Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 191, 2020
Article Number 34
Number of page(s) 22
DOI https://doi.org/10.1051/bsgf/2020032
Published online 24 November 2020
  • Abdelsalam MG, Liégeois JP, Stern RJ. 2002. The Saharan Metacraton. Journal of African Earth Sciences 34: 119–136. [CrossRef] [Google Scholar]
  • Alonso-Perez R, Müntener O, Ulmer P. 2009. Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contributions to Mineralogy and Petrology 157: 541–558. [CrossRef] [Google Scholar]
  • Begg GC, Griffin WL, Natapov LM, O’Reilly SY, Grand SP, O’Neill CJ, et al. 2009. The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution. Geosphere 5: 23. [CrossRef] [Google Scholar]
  • Bessoles B, Trompette R. 1980. La chaîne panafricaine. Zone mobile d’Afrique Centrale (partie sud) et zone soudanaise. Mémoire du Bureau de Recherches Géologiques et Minières, Orléans, 92: 394 p. [Google Scholar]
  • Bertrand JM, Caby R. 1978. Geodynamic evolution of the Pan-African Orogenic Belt: A new interpretation of the Hoggar Shield (Algerian Sahara). Geologische Rundschau 67: 357–388. [CrossRef] [Google Scholar]
  • Black R, Liégeois JP. 1993. Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: The Pan-African testimony. Journal of the Geological Society of London 150: 89–98. [CrossRef] [Google Scholar]
  • Bouyo HM, Toteu SF, Deloule E, Penaye J, Van Schmus WR. 2009. U–Pb and Sm–Nd dating of high-pressure granulites from Tcholliré and Banyo regions: Evidence for a Pan-African granulite facies metamorphism in north-central Cameroon. Journal of African Earth Sciences 54: 144–154. [CrossRef] [Google Scholar]
  • Bouyo MH, Zhao Y, Penaye J, Zhang SH, Njel UO. 2015. Neoproterozoic subduction-related metavolcanic and metasedimentary rocks from the Rey Bouba Greenstone Belt of north-central Cameroon in the Central African Fold Belt: new insights into a continental arc geodynamic setting. Precambrian Research 2: 40–53. [CrossRef] [Google Scholar]
  • Bouyo MH, Penaye J, Njel UO, Moussango API, Sep JPN, Nyama BA, et al. 2016. Geochronological, geochemical and mineralogical constraints of emplacement depth of TTG suite from the Sinassi Batholith in the Central African Fold Belt (CAFB) of northern Cameroon: implications for tectonomagmatic evolution. Journal of African Earth Sciences 116: 9–41. [CrossRef] [Google Scholar]
  • Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D. 2001. Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: A study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostandards Newsletter 25: 187–198. [CrossRef] [Google Scholar]
  • Carlson RW, Irving AJ. 1994. Depletion and enrichment history of subcontinental lithospheric mantle: An Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming Craton. Earth and Planetary Sciences Letters 126: 457–472. [CrossRef] [Google Scholar]
  • Castro A. 2014. The off-crust origin of granite batholiths. Geoscience Frontiers 5: 63–75. [CrossRef] [Google Scholar]
  • Chappell BW, White AJR. 1974. Two contrasting granite types. Pacific Geology 8: 173–174. [Google Scholar]
  • Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46: 535–551. [CrossRef] [Google Scholar]
  • Chiarada M. 2015. Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective. Scientific Reports 5: 8115. [CrossRef] [Google Scholar]
  • Clemens JD, Stevens G. 2012. What controls chemical variation in granitic magmas? Lithos 134-135: 317–329. [CrossRef] [Google Scholar]
  • Clemens JD, Stevens G, Farina F. 2011. The enigmatic sources of I-type granites: The peritectic connexion. Lithos 126: 174–181. [CrossRef] [Google Scholar]
  • Conceicao RV, Green DH. 2004. Derivation of potassic (shoshinitic) magmas by decompression melting of phlogopite + pargasite lherzolite. Lithos 72: 209–229. [CrossRef] [Google Scholar]
