Open Access
Issue |
BSGF - Earth Sci. Bull.
Volume 191, 2020
Special Issue L’Ambre
|
|
---|---|---|
Article Number | 23 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/bsgf/2020028 | |
Published online | 18 September 2020 |
- Anderson EE, Wilson C, Knap, AH, Villareal T. 2018. Summer diatom blooms in theeastern North Pacific gyre investigated with a long-enduranceautonomous surface vehicle. Peer J 6: e5387. https://doi.org/10.7717/peerj.5387. [CrossRef] [Google Scholar]
- Asama K, Nakornsri N, Hinthong C, Sinsakul S. 1981. Some younger Mesozoic plants from Trang, southern Thailand. Geology and Palaeontology of Southeast Asia 22: 35–47. [Google Scholar]
- Baldauf JG. 1992. Middle Eocene through Early Miocene diatom floral turnover. In: Prothero DR, Berggren WA, eds. Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press, pp. 310–326. [CrossRef] [Google Scholar]
- Barron JA. 1985. Diatom biostratigraphy of the CESAR 6 core, Alpha Ridge. Initial Geological Report of CESAR-the Canadian Expedition to study the Alpha Ridge. Geological Survey of Canada Paper 84: 137–143. [Google Scholar]
- Barron JA, Baldauf JG. 1989. Tertiary cooling steps and paleoproductivity as reflected by diatoms and biosiliceous sediments. In: Berger WH, Smetacek VS, Wefer G, eds. Productivity of the Ocean: Present and Past. John Wiley & Sons Limited, pp. 341–354. [Google Scholar]
- Barron JA, Baldauf JG. 1995. Cenozoic marine diatom stratigraphy and applications to paleoclimatology and paleoceanography. In: Blome CD, Whalen PM, Reed KM, eds. Siliceous microfossils. Paleontological Society Short Courses in Paleontology. Knoxville (USA): University of Tennessee, 8: 107–118. [Google Scholar]
- Barron JA, Bukry D, Poore RZ. 1984. Correlation of the Middle Eocene Kellog Shale of northern California. Micropaleontology 30: 138–170. [CrossRef] [Google Scholar]
- Barron JA, Stickley CE, Bukry D. 2015. Paleoceanographic and paleoclimatic constraints on the global Eocene diatom and silicoflagellate record. Palaeogeography, Palaeoclimatology, Palaeoecology 422: 85–100. [CrossRef] [Google Scholar]
- Benda L. 1972. The diatoms of the Moler Formation of Denmark (Lower Eocene): a preliminary report. Nova Hedwigia Beihefte 39: 251–266. [Google Scholar]
- Berggren WA, Prothero DR. 1992. Eocene-Oligocene climatic and biotic evolution: an review. In: Prothero D, Berggren WA, eds. Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press, pp. 1–28. [Google Scholar]
- Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. 2008. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456: 239–244. [CrossRef] [PubMed] [Google Scholar]
- Bradbury JP, Krebs WN. 1995. Fossil continental diatoms: paleolimnology, evolution and biochronology. In: Babcock LE, Ausich WI, eds. Siliceous microfossils. Short Courses in Paleontology, The Paleontological Society. Knoxville, Tennesse, 8: 119–138. [Google Scholar]
- Buffetaut E, Suteethorn V, Tong H, Köšir A. 2005. First dinosaur from the Shan-Thai block of SE Asia: a Jurassic sauropod from the southern peninsula of Thailand. Journal of the Geological Society London 162: 481–484. [CrossRef] [Google Scholar]
- Chacón-Baca E, Beraldi-Campesi H, Cevallos-Ferriz SRS, Knoll AH, Golubic S. 2002. 70 Ma nonmarine diatoms from northern Mexico. Geology 30: 279–281. [CrossRef] [Google Scholar]
- Chang KH, Bak YS, Park SO. 2007. Early Cretaceous diatoms and geology in Korea. Journal of the Paleontological Society of Korea 23: 205–212. [Google Scholar]
- Chongllakmani C, Duan W. 1990. Note on the continental deposits of peninsular Thailand with a description of some conchostreans. Oil and Gas Geology 2: 31–37. [Google Scholar]
