef] [Google Scholar]
  • Talbot J-Y, Faure M, Chen Y, Martelet G. 2005. Pull-apart emplacement of the Margeride granitic complex (French Massif Central). Implications for the late evolution of the Variscan orogen. J. Struct. Geol. 27: 1610–1629. [CrossRef] [Google Scholar]
  • Thiéry V. 2010. Métamorphismes et déformations des séries cristallophylliennes du Chavanon, de la Sioule et d’Ussel (Massif Central français). Discussion du modèle de nappes du Massif Central. PhD Thesis, Université de Franche-Comté. [Google Scholar]
  • Thiéry V, Rolin P, Marquer D, Cocherie A, Fanning CM, Rossi P. 2009. Visean sinistral wrench faulting along the Sillon Houiller in the French Massif Central: Late Variscan tectonic implications. Bull. Société Géologique Fr. 180: 513–528. [CrossRef] [Google Scholar]
  • Thompson PH, Bard J-P. 1982. Isograds and mineral assemblages in the eastern axial zone, Montagne Noire (France): implications for temperature gradients and P-T history. Can. J. Earth Sci. 19: 129–143. [CrossRef] [Google Scholar]
  • Thompson AB, Connolly JA. 1995. Melting of the continental crust: some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. J. Geophys. Res. Solid Earth 100: 15565–15579. [CrossRef] [Google Scholar]
  • Torsvik TH, Van der Voo R, Preeden U, Mac Niocaill C, Steinberger B, Doubrovine PV, et al. 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci. Rev. 114: 325–368. [CrossRef] [Google Scholar]
  • Trap P, Roger F, Cenki-Tok B, Paquette J-L. 2017. Timing and duration of partial melting and magmatism in the Variscan Montagne Noire gneiss dome (French Massif Central). Int. J. Earth Sci. 106: 453–476. [CrossRef] [Google Scholar]
  • Turpin L, Velde D, Pinte G. 1988. Geochemical comparison between minettes and kersantites from the Western European Hercynian orogen: trace element and PbSrNd isotope constraints on their origin. Earth Planet. Sci. Lett. 87: 73–86. [CrossRef] [Google Scholar]
  • Turpin L, Cuney M, Friedrich M, Bouchez J-L, Aubertin M. 1990. Meta-igneous origin of Hercynian peraluminous granites in NW French Massif Central: implications for crustal history reconstructions. Contrib. Mineral. Petrol. 104: 163–172. [CrossRef] [Google Scholar]
  • Turlin F, Deruy C, Eglinger A, Vanderhaeghe O, André-Mayer A-S, Poujol M, et al. 2018. A 70 Ma record of suprasolidus conditions in the large, hot, long-duration Grenville Orogen. Terra Nova 30: 233–243. https://doi.org/10.1111/ter.12330. [CrossRef] [Google Scholar]
  • Ueda K, Gerya TV, Burg J-P. 2012. Delamination in collisional orogens: Thermomechanical modelling: Delamination in collisional orogens. J. Geophys. Res. Solid Earth 117. https://doi.org/10.1029/2012JB009144. [Google Scholar]
  • Unrug R. 1997. Rodinia to Gondwana: the geodynamic map of Gondwana supercontinent assembly. GSA Today 7: 1–6. [Google Scholar]
  • Van Den Driessche J, Brun J-P. 1992. Tectonic evolution of the Montagne Noire (French Massif Central): a model of extensional gneiss dome. Geodin. Acta 5: 85–97. [CrossRef] [Google Scholar]
  • Vanderhaeghe O. 1999. Pervasive melt migration from migmatites to leucogranite in the Shuswap metamorphic core complex, Canada: control of regional deformation. Tectonophysics 312: 35–55. [CrossRef] [Google Scholar]
  • Vanderhaeghe O. 2009. Migmatites, granites and orogeny: Flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics 477: 119–134. https://doi.org/10.1016/j.tecto.2009.06.021. [CrossRef] [Google Scholar]
  • Vanderhaeghe O, Duchêne S. 2010. Crustal-scale mass transfer, geotherm and topography at convergent plate boundaries: Crustal dynamics at convergent plate boundaries. Terra Nova 22: 315–323. https://doi.org/10.1111/j.1365-3121.2010.00952.x. [CrossRef] [Google Scholar]