  • Condamine P, Médard E. 2014. Experimental melting of phlogopite-bearing mantle at 1 GPa: Implications for potassic magmatism. Earth and Planetary Science Letters 397: 80–92. [CrossRef] [Google Scholar]
  • Collins WJ. 2002. Hot orogens, tectonic switching, and creation of continental crust. Geology 30: 535–538. [CrossRef] [Google Scholar]
  • de Wit MJ, Linol B. 2015. Precambrian basement of the Congo Basin and its flanking terrains. In: Geology and Resource Potential of the Congo. Spinger, pp. 19–37. [Google Scholar]
  • DePaolo DJ. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters 53: 189–202 [CrossRef] [Google Scholar]
  • Dilek Y, Altunkaynak S. 2007. Cenozoic Crustal Evolution and Mantle Dynamics of Post-Collisional Magmatism in Western Anatolia. International Geology Review 49: 431–453. [CrossRef] [Google Scholar]
  • Djerossem F. 2018. Croissance et remobilisation crustales au Pan-Africain dans le sud du massif du Ouaddaï (Tchad). Unpublished PhD Thesis (Avalaible online), Université Paul Sabatier, Toulouse 3, 302 p. [Google Scholar]
  • Djouka-Fonkwé ML, Schulz B, Schussler U, Tchouankoue P, Nzolang C. 2008. Geochemistry of the Bafoussam Pan-African I- and S-type granitoids in western Cameroon. Journal of African Earth Sciences 50: 148–167. [CrossRef] [Google Scholar]
  • Foley SF, Venturelli G, Green DH, Toscani L. 1987. The ultrapotassic rocks: Characteristics, classification, and constraints for petrogenetic models. Earth-Science Reviews 24: 81–134. [CrossRef] [Google Scholar]
  • Fosso Tchunte PM, Tchameni R, André-Mayer AS, Dakoure SH, Turlin F, Poujol N, et al. 2018. Evidence for Nb-Ta Occurrences in the Syn-Tectonic Pan-African Mayo Salah Leucogranite (Northern Cameroon): Constraints from Nb-Ta Oxide Mineralogy, Geochemistry and U-Pb LA-ICP-MS Geochronology on Columbite and Monazite. Minerals 8: 188. [CrossRef] [Google Scholar]
  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42: 2033–2048. [CrossRef] [Google Scholar]
  • Gardien V, Thompson AB, Grudjic D, Ulmer P. 1995. Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. Journal of Geophysical Research: Solid Earth 100: 15581–15591. [CrossRef] [Google Scholar]
  • Gao LE, Zeng L, Asimow PD. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology 45: 39–42. [CrossRef] [Google Scholar]
  • Geisler T, Schaltegger U, Tomaschek F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements 3: 45–51. [CrossRef] [Google Scholar]
  • Gerdes A, Zeh A. 2009. Zircon formation versus zircon alteration – New insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology 261: 230–243. [CrossRef] [Google Scholar]
  • Gsell J, Sonnet J. 1960. Carte géologique de reconnaissance au 1/500 000 et notice explicative sur la feuille Adre. Brazzaville, BRGM, 42 p. [Google Scholar]
  • Harris NBW, Inger S. 1992. Trace element modelling of pelite-derived granites. Contributions to Mineralogy and Petrology 110: 46–56. [CrossRef] [Google Scholar]
  • Harris N, Ayres M, Massey J. 1995. Geochemistry of granitic melts produced during the incongruent melting of muscovite: implications for the extraction of Himalayan leucogranite magmas. Journal of Geophysical Research: Solid Earth 100: 15767–15777. [CrossRef] [Google Scholar]
  • Hydmann RD, Currie CA, Mazzotti SP. 2005. Subduction zone backarcs, mobile belts and orogenic belt. GSA Today 15: 4–10. [CrossRef] [Google Scholar]
  • Inger S, Harris N. 1993. Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology 34: 345–368. [CrossRef] [Google Scholar]
  • Isseini M. 2011. Croissance et différenciation crustales au Néoprotérozoïque : exemple du domaine panafricain du Mayo-Kebbi au Sud-Ouest du Tchad. Thèse de Doctorat, Université Henri Poincaré, Nancy, France, 339 p. [Google Scholar]