- Cuny G, Srisuk P, Khamha S, Suteethorn V, Tong H. 2009. A new elasmobranch fauna from the Middle Jurassic of southern Thailand. Geological Society, London, Special Publications 315: 95–111. [CrossRef] [Google Scholar]
- Cuny G, Liard R, Deesri U, Liard T, Khamha S, Suteethorn V. 2014. Shark faunas from the Late Jurassic-Early Cretaceous of northeastern Thailand. Paläontologische Zeitschrift 88: 309–328. [CrossRef] [Google Scholar]
- Cupp EE. 1977. Marine plankton diatoms of the west coast of North America. Bulletin of the Scripps Institution of Oceanography of the University of California, La Jolla, California 5: 1–238. [Google Scholar]
- Davies A, Kemp AES. 2016. Late Cretaceous seasonal palaeoclimatology and diatom palaeoecology from laminated sediments. Cretaceous Research 65: 82–111. [CrossRef] [Google Scholar]
- De Conto RM, Brady EC, Bergengren J, Hay WW. 2000. Late Cretaceous climate, vegetation, and ocean interactions. In: Huber B, Macleod KG, Wing SL, eds. Warm climates in earth history. Cambridge: Cambridge University Press, pp. 275–296. [Google Scholar]
- Dell’Agnese DJ, Clark DL. 1994. Siliceous microfossils from the warm late Cretaceous and early Arctic Ocean. Journal of Paleontology 68(1): 31–47. [CrossRef] [Google Scholar]
- Dörfelt H, Schäfer U. 2000. Palaeozygnema spiralis, ein Vertreter der Conjugatophyceae in mezozoischen Bernstein aus Bayern. Hoppea, Denkschriften der Regensburgischen Botanischen Gesellschaft 61: 785–793. [Google Scholar]
- Edwards AR. 1991. The Oamaru diatomite. New Zealand Geological Survey Paleontological Bulletin 64: 260. [Google Scholar]
- Egan KE, Rickaby REM, Hendry KR, Halliday AN. 2013. Opening the gateways for diatoms primes Earth for Antarctic galaciation. Earth and Planetary Sciences Letters 375: 34–43. [CrossRef] [Google Scholar]
- Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, et al. 2004. The evolution of modern eukaryotic phytoplankton. Science 305: 354–360. [CrossRef] [Google Scholar]
- Fenner J. 1984. Middle Eocene to Oligocene planktonic diatom stratigraphy from Deep Sea Drilling sites in the South Atlantic, Equatorial Pacific and Indian oceans. In: Hay WW, Sibuet JC, et al., eds. Initial Reports DSDP 75, Part 2. Washington, pp. 1245–1272. [Google Scholar]
- Fenner J. 1985. Late Cretaceous to Oligocene planktic diatoms. In: Bolli HM, Saunders J, Perch-Nielsen K, eds. Plankton Stratigraphy. Cambridge University Press, pp. 713–762. [Google Scholar]
- Fenner J. 1988. Occurrence of pre-Quaternary diatoms in Scandinavia reconsidered. Meyniana 40:133–141. [Google Scholar]
- Fenner J. 1994. Diatoms of the Fur Formation, their taxonomy and biostratigraphic interpretation-results from the Harre borehole, Denmark. Aarhus Geoscience 1: 99–131. [Google Scholar]
- Fontaine H. 1990. The Upper Palaeozoic and Mesozoic fossils of West Thailand. In: Fontaine H, ed. Ten years of CCOP research on the Tertiary of East Asia. Bangkok (Tahiland): CCOP Technical Secretariat, pp. 353–357. [Google Scholar]
- Forti A, Schulz P. 1932. Erste Mitteilung über Diatomeen aus dem Hannoverschen Gault. Beihefte zum Botanischen Zentralblatt 50: 241–246. [Google Scholar]
- Foster RA, Kuypers MMM, Vagner T, Paerl RW, Musat N, Zehr JP. 2011. Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. The ISME Journal 5: 1484–1493. [CrossRef] [Google Scholar]
- Foucault A, Servant-Vildary S, Fang N, Powichrowski L. 1986. Un des plus vieux gisements de diatomées découvert dans l’Albien-Cénomanien des Alpes-Ligures (Italie). Remarques sur l’apparition de ces algues. Comptes Rendus de l’Académie des Sciences 303: 397–402. [Google Scholar]
- Fourtanier E. 1991a. Diatom biostratigraphy of equatorial Indian Ocean site 758. In: Weissel J, Peirce J, Taylor E, Alt J, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results 121: 189–208. [Google Scholar]