  • Vanderhaeghe O, Teyssier C. 2001a. Crustal-scale rheological transitions during late-orogenic collapse. Tectonophysics 335: 211–228. https://doi.org/10.1016/S0040-1951(01)00053-1. [CrossRef] [Google Scholar]
  • Vanderhaeghe O, Teyssier C. 2001b. Partial melting and flow of orogens. Tectonophysics 342: 451–472. [CrossRef] [Google Scholar]
  • Vanderhaeghe O, Burg J-P, Teyssier C. 1999. Exhumation of migmatites in two collapsed orogens: Canadian Cordillera and French Variscides. Geol. Soc. Lond. Spec. Publ. 154: 181–204. [CrossRef] [Google Scholar]
  • Vanderhaeghe O, Medvedev S, Fullsack P, Beaumont C, Jamieson RA. 2003. Evolution of orogenic wedges and continental plateaux: insights from crustal thermal-mechanical models overlying subducting mantle lithosphere. Geophys. J. Int. 153: 27–51. [CrossRef] [Google Scholar]
  • Vanderhaeghe O, Prognon F, Gardien V, Solgadi F, Blein O, Watinne A, et al. 2013. Notice de la carte géologique de St Germain Lembron (742). [Google Scholar]
  • Vanderhaeghe O, Kruckenberg SC, Gerbault M, Martin L, Duchêne S, Deloule E. 2018. Crustal-scale convection and diapiric upwelling of a partially molten orogenic root (Naxos dome, Greece). Tectonophysics 746: 459–469. https://doi.org/10.1016/j.tecto.2018.03.007. [CrossRef] [Google Scholar]
  • Vialette Y. 1973. Age des granites du Massif Central. Bull. Société Géologique Fr. 7: 260–270. [CrossRef] [Google Scholar]
  • Vialette Y, Sabourdy G. 1977. Age du granite de l’Aigoual dans le Massif des Cévennes (France). C R Somm Soc Géol Fr 19: 130–132. [Google Scholar]
  • Vialette Y, Fernandez A, Sabourdy G. 1979. Age rubidium/strontium de différents plutons du mont Lozère. [Google Scholar]
  • Vielzeuf D, Holloway JR. 1988. Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib. Mineral. Petrol. 98: 257–276. [CrossRef] [Google Scholar]
  • Vielzeuf D, Vidal P. 2012. Granulites and crustal evolution. Springer Science & Business Media. [Google Scholar]
  • Vielzeuf D, Clemens JD, Pin C, Moinet E. 1990. Granites, granulites, and crustal differentiation. In: Granulites and Crustal Evolution. Springer, pp. 59–85. [CrossRef] [Google Scholar]
  • Vigneresse JL, Barbey P, Cuney M. 1996. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. J. Petrol. 37: 1579–1600. [CrossRef] [Google Scholar]
  • Villaros A, Laurent O, Couzinié S, Moyen J-F, Mintrone M. 2018. Plutons and domes: the consequences of anatectic magma extraction – Example from the southeastern French Massif Central. Int. J. Earth Sci. 107: 2819–2842. https://doi.org/10.1007/s00531-018-1630-x. [CrossRef] [Google Scholar]
  • Vitel G, 1988. Le Granite du Gouffre d’Enfer (Massif Central francais) ; petrologie d’un marqueur tectonique varisque. Bull. Société Géologique Fr. 4: 907–915. [CrossRef] [Google Scholar]
  • von Raumer JF, Stampfli GM, Bussy F. 2003. Gondwana-derived microcontinents – The constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365: 7–22. https://doi.org/10.1016/S0040-1951(03)00015-5. [CrossRef] [Google Scholar]
  • von Raumer JF, Finger F, Veselá P, Stampfli GM. 2014. Durbachites-Vaugnerites-a geodynamic marker in the central E uropean Variscan orogen. Terra Nova 26: 85–95. [CrossRef] [Google Scholar]
  • Warren CJ, Beaumont C, Jamieson RA. 2008. Deep subduction and rapid exhumation: Role of crustal strength and strain weakening in continental subduction and ultrahigh-pressure rock exhumation: modelling of uhp exhumation processes. Tectonics 27. https://doi.org/10.1029/2008TC002292. [Google Scholar]
  • Watson EB, Harrison TM. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 64: 295–304. https://doi.org/10.1016/0012-821X(83)90211-X. [Google Scholar]
