BSGF - Earth Sci. Bull.
Volume 191, 2020
Special Issue L’Ambre
Article Number 24
Number of page(s) 5
Published online 18 September 2020
  • Brasero N, Nel A, Michez D. 2009. Insects from the Early Eocene amber of Oise (France): diversity and palaeontological significance. Denisia 26: 41–52. [Google Scholar]
  • Carbuccia B, Rollard C, Nel A, Garrouste R. In press. Oise amber (Earliest Eocene) spiders (Araneae) paleodiversity and palaeontological significance. Peer J. [Google Scholar]
  • Dunlop J, Penney D, Jekel D. 2018. A summary list of fossil spiders and their relatives. In: World Spider Catalog. Natural History Museum Bern., version 19.0, accessed on 08/10/2018. [Google Scholar]
  • Koch C, Berendt G. 1854. Die im Bernstein befindlichen organischen Reste der Vorwelt gesammelt in Verbindung mit Mehreren bearbeitet und herausgegeben von. Berlin: Ed. Berendt G., pp. 1–124. [Google Scholar]
  • Nel A, De Ploëg G, Dejax J, et al. 1999. An exceptional Sparnacian locality with plants, arthropods and vertebrates (Earliest Eocene, MP7): Le Quesnoy (Oise, France). C R Acad Sci II A Earth Planet Sci 329: 65–72. [Google Scholar]
  • Penney D. 2006. The oldest fossil pholcid and selenopid spiders (Araneae) in lowermost eocene amber from the Paris Basin, France. J Arachnol 34: 592–598. [CrossRef] [Google Scholar]
  • Penney D. 2007a. A new fossil oonopid spider in lowermost Eocene amber from the Paris Basin, with comments on the fossil spider assemblage. Afr Invertebr 48: 71–75. [Google Scholar]
  • Penney D. 2007b. First fossil Micropholcommatidae (Araneae), imaged in Eocene Paris amber using X-ray computed tomography. Zootaxa 1623: 47–53. [CrossRef] [Google Scholar]
  • Penney D, ed. 2010. Biodiversity of fossils in amber, from the major world deposits. Manchester: Siri Scientific Press, 304 p. [Google Scholar]
  • Röhl U, Westerhold T, Bralower T, Zachos J. 2007. On the duration of the Paleocene-Eocene thermal maximum (PETM). Geochem Geophys Geosyst 8: 1–13. [Google Scholar]
  • Ross A. 2019. Burmese (Myanmar) amber checklist and bibliography 2018. Palaeoentomology 2(1): 22–84. [CrossRef] [Google Scholar]
  • Sadowski E-M, Schmidt A, Seyfullah L, Kuntzmann L. 2017. Conifers of the “Baltic amber forest” and their Palaeoecological Significance. Stapfia 106: 1–73. [Google Scholar]
  • Saupe E, Farnsworth A, Lunt D, Sagoo N, Pham K, Field D. 2019. Climatic shifts drove major contractions in avian latitudinal distribution through the Cenozoic. Proc Natl Acad Sci U S A 116 (26): 12895–12900. [CrossRef] [Google Scholar]
  • Wolfe A, McKellar R, Tappert R, Sodhi R, Muehlenbachs K. 2015. Bitterfeld amber is not Baltic amber: three geochemical tests and further constraints on the botanical affinities of succinite. Rev Palaeobot Palynol 225: 21–32. [CrossRef] [Google Scholar]
  • Wood H, Griswold C, Gillespie R. 2012. Phylogenetic placement of pelican spiders (Archaeidae, Araneae), with insight into evolution of the “neck” and predatory behaviours of the superfamily Palpimanoidea. Cladistics 28: 598–626. [CrossRef] [Google Scholar]
  • Wunderlich J. 2004. Fossil spiders in amber and copal: conclusions, revisions, new taxa and family diagnoses of fossil and extant taxa. Hirschberg-Leutershausen: Ed. Joerg Wunderlich, 1893 p. [Google Scholar]
  • Zachos J, Dickens G, Zeebe R. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451: 279–283. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.