- Fourtanier E. 1991b. Paleocene and Eocene diatom biostratigraphy and taxonomy of eastern Indian Ocean site 752. In: Weissel J, Peirce J, Taylor E, Alt J, et al., eds. Proceedings of the Ocean Drilling Program Scientific Results 121: 171–187. [Google Scholar]
- Georgi KH. 1976. Mikrofaunistische-lithologische Untersuchungen der Hilssandstein-Region (Apt/Alb) im Raum Salzgitter-Gotlar. Mitteilungen aus dem Geologischen Institut der Technischen Universität, Hannover 13: 5–112. [Google Scholar]
- Gersonde R, Harwood DM. 1990. Lower Cretaceous diatoms from ODP Leg 113 site 693 (Weddell sea). Part 1: Vegetative cells. In: Barker PF, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX (Ocean Drilling Program), pp. 365–402. [Google Scholar]
- Girard V. 2010. Microcénoses des ambres médio-crétacés français. Taphonomie, systématique, paléoécologie et reconstitution du paléoenvironnement. Mémoires Géosciences Rennes 134: 1–293. [Google Scholar]
- Girard V, Schmidt AR, Saint Martin S, Struwe S, Perrichot V, Saint Martin JP, et al. 2008. Evidence for marine microfossils from amber. Proceedings of the National Academy of Sciences of the United States of America 105: 17426–17429. [CrossRef] [Google Scholar]
- Girard V, Néraudeau D, Breton G, Saint Martin S, Saint Martin JP. 2009a. Contamination of amber samples by recent microorganisms and remediation evidenced by Mid-Cretaceous amber of France. Geomicrobiology Journal 26: 21–30. [CrossRef] [Google Scholar]
- Girard V, Saint Martin S, Saint Martin JP, Schmidt AR, Struwe S, Perrichot V, et al. 2009b. Exceptional preservation of marine diatoms in Upper Albian amber. Geology 37: 83–86. [CrossRef] [Google Scholar]
- Girard V, Néraudeau D, Adl SM, Breton G. 2011. Protist-like inclusions in amber, as evidenced by Charentes amber. European Journal of Protistology 47: 59–66. [CrossRef] [Google Scholar]
- Girard V, Salpeteur I, Dutta S, Bauer H, Raju SV. 2014. An enigmatic piece of amber in the Oligocene of the Assam-Arakan basin (Eastern India). Geobios 48: 1–8. [CrossRef] [Google Scholar]
- Guiry MD, Guiry GM. 2020. AlgaeBase. World-wide electronic publication. Galway: National University of Ireland. http://www.algaebase.org. [Google Scholar]
- Guo YI. 1994. Primary productivity and phytoplankton in China seas. In: Zhou D, Liang YB, Zeng CK, eds. Oceanology of China Seas. Dordrecht (The Netherlands): Kluwer Academic Publishers 1: 227–242. [Google Scholar]
- Hajos M, Stradner H. 1975. Late Cretaceous archaemonadaceae, diatomaceae and silicoflagellate from the South Pacific Ocean. Deep Sea Drilling Project, Leg 29, site 275. In: Kennett JP, et al., eds. Initial Reports of DSDP 29. Washington, D.C., pp. 913–1009. [Google Scholar]
- Hanna GD. 1927. Cretaceous diatoms from California. California Academy of Science, Occasional Paper 13: 1–49. [Google Scholar]
- Harwood DM. 1988. Upper Cretaceous and Lower Paleocene diatom and silicoflagellates biostratigraphy of Seymour Island, eastern Antarctic Peninsula. Geological Society of America Memoir 169: 55–129. [CrossRef] [Google Scholar]
- Harwood DM, Gersonde R. 1990. Lower Cretaceous diatoms from ODP Leg 113 site 693 (Weddell sea). Part 2: resting spores, chrysophycean cysts, an endoskeletal dinoflagellate, and notes on the origin of diatoms. In: Barker PF, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX (Ocean Drilling Program), pp. 403–426. [Google Scholar]
- Harwood DM, Nikolaev VA. 1995. Cretaceous diatoms: morphology, taxonomy, biostratigraphy. In: Blome CD, et al. (convenors), Siliceous Microfossils. Paleontological Society Short Courses in Paleontology 8, 81–106 [Google Scholar]