  • Weinberg RF. 1997. Diapir-driven crustal convection: decompression melting, renewal of the magma source and the origin of nested plutons. Tectonophysics 271: 217–229. https://doi.org/10.1016/S0040-1951(96)00269-7. [CrossRef] [Google Scholar]
  • Weinberg RF. 2016. Himalayan leucogranites and migmatites: nature, timing and duration of anatexis. J. Metamorph. Geol. 34: 821–843. [CrossRef] [Google Scholar]
  • Weinberg RF, Mark G. 2008. Magma migration, folding, and disaggregation of migmatites in the Karakoram Shear Zone, Ladakh, NW India. Geol. Soc. Am. Bull. 120: 994–1009. [CrossRef] [Google Scholar]
  • Weinberg RF, Schmeling H. 1992. Polydiapirs: multiwavelength gravity structures. J. Struct. Geol. 14: 425–436. https://doi.org/10.1016/0191-8141(92)90103-4. [CrossRef] [Google Scholar]
  • Weinberg RF, Searle MP. 1998. The Pangong Injection Complex, Indian Karakoram: a case of pervasive granite flowthrough hot viscous crust. J. Geol. Soc. 155: 883–891. [CrossRef] [Google Scholar]
  • Weinberg RF, Hasalová P, Ward L, Fanning CM. 2013. Interaction between deformation and magma extraction in migmatites: Examples from Kangaroo Island, South Australia. Bulletin 125: 1282–1300. [Google Scholar]
  • Whitney DL, Teyssier C, Vanderhaeghe O. 2004. Gneiss domes and crustal flow. Gneiss Domes Orogeny 380: 15. [Google Scholar]
  • Whitney DL, Teyssier C, Rey P, Buck WR. 2013. Continental and oceanic core complexes. Bulletin 125: 273–298. [Google Scholar]
  • Whitney DL, Roger F, Teyssier C, Rey PF, Respaut J-P. 2015. Syn-collapse eclogite metamorphism and exhumation of deep crust in a migmatite dome: The P–T–t record of the youngest Variscan eclogite (Montagne Noire, French Massif Central). Earth Planet. Sci. Lett. 430: 224–234. https://doi.org/10.1016/j.epsl.2015.08.026. [CrossRef] [Google Scholar]
  • Wickham SM, Oxburgh ER, Reading HG, Vissers RLM. 1987. Low-Pressure Regional Metamorphism in the Pyrenees and its Implications for the Thermal Evolution of Rifted Continental Crust [and Discussion]. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 321: 219–242. https://doi.org/10.1098/rsta.1987.0012. [Google Scholar]
  • Williams HM. 2004. Nature of the Source Regions for Post-collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling. J. Petrol. 4: 555–607. https://doi.org/10.1093/petrology/egg094. [CrossRef] [Google Scholar]
  • Williamson BJ, Downes H, Thirlwall MF. 1992. The relationship between crustal magmatic underplating and granite genesis: an example from the Velay granite complex, Massif Central, France. Earth Environ. Sci. Trans. R. Soc. Edinb. 83: 235–245. [Google Scholar]
  • Williamson BJ, Shaw A, Downes H, Thirlwall MF. 1996. Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France. Chem. Geol. 127: 25–42. [Google Scholar]
  • Williamson BJ, Downes H, Thirlwall MF, Beard A. 1997. Geochemical constraints on restite composition and unmixing in the Velay anatectic granite, French Massif Central. Lithos 40: 295–319. [CrossRef] [Google Scholar]
  • Wyllie PJ. 1977. Crustal anatexis: an experimental review. Tectonophysics 43: 41–71. [CrossRef] [Google Scholar]
  • Yakymchuk C, Brown M. 2014. Behaviour of zircon and monazite during crustal melting. J. Geol. Soc. 171: 465–479. [CrossRef] [Google Scholar]
  • Závada P, Schulmann K, Racek M, Hasalová P, Jeřábek P, Weinberg RF, et al. 2018. Role of strain localization and melt flow on exhumation of deeply subducted continental crust. Lithosphere 10: 217–238. https://doi.org/10.1130/L666.1. [CrossRef] [Google Scholar]
  • Ziegler PA, Dèzes P. 2006. Crustal evolution of Western and Central Europe. Geol. Soc. Lond. Mem. 32: 43–56. https://doi.org/10.1144/GSL.MEM.2006.032.01.03. [CrossRef] [Google Scholar]
  • Zwart HJ. 1967. The duality of orogenic belts. Geol. En Mijnb. 46: 283–309. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.