  • Isseini M, André-Mayer AS, Vanderhaeghe O, Barbey P, Deloule E. 2012. A-type granites from the Pan-African orogenic belt in south-western Chad constrained using geochemistry, Sr–Nd isotopes and U–Pb geochronology. Lithos 153: 39–52. [CrossRef] [Google Scholar]
  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211: 47–69. [CrossRef] [Google Scholar]
  • Kelemen PB. 1995. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology 120: 1–19. [CrossRef] [Google Scholar]
  • Kwékam M, Liégeois JP, Njonfang, E, Affaton P, Hartmann G, Tchoua F. 2010. Nature, origin and significance of the Fomopéa Pan-African high-K calc-alkaline plutonic complex in the Central African fold belt (Cameroon). Journal of African Earth Sciences 57: 79–95. [CrossRef] [Google Scholar]
  • Kwékam M, Affaton P, Bruguier O, Liégeois JP, Hartmann G, Njonfang E. 2013. The Pan-African Kekem gabbro-norite (West-Cameroon), U–Pb zircon age, geochemistry and Sr–Nd isotopes: Geodynamical implication for the evolution of the Central African fold belt. Journal of African Earth Sciences 84: 70–88. [CrossRef] [Google Scholar]
  • Küster D, Liégeois JP, Matukov D, Sergeev S, Lucassen F. 2008. Zircon geochronology and Sr, Nd, Pb isotope geochemistry of granitoids from Bayuda Desert and Sabaloka (Sudan): evidence for a Bayudian event (920–900 Ma) preceding the Pan-African orogenic cycle (860–590 Ma) at the eastern boundary of the Saharan Metacraton. Precambrian Research 164: 16–39. [CrossRef] [Google Scholar]
  • Li XH, Chen Y, Tchouankoue JP, Liu CZ, Jiao Li J, Ling XX, et al. 2017. Improving geochronological framework of the Pan-African orogeny in Cameroon: New SIMS zircon and monazite U-Pb age constraints. Precambrian Research 294: 307–321. [CrossRef] [Google Scholar]
  • Liégeois JP, Abdelsalam MG, Ennih N, Ouabadi A. 2013. Metacraton: Nature, genesis and behavior. Gondwana Research 23: 220–237. [CrossRef] [Google Scholar]
  • Liu ZC, Wu FY, Ding L, Liu XC, Wang JG, Ji WQ. 2016. Highly fractionated Late Eocene (∼ 35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos 240-243: 337–354. [CrossRef] [Google Scholar]
  • Luais B, Telouk P, Albarede F. 1997. Precise and accurate neodymium isotopic measurements by plasma-source mass spectrometry. Geochimica et Cosmochimica Acta 61: 4847–4854. [CrossRef] [Google Scholar]
  • Macpherson C, Dreher S, Thirlwall M. 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters 243: 581–593. [CrossRef] [Google Scholar]
  • McDonough WF, Sun SS. 1995. The composition of the Earth. Chemical Geology 120: 223–253. [NASA ADS] [CrossRef] [Google Scholar]
  • Meinhold G, Morton AC, Fanning CM, Frei D, Howard JP, Phillips RJ, et al. 2011. Evidence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Libya. Earth and Planetary Science Letters 312: 164–175. [CrossRef] [Google Scholar]
  • Milesi JP, Feybesse JL, Pinna P, Deschamps Y, Kampunzu H, Muhongo S, et al. 2004. Geology and major ore deposits of Africa. 1/1 000 000 geological map. BRGM. [Google Scholar]
  • Miniar PD, Piccoli PM. 1989. Tectonic discrimination of granitoids. GSA Bulletin 101: 635–643. [CrossRef] [Google Scholar]
  • Müntener O, Kelemen PB, Grove TL. 2001. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contributions to Mineralogy and Petrology 141: 643–658. [CrossRef] [Google Scholar]
  • Nelson BK, DePaolo DJ. 1984. 1.700-Myr greenstone volcanic successions in Southwestern North America and isotopic evolution of Proterozoic mantle. Nature 312: 143–146. [CrossRef] [Google Scholar]
  • Ngako V, Affaton P, Njonfang E. 2008. Pan-African tectonics in northwestern Cameroon: implication for the history of western Gondwana. Gondwana Research 14: 509–522. [CrossRef] [Google Scholar]
  • Njiekak G, Dörr W, Tchouankoue JP, Zulauf G. 2008. U–Pb zircon and microfabric data of (meta) granitoids of western Cameroon: Constraints on the timing of pluton emplacement and deformation in the Pan-African belt of central Africa. Lithos 102: 460–477. [CrossRef] [Google Scholar]
