Open Access
BSGF - Earth Sci. Bull.
Volume 191, 2020
Article Number 33
Number of page(s) 15
Published online 09 November 2020
  • Abdelmalak MM, Meyer R, Planke S, et al. 2016. Pre-breakup magmatism on the Vøring Margin: Insight from new sub-basalt imaging and results from Ocean Drilling Program Hole 642E. Tectonophysics 675: 258–274. [CrossRef] [Google Scholar]
  • Abels HA, Lauretano V, van Yperen AE, et al. 2016. Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming. Clim. Past. 12: 1151–1163. [CrossRef] [Google Scholar]
  • Aubry M-P. 1983. Biostratigraphie du Paléogène épicontinental de l’Europe du Nord-Ouest. Étude fondée sur les nannofossiles calcaires. Docum. Labo Géol. Lyon, 89: 317. [Google Scholar]
  • Aubry M-P, Thiry M, Dupuis C, Berggren WA. 2005. The Sparnacian deposits of the Paris Basin: A lithostratigraphic classification. Stratigraphy 2: 65–100. [Google Scholar]
  • Batten DJ. 1996. Chapter 26A. Palynofacies and paleoenvironmental interpretation. In: Jansonius J, McGregor DC, eds. Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, pp. 1011–1064. [Google Scholar]
  • Bijl PK, Bendle JAP, Bohaty SM, et al. 2013. Eocene cooling linked to early flow across the Tasmanian Gateway. PNAS 110: 9645–9650. [CrossRef] [Google Scholar]
  • Charbit S, Guillou H, Turpin L. 1998. Cross calibration of K-Ar standard minerals using an unspiked Ar measurement technique. Chem. Geol. 50: 147–159. [CrossRef] [Google Scholar]
  • Clauer N, Huggett JM, Hillier S. 2005. How reliable is the K-Ar glauconite chronometer? A case study of Eocene sediments from the Isle of Wight. Clay Miner. 40: 167–176. [CrossRef] [Google Scholar]
  • Coccioni R, Bancalà G, Catanzarit R, et al. 2012. An integrated stratigraphic record of the Palaeocene–lower Eocene at Gubbio (Italy): new insights into the early Palaeogene hyperthermals and carbon isotope excursions. Terra Nova 24: 380–386. [CrossRef] [Google Scholar]
  • Collinson ME, Steart DC, Scott AC, Glasspool IJ, Hooker JJ. 2007. Episodic fire, runoff and deposition at the Palaeocene-Eocene boundary. J. Geol. Soc., London 164: 87–97. [CrossRef] [Google Scholar]
  • Cramer BS, Wright JD, Kent DV, Aubry M-P. 2003. Orbital climate forcing of δ13C excursions in the late Paleocene–early Eocene (chrons C24n–C25n). Paleoceanography 18: 1097. [CrossRef] [Google Scholar]
  • Crouch EM, Dickens GR, Brinkhuis H, et al. 2003. The Apectodinium acme and terrestrial discharge during the Paleocene-Eocene thermal maximum: new palynological, geochemical and calcareous nannoplankton observations at Tawanui, New Zealand. Palaeogeogr. Palaeoclimatol. Palaeoecol. 194: 387–403. [CrossRef] [Google Scholar]
  • Dupuis C, Thiry M. 1998. Geological frame of the “Sparnacian”. In: Thiry M, Dupuis C, eds. The Paleocene/Eocene boundary in Paris basin: the Sparnacian deposits. Field trip guide. École Nationale Supérieure des Mines de Paris, Mémoire des Sciences de La Terre 34: 3–12. [Google Scholar]
  • Dupuis C, Steurbaut E, De Coninck J, Riveline J. 1998. The Western Argiles à Lignites facie. In: Thiry M, Dupuis C, eds. The Paleocene/Eocene boundary in Paris basin: the Sparnacian deposits. Field trip guide. École Nationale Supérieure des Mines de Paris, Mémoire des Sciences de La Terre 34: 60–71. [Google Scholar]
  • Eglinton G, Hamilton RJ. 1967. Leaf Epicuticular Waxes. Science 156: 1322–1335. [CrossRef] [Google Scholar]
  • Eldrett JS, Greenwood DR, Polling M, Brinkhuis H, Sluijs A, 2014. A seasonality trigger for carbon injection at the Paleocene–Eocene Thermal Maximum. Clim. Past. 10: 759–769. [CrossRef] [Google Scholar]