- Harwood DM, Nikolaev VA, Winter DM. 2007. Cretaceous records of diatom evolution, radiation, and expansion. Paleontological Society Papers 13: 33–59. [CrossRef] [Google Scholar]
- Hasle G, Syvertsen EE. 1997. Marine diatoms. In: Tomas CR, ed. Identifying marine phytoplankton. USA: Academic Press, pp. 5–386. [CrossRef] [Google Scholar]
- Heiberg PAC. 1863. Conspectus criticus diatomacearum danicarum. Kritisk oversigt over de danske Diatomeer, 6 pls. Kjøbenhavn: Wilhelm Priors Forlag, pp. 1–135. [Google Scholar]
- Hendey NI. 1964. An introductory account of the smaller algae of British coastal waters. Part V. Bacillariophyceae (Diatoms). Fishery investigations, Series IV. Her Majesty’s Stationery Office 1–317. [Google Scholar]
- Homann M. 1991. Die Diatomeen der Fur-Formation (Alttertiär) aus dem Limfjord-Gebiet, Nordjütland/Dänemark. Geologisches Jahrbuch Reihe A 123: 285. [Google Scholar]
- Jewson DH, Harwood DM. 2017. Diatom life cycles and ecology in the Cretaceous. Journal of Phycology 53: 616–628. [CrossRef] [Google Scholar]
- Jousé A. 1949. New upper Cretaceous diatoms and silicoflagellates from argillaceous sands and the Bol’shoi Kitoi river, east slope of the northern Ural. Botaniceskie Materialy Otdela Sporovyh Rastenij Botaniceskogo Instituta Imeni V.L. Komarova Akademii Nauk SSSR 6: 1–6. [Google Scholar]
- Jousé A. 1978. Diatom biostratigraphy on the generic level. Micropaleontology 24(3): 316–326. [CrossRef] [Google Scholar]
- Kanjanapayont P. 2014. Deformation style of the Mesozoic sedimentary rocks in southern Thailand. Journal of Asian Earth Sciences 92: 1–9. [CrossRef] [Google Scholar]
- Kemp AES, Villareal TA. 2013 High diatom production and export in stratified waters – a potential negative feedback to global warming. Progress in Oceanography 119: 4–23. [CrossRef] [Google Scholar]
- Kemper E, Bertran H, Deiters H. 1975. Zur Biostratigraphie und Paleokölogie der Schichtenfolge Ober Apt/Unter imm Beckenzeirum nördlich und östlich von Hannover. Berichte der Naturhistorischen Gesellschaft Hannover 119: 49–85. [Google Scholar]
- Kooistra WCF, Gersonde R, Medlin LK, Mann DG. 2007. The origin and evolution of the diatoms: their adaptation to a planktonic existence. In: Falkowski PG, Knoll AH, eds. Evolution of primary producers in the sea. Burlington (USA): Elsevier Academic Press, pp. 201–250. [Google Scholar]
- Kuypers MMM, van Breugel Y, Schouten S, Erba E, Damste JSS. 2004. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology 32(10): 853–856. [CrossRef] [Google Scholar]
- Lazarus D, Barron J, Renaudie J, Diver P, Turke A. 2014. Cenozoic planktonic marine diatom diversity and correlation to climate change. Plos One 9(1), https://doi.org/10.1371/journal.pone.0084857.g001. [Google Scholar]
- Lei Z. 1993. The discovery and significance of the Late Jurassic sporopollen assemblage in peninsular Thailand. In: Thanasuthipitak T, ed. Biostratigraphy of Mainland Southeast Asia: Facies and Paleontology. Chiang Mai (Thailand): Chiang Mai University, pp. 361–379. [Google Scholar]
- Martin JE, Deesri U, Liard R, Wattanapituksakul A, Suteethorn S, Lauprasert K, et al. 2016. Strontium isotopes and the long-term residency of thalattosuchians in the freshwater environment. Paleobiology 42(1): 143–156. [CrossRef] [Google Scholar]
- Martin J, Suteethorn S, Lauprasert K, Tong H, Buffetaut E, Liard R, et al. 2019. A new freshwater teleosaurid from the Jurassic of northeastern Thailand. Journal of Vertebrate Paleontology. https://doi.org/10.1080/02724634.2018.1549059. [Google Scholar]
- Martín-González A, Wierzchos J, Gutièrrez JC, Alonso J, Ascaso C. 2008. Morphological stasis of protists in Lower Cretaceous amber. Protist 159: 251–257. [CrossRef] [Google Scholar]