  • Nkoumbou C, Barbey P, Yonta NC, Paquette JL, Villiéras F. 2014. Pre-collisional geodynamic context of the southern margin of the Pan-African fold belt in Cameroon. Journal of African Earth Sciences 99: 245–260. [CrossRef] [Google Scholar]
  • Nomo EN, Tchameni R, Vanderhaeghe O, Sun F, Barbey P, Tekoum L, et al. 2017. Structure and LA-ICP-MS zircon U-Pb dating of syntectonic plutons emplaced in the Pan-African Banyo-Tcholliré shear zone (central north Cameroon). Journal of African Earth Sciences 131: 251–271. [CrossRef] [Google Scholar]
  • Owona S, Schulz B, Ratschbacher L, Ondoa J, Ekodeck G, Tchoua F, et al. 2011. Pan-African metamorphic evolution in the southern Yaounde Group (Oubanguide Complex, Cameroon) as revealed by EMP-monazite dating and thermobarometry of garnet metapelites. Journal of African Earth Sciences 59: 125–139. [CrossRef] [Google Scholar]
  • Patino Douce AE. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society of London, Special Publications 168: 55–75. [CrossRef] [Google Scholar]
  • Penaye J, Kröner A, Toteu SF, Van Schmus WR, Doumnang JC. 2006. Evolution of the Mayo Kebbi region as revealed by zircon dating: An early (ca. 740Ma) Pan-African magmatic arc in southwestern Chad. Journal of African Earth Sciences 44: 530–542. [CrossRef] [Google Scholar]
  • Poudjom Djomani YH, Nnange JM, Diament M, Ebinger J, Fairhead JD. 1995. Effective elastic thickness and crustal thickness variations in west central Africa inferred from gravity data. Journal of Geophysical Research: Solid Earth 100: 22047–22070. [CrossRef] [Google Scholar]
  • Profeta L, Ducea M, Chapman J, Paterson S, Gonzales S, Kirsch M, et al. 2015. Quantifying crustal thickness over time in magmatic arcs. Scientific Reports 5: 17786. [CrossRef] [Google Scholar]
  • Rickwood. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 22: 247–263. [CrossRef] [Google Scholar]
  • Roberts M, Clemens J. 1993. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21: 825–828. [CrossRef] [Google Scholar]
  • Rocci G. 1965. Essai d’interprétation de mesures géochronologiques. La structure de l’Ouest Africain. Coll. Int. Géochronol., Nancy. Sci.Terre, X, pp. 461–478. [Google Scholar]
  • Saha Fouotsa AN, Vanderhaeghe O, Barbey P, Eglinger A, Tchameni R, Zeh A, et al. 2019. The geologic record of the exhumed root of the Central African Orogenic Belt in the central Cameroon domain (Mbé – Sassa-Mbersi region). Journal of African Earth Sciences 151: 286–314. [CrossRef] [Google Scholar]
  • Salters VJM, Stracke A. 2004. Composition of the depleted mantle. Geochemistry Geophysics Geosystems Q05B07. [Google Scholar]
  • Shang CK, Liégeois JP, Satir M, Frisch W, Nsifa EN. 2010. Late Archean high-K granite geochronology of the northern metacratonic margin of the Archean Congo craton, southern Cameroon: Evidence for Pb-loss due to non-metamorphic causes. Gondwana Research 18: 337–355. [CrossRef] [Google Scholar]
  • Shellnutt JG, Pham NHT, Denyszyn SW, Yeh MW, Lee TY. 2017. Timing of collisional and post-collisional Pan-African Orogeny silicic magmatism in south-central Chad. Precambrian Research 301: 113–123. [CrossRef] [Google Scholar]
  • Shellnutt JG, Yeh MW, Lee TY, Iizuka Y, Pham NHT, Yang CC. 2018. The origin of Late Ediacaran post-collisional granites near the Chad Lineament, Saharan Metacraton, South-Central Chad. Lithos 304-307: 450–467. [CrossRef] [Google Scholar]
  • Shellnutt JG, Yeh MW, Pham NHT, Lee TY. 2019. Cryptic regional magmatism in the Southern Saharan Metacraton at 580 Ma. Precambrian Research 332: 105398. [CrossRef] [Google Scholar]
  • Sisson TW, Grove TL. 1993. Experimental investigations of the role of H2O in calcalkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology 113: 143–166. [CrossRef] [Google Scholar]
