BSGF - Earth Sci. Bull.
Volume 191, 2020
Special Issue L’Ambre
Numéro d'article 24
Nombre de pages 5
Publié en ligne 18 septembre 2020
  • Brasero N, Nel A, Michez D. 2009. Insects from the Early Eocene amber of Oise (France): diversity and palaeontological significance. Denisia 26: 41–52. [Google Scholar]
  • Carbuccia B, Rollard C, Nel A, Garrouste R. In press. Oise amber (Earliest Eocene) spiders (Araneae) paleodiversity and palaeontological significance. Peer J. [Google Scholar]
  • Dunlop J, Penney D, Jekel D. 2018. A summary list of fossil spiders and their relatives. In: World Spider Catalog. Natural History Museum Bern., version 19.0, accessed on 08/10/2018. [Google Scholar]
  • Koch C, Berendt G. 1854. Die im Bernstein befindlichen organischen Reste der Vorwelt gesammelt in Verbindung mit Mehreren bearbeitet und herausgegeben von. Berlin: Ed. Berendt G., pp. 1–124. [Google Scholar]
  • Nel A, De Ploëg G, Dejax J, et al. 1999. An exceptional Sparnacian locality with plants, arthropods and vertebrates (Earliest Eocene, MP7): Le Quesnoy (Oise, France). C R Acad Sci II A Earth Planet Sci 329: 65–72. [Google Scholar]
  • Penney D. 2006. The oldest fossil pholcid and selenopid spiders (Araneae) in lowermost eocene amber from the Paris Basin, France. J Arachnol 34: 592–598. [CrossRef] [Google Scholar]
  • Penney D. 2007a. A new fossil oonopid spider in lowermost Eocene amber from the Paris Basin, with comments on the fossil spider assemblage. Afr Invertebr 48: 71–75. [Google Scholar]
  • Penney D. 2007b. First fossil Micropholcommatidae (Araneae), imaged in Eocene Paris amber using X-ray computed tomography. Zootaxa 1623: 47–53. [CrossRef] [Google Scholar]
  • Penney D, ed. 2010. Biodiversity of fossils in amber, from the major world deposits. Manchester: Siri Scientific Press, 304 p. [Google Scholar]
  • Röhl U, Westerhold T, Bralower T, Zachos J. 2007. On the duration of the Paleocene-Eocene thermal maximum (PETM). Geochem Geophys Geosyst 8: 1–13. [Google Scholar]
  • Ross A. 2019. Burmese (Myanmar) amber checklist and bibliography 2018. Palaeoentomology 2(1): 22–84. [CrossRef] [Google Scholar]
  • Sadowski E-M, Schmidt A, Seyfullah L, Kuntzmann L. 2017. Conifers of the “Baltic amber forest” and their Palaeoecological Significance. Stapfia 106: 1–73. [Google Scholar]
  • Saupe E, Farnsworth A, Lunt D, Sagoo N, Pham K, Field D. 2019. Climatic shifts drove major contractions in avian latitudinal distribution through the Cenozoic. Proc Natl Acad Sci U S A 116 (26): 12895–12900. [CrossRef] [Google Scholar]
  • Wolfe A, McKellar R, Tappert R, Sodhi R, Muehlenbachs K. 2015. Bitterfeld amber is not Baltic amber: three geochemical tests and further constraints on the botanical affinities of succinite. Rev Palaeobot Palynol 225: 21–32. [CrossRef] [Google Scholar]
  • Wood H, Griswold C, Gillespie R. 2012. Phylogenetic placement of pelican spiders (Archaeidae, Araneae), with insight into evolution of the “neck” and predatory behaviours of the superfamily Palpimanoidea. Cladistics 28: 598–626. [CrossRef] [Google Scholar]
  • Wunderlich J. 2004. Fossil spiders in amber and copal: conclusions, revisions, new taxa and family diagnoses of fossil and extant taxa. Hirschberg-Leutershausen: Ed. Joerg Wunderlich, 1893 p. [Google Scholar]
  • Zachos J, Dickens G, Zeebe R. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451: 279–283. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.