- McCartney K, Witkowski J, Harwood DM. 2014. New insights into skeletal morphology of the oldest known silicoflagellates: Variramus, Cornua and Gleserocha gen. nov. Revue de Micropaléontologie 57: 75–91. [CrossRef] [Google Scholar]
- Medlin LK. 2010. A timescale for diatom evolution based on four molecular markers and assigning off ghost lineages to original discoverers. Abstracts of the 21st International Diatom Symposium, Minneapolis, 35 p. [Google Scholar]
- Medlin LK. 2011. A review of the evolution of the diatoms from the origin of the lineage to their populations. In: Seckbach J, Kociolek JP, eds. The diatom world. Amsterdam: Springer, pp. 95–118. [Google Scholar]
- Medlin LK, Kaczmarska I. 2004. Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43: 245–270. [CrossRef] [Google Scholar]
- Meesook A, Saengsrichan W. 2011. Jurassic. In: Ridd MF, Barber AJ, Crow MJ, eds. The geology of Thailand. London (United Kingdoms): The Geological Society of London, pp. 151–168. [CrossRef] [Google Scholar]
- Meyers PA, Bernsconi SM, Yum JG. 2009. 20 My nitrogen fixation during deposition of mid-Cretaceous black shales on the Demerara Rise, equatorial Atlantic Ocean. Organic Geochemistry 40: 158–166. [CrossRef] [Google Scholar]
- Monjanel A-L. 1987. Les diatomées oligocènes à holocènes de l’Atlantique nord rt de la Méditerranée occidentale. Thèse de doctorat de l’ Université de Bretagne occidentale, Brest, Nouvelle série 38, 320 p. [Google Scholar]
- Nakov T, Beaulieu JM, Alverson AJ. 2018. Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). New Phytologist 219: 462–473. [CrossRef] [Google Scholar]
- Nikolaev VA, Kociolek JP, Fourtanier E, Barron JA, Harwood DM. 2001. Late Cretaceous diatoms (Bacillariophyceae) from the Marca Shale member of the Moreno Formation (California). Occasional Papers of the Clifornia Academy of Sciences 152: 119. [Google Scholar]
- Nohra Y, Azar D, Gèze R, Maksoud S, El-Samrani A, Perrichot V. 2013. New Jurassic amber outcrops from Lebanon. Terrestrial Arthropod Reviews 6: 27–51. [CrossRef] [Google Scholar]
- Oreshkina TV, Radionova EP. 2014. Diatom record of the Paleocene–Eocene Thermal Maximum in marine paleobasins of Central Russia, Transuralia and adjacent regions. Nova Hedwigia, Beiheft, 143: 307–336. [Google Scholar]
- Oreshkina TV, Lygina EA, Vozhzhiva OA, Ivanov AV. 2013. Diatoms and silicoflagellates of the Upper Cretaceous from Saratov region: biostratigraphy and sedimentation settings. Stratigraphy and Geological Correlation 21: 222–236. [CrossRef] [Google Scholar]
- Pestrea S, Blanc-Valleron MM, Rouchy JM. 2002. Les assemblages de diatomées des niveaux infra-gypseux du Messinien de Méditerranée (Espagne, Sicile, Chypre). In: Néraudeau D, Goubert E, eds. L’Événement messinien: approches paléobiologiques et paléoécologiques. Geodiversitas 24(3): 543–583. [Google Scholar]
- Philippe M, Cuny G, Suteethorn V, Teerarungsigul N, Barale G, Thevenard F, et al. 2005. A Jurassic amber deposit in Southern Thailand. Historical Biology 17: 1–6. [CrossRef] [Google Scholar]
- Poinar G Jr, Waggoner BM, Bauer UC. 1993a. Terrestrial soft-bodies protists and other micro-organisms in Triassic amber. Science 259: 222–224. [CrossRef] [Google Scholar]
- Poinar G Jr, Waggoner BM, Bauer UC. 1993b. Description and palaeoecology of a Triassic amoeba. Naturwissenschaften 80: 566–568. [CrossRef] [Google Scholar]
- Racey A, Goodall JGS. 2009. Palynology and stratigraphy of the Mesozoic Khorat Group red bed sequences from Thailand. Geological Society, London, Special Publications 315: 69–83. [CrossRef] [Google Scholar]
- Ragazzi E, Roghi G, Giaretta A, Gianolla P. 2003. Classification of amber based on thermal analysis. Thermochimica Acta 404: 43–54. [CrossRef] [Google Scholar]