  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, et al. 2008. Formation of Igneous Layering in Granodiorite by Gravity Flow: a Field, Microstructure and Geochemical Study of the Tuolumne Intrusive Suite at Sawmill Cabyonn California. Journal of Petrology 49: 2009–2042. [CrossRef] [Google Scholar]
  • Stacey JS, Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26: 207–221. [Google Scholar]
  • Stern RA, Bodorkos S, Kamo SL, Hickman AH, Corfu F. 2009. Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostandards and Geoanalytical Research 33: 145–168. [CrossRef] [Google Scholar]
  • Stevens G, Villaros A, Moyen JF. 2007. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology 35: 9–12. [CrossRef] [Google Scholar]
  • Tchakounté J, Eglinger A, Toteu SF, Zeh A, Nkoumbou C, Mvondo-Ondoa J, et al. 2017. The Adamawa-Yadé domain, a piece of Archaean crust in the Neoproterozoic central African orogenic belt (Bafia area, Cameroon). Precambrian Research 299: 210–229. [CrossRef] [Google Scholar]
  • Tchameni R, Pouclet A, Penaye J, Ganwa AA, Toteu SF. 2006. Petrography and geochemistry of the Ngaoundéré Pan-African granitoids in Central North Cameroon: Implications for their sources and geological setting. Journal of African Earth Sciences 44: 511–529. [CrossRef] [Google Scholar]
  • Tchouankoue JP, Li XH, Ngo Belnoun RN, Mouafo J, Ferreira VP. 2016. Timing and tectonic implications of the Pan-African Bangangte syenomonzonite, West Cameroon: Constraints from in-situ zircon U-Pb age and Hf-O isotopes. Journal of African Earth Sciences 124: 94–103. [CrossRef] [Google Scholar]
  • Toteu SF, Van Schmus WR, Penaye J, Michard A. 2001. New U–Pb and Sm–Nd data from north-central Cameroon and its bearing on the pre-Pan African history of central Africa. Precambrian Research 108: 45–73. [CrossRef] [Google Scholar]
  • Toteu SF, Penaye J, Djomani YHP. 2004. Geodynamic evolution of the Pan- African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences 41: 73–85. [CrossRef] [Google Scholar]
  • Toteu SF, Fouateu RY, Penaye J, Tchakounte J, Mouangue ACS, Van Schmus WR, et al. 2006. U–Pb dating of plutonic rocks involved in the nappe tectonic in southern Cameroon: consequence for the Pan-African orogenic evolution of the central African fold belt. Journal of African Earth Sciences 44: 479–493. [CrossRef] [Google Scholar]
  • Van Osta P. 1991. Prospection dans le secteur de Goz Beida, region Ouaddai (Tchad Oriental). N’Djamena: PNUD I DRGM. [Google Scholar]
  • Vanderhaeghe O, Duchêne S. 2010. Crustal‐scale mass transfer, geotherm and topography at convergent plate boundaries. Terra Nova 22: 315–323. [CrossRef] [Google Scholar]
  • Vielzeuf D, Schmidt MW. 2001. Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts. Contributions to Mineralogy and Petrology 141: 251–267. [CrossRef] [Google Scholar]
  • Watson EB, Harrison TM. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Sciences Letters 64: 295304. [CrossRef] [Google Scholar]
  • Williamson BJ, Shaw A, Downes H, Thirlwall MF. 1996. Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France. Chemical Geology 127: 25–42. [CrossRef] [Google Scholar]
  • Wolff JP. 1964. Geological map of Chad Republic on scale 1/500 000. BRGM, Paris. [Google Scholar]
  • Zeh A, Gerdes A. 2012. U–Pb and Hf isotope record of detrital zircons from gold-bearing sediments of the Pietersburg Greenstone Belt (South Africa) Is there a common provenance with the Witwatersrand Basin? Precambrian Research 204-205: 46–56. [CrossRef] [Google Scholar]
  • Zeh A, Gerdes A. 2014. HFSE-transport and U-Pb-Hf isotope homogenization mediated by Ca-bearing aqueous fluids at 2.04 Ga: constraints from zircon, monazite, and garnet of the Venetia Klippe, Limpopo Belt, South Africa. Geochimica et Cosmochimica Acta 138: 81–100. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.