  • Eley YL, Hren MT. 2018. Reconstructing vapor pressure deficit from leaf wax lipid molecular distributions. Sci. Rep. UK 8: 3967. [CrossRef] [Google Scholar]
  • Frieling J, Svensen HH, Planke S, Cramwinckel MJ, Selnes H, Sluijs A. 2016. Thermogenic methane release as a cause for the long duration of the PETM. P. Natl. Acad. Sci. USA 113: 12059–12064. [CrossRef] [Google Scholar]
  • Garel S, Schnyder J, Jacob J, et al. 2013. Paleohydrological and paleoenvironmental changes recorded in terrestrial sediments of the Paleocene–Eocene boundary (Normandy, France). Palaeogeogr. Palaeoclimatol. Palaeoecol. 376: 184–199. [CrossRef] [Google Scholar]
  • Garel S, Quesnel F, Jacob J, et al. 2014. High frequency floral changes at the Paleocene–Eocene boundary revealed by comparative biomarker and palynological studies. Org. Geoch. 77: 43–58. [CrossRef] [Google Scholar]
  • Garel-Laurin S. 2013. Changements paléoenvironnementaux et paléoclimatiques enregistrés dans les faciès continentaux et lagunaires de la limite Paléocène-Eocène des bassins de Paris et de Dieppe-Hampshire. Apports de l’étude de la matière organique. PhD thesis, Université Pierre et Marie Curie, 448 p. [Google Scholar]
  • Good SC. 2004. Paleoenvironmental and paleoclimatic significance of freshwater bivalves in the Upper Jurassic Morrison Formation, Western Interior, USA. Sediment. Geol. 167: 163–176. [CrossRef] [Google Scholar]
  • Hautmann S, Lippolt HJ. 2000. 40Ar/39Ar dating of central European K-Mn oxides – a chronological framework of supergene alteration processes during the Neogene. Chem. Geol. 170: 37–80. [CrossRef] [Google Scholar]
  • Iakovleva AI. 2016. Did the PETM trigger the first important radiation of wetzelielloideans? Evidence from France and northern Kazakhstan. Palynology 41: 311–338. [CrossRef] [Google Scholar]
  • Inglis GN, Farnsworth A, Collinson ME, et al. 2019 Terrestrial environmental change across the onset of the PETM and the associated impact on biomarker proxies: A cautionary tale. Glo. Pla. Cha. 181: 102991 [CrossRef] [Google Scholar]
  • Jacob J, Disnar J-R, Boussafir M, et al. 2004. Onocerane attests to dry climatic events during the Quaternary in the tropics. Org. Geoch. 35: 289–297. [CrossRef] [Google Scholar]
  • Kender S, Stephenson MH, Riding JB, et al. 2012. Marin end terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene–Eocene transition. Earth Planet. Sc. Lett. 353-354: 108–120. [CrossRef] [Google Scholar]
  • Kennett JP, Stott LD. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353: 225–229. [CrossRef] [Google Scholar]
  • Krishnan S, Pagani M, Huber M, Sluijs A. 2014. High latitude hydrological changes during the Eocene Thermal Maximum 2. Earth Planet. Sc. Lett. 404: 167–177. [CrossRef] [Google Scholar]
  • Ladd SN, Sachs JP. 2013. Positive correlation between salinity and n-alkane δ13C values in the mangrove Avicennia marina. Org. Geoch. 64: 1–8. [CrossRef] [Google Scholar]
  • Lauretano V, Littler K, Polling M, Zachos JC, Lourens LJ. 2015. Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum. Clim. Past. 11: 1313–1324. [CrossRef] [Google Scholar]
  • Littler K, Röhl U, Westerhold T, Zachos JC. 2014. A high-resolution benthic stable-isotope record for the South Atlantic: Implications for orbital-scale changes in Late Paleocene–Early Eocene climate and carbon cycling. Earth Planet. Sc. Lett. 401: 18–30. [CrossRef] [Google Scholar]