- Ragazzi E, Giaretta A, Perrichot V, Néraudeau D, Schmidt AR, Roghi G. 2009. Thermal analysis of Cretaceous ambers from southern France. Geodiversitas 31: 163–175. [CrossRef] [Google Scholar]
- Renaudie J, Drews EL, Bohne S. 2018. The Paleocene record of marine diatoms in deep-sea sediments. Fossil Record 21, 183–205. [CrossRef] [Google Scholar]
- Rivera P, Avaria S, Cruces F. 2003. La familia Hemiaulaceae (Bacillariophyceae) de las aguas marinas chilenas. Revista Chilena de Historia Natural 76: 651–664. [CrossRef] [Google Scholar]
- Roghi G, Ragazzi E, Gianolla P. 2006. Triassic amber of the Southern Alps (Italy). Palaios 21: 143–154. [CrossRef] [Google Scholar]
- Roghi G, Kustatscher E, Ragazzi E, Giusberti L. 2017. Middle Triassic amber associated with Voltzialean conifers from the Southern Alps of Italy. Rivista italiana di paleontologia e stratigrafia 123: 193–201. [Google Scholar]
- Ross R. 1995. A revision of Rutilaria Greville (Bacillariophyta). Bull. Brit. Mus. (Nat. Hist.), Botany Series 25: 1–93. [Google Scholar]
- Round FE, Crawford RM, Mann DG. 1990. The diatoms biology and morphology of the genera. pp. [i-ix], 1–747. Cambridge: Cambridge University Press. [Google Scholar]
- Rothpletz A. 1896. Über die Flysch-Fucoiden und einige andere fossile Algen, sowie über liasische, Diatomeen führende Hornschwämme. Zeitschrift der Deutsche Geologische Gesellschaft 48: 910–914. [Google Scholar]
- Rothpletz A. 1900. Über einen neuen jurassichen Hornschwämme und die darin eingeschlossenen Diatomeen. Zeitschrift der Deutsche Geologische Gesellschaft 52: 154–160. [Google Scholar]
- Rüst D. 1885. Beitrage zur Kenntris der fossilen Radiolarien aus Gestenien der Jura. Palaeontographica 31: 273–321. [Google Scholar]
- Sá C, Leal MC, Silva A, Nordez S, André E, Paula J, et al. 2013. Variation of phytoplankton assemblages along the Mozambique coast as revealed by HPLC and microscopy. Journal of Sea Research 79: 1–11. [CrossRef] [Google Scholar]
- Saengsrichan W, Charoentitirat T, Meesook A, Hisada K-I, Charusiri P. 2011. Paleo-environments and tectonic setting of the Mesozoic Thung Yai Group in Peninsuler Thailand, with a new record of Parvamussium donaiense Mansuy, 1914. Gondwana Research 19: 47–60. [CrossRef] [Google Scholar]
- Saint Martin S, Saint Martin JP. 2018. Exquisite preservation of a widespread filamentous microorganism from French Cretaceous ambers: a key for review of controversial fossil. Comptes Rendus Palevol 17: 415–434. [CrossRef] [Google Scholar]
- Saint Martin S, Saint Martin JP, Schmidt AR, Girard V, Néraudeau D, Perrichot V. 2015. The intriguing marine diatom genus Corethron in Late Cretaceous amber from Vendée (France). Cretaceous Research 52: 64–72. [CrossRef] [Google Scholar]
- Sato S. 2008. Phylogeny of araphid diatoms, inferred from morphological and molecular data. PhD Dissertation, University of Bremen. http//elib.suub.uni-bremen.de/diss/docs/00011057.pdf. [Google Scholar]
- Scherer R, Bohaty SM, Harwood DM. 2000. Oligocene and Lower Miocene Siliceous Microfossil Biostratigraphy of Cape Roberts Project Core CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antartica 7(4): 417–442. [Google Scholar]
- Schmidt AR, Schönborn W, Schäfer U. 2004. Diverse fossil amoebae in German Mesozoic amber. Palaeontology 47:185–197. [CrossRef] [Google Scholar]
- Schönborn W, Dörfelt H, Foissner W, Krienitz L, Schäfer U. 1999. A fossilized microcenosis in Triassic amber. Journal of Eukaryotic Microbiology 46: 571–584. [CrossRef] [Google Scholar]
- Schrader HJ, Fenner J. 1976. Norwegian sea diatom biostratigraphy and taxonomy. In: Talwani M, Udintsev G, et al., eds. Initial Reports DSDP 38. Washington, pp. 921–1098. [Google Scholar]