  • Lourens LJ, Sluijs A, Kroon D, et al. 2005. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435: 1083–1087. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Magioncalda R. 2004. Chémostratigraphie de la limite Paléocène/Eocène (CIE) fondée sur l’étude de la composition isotopique du carbone organique (δ13Corg ‰ PDB). Application pour la mise en corrélation de successions continentales, lagunaires et marines. PhD thesis, Faculté Polytechnique de Mons, Mons, 220 p. [Google Scholar]
  • Magioncalda R, Dupuis C, Blamart D, et al. 2001. L’excursion isotopique du carbone organique (delta 13C org) dans les paleoenvironnements continentaux de l’intervalle Paleocene/Eocene de Varangeville (Haute-Normandie). B. Soc. Géol. Fr. 172: 349–358. [CrossRef] [Google Scholar]
  • Magioncalda R, Dupuis C, Smith T, Steurbaut E, Gingerich, PD. 2004. Paleocene-Eocene carbon isotope excursion in organic carbon and pedogenic carbonate: Direct comparison in a continental stratigraphic section. Geology 32: 553–556. [CrossRef] [Google Scholar]
  • McInerney FA, Wing SL. 2011. The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future. Annu. Rev. Earth Pl. Sc. 39: 489–516. [CrossRef] [Google Scholar]
  • Methner K, Lenz O, Riegel W, Wilde V, Mulch A. 2019. Paleoenvironmental response of midlatitudinal wetlands to Paleocene–early Eocene climate change (Schöningen lignite deposits, Germany). Clim. Past. 15: 1741–1755. [CrossRef] [Google Scholar]
  • Meyers PA. 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geoch. 27: 213–250. [CrossRef] [Google Scholar]
  • Murphy BH, Farley KA, Zachos JC. 2010. An extraterrestrial 3He-based timescale for the Paleocene-Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266. Geochim. Cosmochim. Ac. 74: 5098–5108. [CrossRef] [Google Scholar]
  • Noiret C, Steurbaut E, Tabuce R, et al. 2016. New bio-chemostratigraphic dating of a unique early Eocene sequence from southern Europe results in precise mammalian biochronological tie-points. Newsl. Stratigr. 49: 469–480. [CrossRef] [Google Scholar]
  • Odin GS. 1982. Interlaboratory standards for dating purposes. In: Odin GS, ed. Numerical Dating in Stratigraphy. New York, pp. 123–158. [Google Scholar]
  • Odin GS, Matter A. 1981. De glauconiarum origine. Sedimentology 28: 611–641. [CrossRef] [Google Scholar]
  • Pujalte V, Robador A, Payros A, Samsó JM. 2016. A siliciclastic braid delta within a lower Paleogene carbonate platform (Ordesa-Monte Perdido National Park, southern Pyrenees, Spain): Record of the Paleocene–Eocene Thermal Maximum perturbation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 459: 453–470. [CrossRef] [Google Scholar]
  • Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, DePaolo DJ. 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem. Geol. 145: 117–152. [Google Scholar]
  • Rommerskirchen F, Eglinton G, Dupont L, et al. 2003. A north to south transect of Holocene southeast Atlantic continental margin sediments: Relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records. Geoch. Geoph. Geos. 4(12): 1101. [Google Scholar]
  • Sachse D, Billault I, Bowen GJ, et al. 2012. Molecular Paleohydrology: Interpreting the Hydrogen-Isotopic Composition of Lipid Biomarkers from Photosynthesizing Organisms. Annu. Rev. Earth Pl. Sc. 40: 221–249. [CrossRef] [Google Scholar]
  • Schwark L, Zink K, Lechterbeck J, 2002. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology 30(5): 463–466. [CrossRef] [Google Scholar]
  • Sluijs A, Pross J, Brinkhuis H, 2005. From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene. Earth-Sci. Rev. 68: 281–315. [CrossRef] [Google Scholar]
  • Sluijs A, Schouten S, Pagani M, et al. 2006. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441: 610–613. [CrossRef] [Google Scholar]
  • Sluijs A, Bijl PK, Schouten S, Röhl U, Reichart G-J, Brinkhuis H, 2011. Southern Ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum. Clim. Past. 7: 47–61. [CrossRef] [Google Scholar]
  • Sluijs A, van Roij L, Frieling J, Laks J, Reichart G-J, 2018. Single-species dinoflagellate cyst carbon isotope ecology across the Paleocene-Eocene Thermal Maximum. Geology 46(1): 79–82. [CrossRef] [Google Scholar]
  • Smith FA, Freeman KH. 2006. Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses. Geochim. Cosmochim. Ac. 70: 1172–1187. [CrossRef] [Google Scholar]
  • Smith T, Rose KD, Gingerich PD. 2006. Rapid Asia–Europe–North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene–Eocene thermal maximum. P. Natl. Acad. Sci. USA 103: 11223. [CrossRef] [Google Scholar]
  • Speelman EN, Sewall JO, Noone D, et al. 2010. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Early/Middle Eocene. Earth Planet. Sc. Lett. 298: 57–65. [CrossRef] [Google Scholar]
  • Spell TL, McDougall I. 2003. Characterization and calibration of 40Ar/39Ar dating standards. Chem. Geol. 198: 189–211. [Google Scholar]
  • Steiger RH, Jäger E. 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sc. Lett. 36: 359–362. [Google Scholar]
  • Steurbaut E, Magioncalda R, Dupuis C, van Simaeys S, Roche E, Roche M. 2003. Palynology, paleoenvironments, and organic carbon isotope evolution in lagoonal Paleocene-Eocene boundary settings in North Belgium. Geol. S. Am. S. Pap. 369: 291–317. [Google Scholar]
  • Storme J-Y, Dupuis C, Schnyder J, et al. 2012. Cycles of humid-dry climate conditions around the P/E boundary: new stable isotope data from terrestrial organic matter in Vasterival section (NW France). Terra Nova 24: 114–122. [CrossRef] [Google Scholar]
  • Tappert R, McKellar RC, Wolfe AP, Tappert MC, Ortega-Blanco J, Muehlenbachs K. 2013. Stable carbon isotopes of C3 plant resins and ambers record changes in atmospheric oxygen since the Triassic. Geochim. Cosmochim. Ac. 121: 240–262. [CrossRef] [Google Scholar]
  • Tyson RV. 1995. Sedimentary organic matter. Organic facies and palynofacies. London: Chapman and Hall, 650 p. [Google Scholar]
  • Vandenberghe N, Hilgen FJ, Speijer RP. 2012. The Paleogene period. In: Gradstein, et al., eds. The Geological Time Scale 2012. Amsterdam: Elsevier Science Ltd, pp. 855–921. [CrossRef] [Google Scholar]
  • Westerhold T, Röhl U, Frederichs T, et al. 2017. Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system? Clim. Past. 13: 1129–1152. [CrossRef] [Google Scholar]
  • Westerhold T, Röhl U, Wilkens RH, et al. 2018. Synchronizing early Eocene deep-sea and continental records – cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores. Clim. Past. 14: 303–319. [CrossRef] [Google Scholar]
  • Yans J, Gerards T, Gerrienne P, et al. 2010. Carbon-isotope analysis of fossil wood and dispersed organic matter from the terrestrial Wealden facies of Hautrage (Mons Basin, Belgium). Palaeogeogr. Palaeoclimatol. Palaeoecol. 291: 85–105. [CrossRef] [Google Scholar]
  • Yans J, Marandat B, Masure E, et al. 2014. Refined bio- (benthic foraminifera, dinoflagellate cysts) and chemostratigraphy (δ13Corg) of the earliest Eocene at Albas-Le Clot (Corbières, France): implications for mammalian biochronology in Western Europe. Newsletters on Stratigraphy 47/3: 331–353. [CrossRef] [Google Scholar]
  • Zachos JC, Röhl U, Schellenberg SA, et al. 2005. Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum. Science, New Series 308: 1611–1615. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.