- Seyfullah LJ, Beimforde C, Dal Corso J, Perrichot V, Rikkinen J, Schmidt AR. 2018. Production and preservation of resins – past and present. Biological Reviews 93: 1684–1714. [CrossRef] [Google Scholar]
- Sims PA, Mann DG, Medlin LK. 2006. Evolution of diatoms: insights from fossil, biological and molecular data. Phycologia 45:361–402. [CrossRef] [Google Scholar]
- Smetacek V. 1999. Diatoms and the ocean carbon cycle. Protist 150: 25–32. [CrossRef] [Google Scholar]
- Sorhannus U. 2007. A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Marine Micropaleontology 65: 1–12. [CrossRef] [Google Scholar]
- Strel’Nikova NI. 1975. Diatoms of the Cretaceous period. Nova Hedwigia Beiheft 53:311–321. [Google Scholar]
- Strel’Nikova NI, Lastivka TV. 1999. The problem of the origin of marine and freshwater diatoms. In: Simola H, ed. Proceedings of 14th International Diatom Symposium, Koeltz Scientific Books, Koenigstein, pp. 195–204. [Google Scholar]
- Strel’Nikova NI., Martirosjan GN. 1981. Lower diatom algae from Stavropol. Viestnik LGU, Ser. Biologiya 3:52–57. [Google Scholar]
- Suteethorn S, Le Loeuff J, Buffetaut E, Suteethorn V, Wongko K. 2012. First evidence of a mamenchisaurid dinosaur from the Upper Jurassic–Lower Cretaceous Phu Kradung Formation of Thailand. Acta Palaeontologica Polonica 58(3): 459–469. [Google Scholar]
- Tapia PM, Harwood DM. 2002. Upper Cretaceous diatom biostratigraphy of the Arctic archipelago and northern continental margin, Canada. Micropaleontology 48: 303–342. [CrossRef] [Google Scholar]
- Teerarungsigul N, Raksaskulwong L, Khantaprab C. 1999. Reconsideration of lithostratigraphy of non-marine Mesozoic rocks in Thung Yai–Khlong Thom area, Southern Thailand. In: Khantraprab C, Sarapirome S, eds. Proceedings of the Symposium on Mineral, Energy and Water Resources of Thailand: Towards the Year 2000. Bangkok (Thailand): Department of Mineral Resources, pp. 109–114. [Google Scholar]
- Tréguer P, Nelson D, van Bennekom AJ, DeMaster DJ, Leynaert A. 1995. The silica balance in the world ocean: a reestimate. Science 268: 375–379. [CrossRef] [Google Scholar]
- Vakhrameev VA. 1987. Climates and the distribution of some gymnosperms in Asia during the Jurassic and Cretaceous. Review of Palaeobotany and Palynology 51: 205–2112. [CrossRef] [Google Scholar]
- Villareal TA. 1991. Nitrogen-fixation by the cyanobacterial symbiont of the diatom genus Hemiaulus. Marine Ecology Progress Series 76: 201–204. [CrossRef] [Google Scholar]
- Wagner T, Damste JSS, Hofmann P, Beckmann B. 2004. Euxinia and primary production in Late Cretaceous eastern equatorial Atlantic surface waters fostered orbitally driven formation of marine black shales. Paleoceanography 19(4): 3009. https://doi.org/10.1029/2003PA000898. [Google Scholar]
- Wall JH. 1975. Diatoms and radiolarians from the Cretaceous system of Alberta – a preliminary report. Geological Association of Canada, Special Papers 13: 391–409. [Google Scholar]
- Witkowski J, Harwood DM, Chin K. 2011. Taxonomic composition, paleoecology and biostratigraphy of Late Cretaceous diatoms from Devon Island, Nunavut, Canadian High Arctic. Cretaceous Research 32: 277–300. [CrossRef] [Google Scholar]
- Wornardt WW Jr. 1972. Stratigraphic distribution of diatom genera in marine sediments in Western North America. Palaeogeography, Palaeoclimatology, Palaeoecology 12: 49–74. [CrossRef] [Google Scholar]
- Yu T, Kelly R, Mu L, Ross A, Kennedy J, Broly P, et al. 2019. An ammonite trapped in Burmese amber. Proceedings of the National Academy of Sciences of the United States of America 116: 11345–11350. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.