Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Article Number 14
Number of page(s) 19
DOI https://doi.org/10.1051/bsgf/2020026
Published online 30 March 2021
  • Accarie H, Emmanuel L, Robaszynski F, Baudin F, Amédro F, Caron M, et al. 1996. La géochimie isotopique du carbone (δ13C) comme outil stratigraphique. Application à la limite Cénomanien/Turonien en Tunisie Centrale. Comptes rendus des séances de l’Académie des sciences Paris 322(série II a): 579–586. [Google Scholar]
  • Aguado R, Reolid M, Molina E. 2016. Response of calcareous nannoplankton to the Late Cretaceous Oceanic Anoxic Event 2 at Oued Bahloul (central Tunisia). Palaeogeography Palaeoclimatology Palaeoecology 459: 289–305. [Google Scholar]
  • Ando A, Huber BT, MacLeod KG, Ohta T, Khim BK. 2009. Blake Nose stable isotopic evidence against the mid-Cenomanian glaciation hypothesis. Geology 37(5): 451–454. [Google Scholar]
  • Ando A, Huber BT, MacLeod KG. 2010. Depth-habitat reorganization of planktonic foraminifera across the Albian/Cenomanian boundary. Paleobiology 36: 357–373. [Google Scholar]
  • Amédro F, Robaszynski F. 2000. Les craies à silex du Turonien supérieur au Santonien du Boulonnais (France) au regard de la stratigraphie événementielle. Comparaison avec le Kent (U.K.). Géologie de la France 4: 39–56. [Google Scholar]
  • Amédro F, Robaszynski F. 2008. Zones d’ammonites et de foraminifères du Vraconien au Turonien : une comparaison entre les domaines boréal et téthysien (NW Europe/Tunisie centrale). Brest : Carnets de géologie/Notebooks on Geology, Note brève 2008/02-fr. [Google Scholar]
  • Amédro F, Robaszynski F. 2014. Le Crétacé du Bassin parisien. In Gely JP, Hanot F, eds.Le Bassin parisien, un nouveau regard sur la géologie. Bulletin information géologues bassin de Paris, Mémoire hors-série 9: 75–84. [Google Scholar]
  • Amédro F, Damotte R, Manivit H, Robaszynski F, Sornay J. 1978. Échelles biostratigraphiques dans le Cénomanien du Boulonnais (macro-micro-nanno fossiles). Géologie méditerranéenne 5(1): 5–18. [Google Scholar]
  • Amédro F, Manivit H, Robaszynski F. 1979. Echelles biostratigraphiques du Turonien au Santonien dans les Craies du Boulonnais (macro-micro-nanno fossiles). Annales de la Société géologique du Nord 98: 287–305. [Google Scholar]
  • Amédro F, Robaszynski F, Colleté C, Fricot C. 1997. Les craies du Cénomanien-Turonien de l’Aube et du Boulonnais : des événements litho- et biosédimentaires communs. Annales de la Société géologique du Nord 5: 189–197. [Google Scholar]
  • Amédro F, Accarie H, Robaszynski F. 2005. Position de la limite Cénomanien-Turonien dans la Formation Bahloul de Tunisie centrale : apports intégrés des ammonites et des isotopes du carbone (δ13C). Eclogae Geologicae Helvetiae 98: 151–167. [Google Scholar]
  • Arthur MA, Dean WE, Pratt LM. 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature 335: 714–717. [Google Scholar]
  • Barrier P. 2000. Etude microfaciologique de deux forages profonds dans la Craie de Provins (701 Poigny et 702 Sainte Colombe) : empilement des faciès, biodiversité et découpage séquentiel. Bulletin information géologues bassin de Paris 37(2): 33–43. [Google Scholar]
  • Bergerat F, Vandycke S. 1994. Palaeostress analysis and geodynamical implications of Cretaceous-Tertiary faulting in Kent and the Boulonnais. Journal of the Geological Society, London 151: 439–448. [Google Scholar]
  • Bojanowski M, Dubicka Z, Minoletti F, Olszewska-Nejbert D, Surowski M. 2017. Stable C and O isotopic study of the Campanian chalk from the Mielnik section (eastern Poland): Signals from bulk rock, belemnites, benthic foraminifera, nannofossils and microcrystalline cements. Palaeogeography Palaeoclimatology Palaeoecology 465A: 193–211. https://doi.org/10.1016/j.palaeo.2016.10.032. [Google Scholar]
  • Boulila S, Galbrun B, Driss S, Gardin S, Bartolini A. 2019. Constraints on the duration of the early Toarcian T-OAE and evidence for carbon-reservoir change from the High Atlas (Morocco). Global and Planetary Change 175. https://doi.org/10.1016/j.gloplacha.2019.02.005. [Google Scholar]
  • Boulila S, Charbonnier G, Spangenberg JE, Gardin S, Galbrun B, Briard J, et al. 2020. Unraveling short- and long-term carbon cycle variations during the Oceanic Anoxic Event 2 from the Paris Basin Chalk. Global and Planetary Change 186: 103126. [Google Scholar]
  • Bralower TJ, Fullagar PD, Paull CK, Dwyer GS, Leckie RM. 1997. Mid Cretaceous strontium-isotope stratigraphy of deep-sea sections. Geological Society of America Bulletin 109: 1421–1442. [Google Scholar]
  • Caus E, Teixell A, Bernaus JM. 1997. Depositional model of a Cenomanian-Turonian extensional basin (Sopeira basin, NE Spain): Interplay between tectonics, eustacy and biological productivity. Palaeogeography Palaeoclimatology Palaeoecology 129: 23–36. [Google Scholar]
  • Chenot E, Pellenard P, Martinez M, Deconinck JF, Amiotte-Suchet P, Thibault N, et al. 2016. Clay mineralogical and geochemical expressions of the “Late Campanian Event” in the Aquitaine and Paris basins (France): Palaeoenvironmental implications. Palaeogeography Palaeoclimatology Palaeoecology 447: 42–52. [Google Scholar]
  • Clarke LJ, Jenkyns HC. 1999. New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. Geology 27: 699–702. [Google Scholar]
  • Danelian T, Baudin F, Gardin S, Masure E, Ricordel C, Fili I, et al. 2007. The record of mid Cretaceous Oceanic Anoxic Events from the Ionian zone of southern Albania. Revue de micropaléontologie 50(3): 225–238. [Google Scholar]
  • Danzelle J, Riquier L, Baudin F, Thomazo C, Pucéat E. 2018. Oscillating redox conditions in the Vocontian Basin (SE France) during Oceanic Anoxic Event 2 (OAE 2). Chemical Geology. https://doi.org/10.1016/j.chemgeo.2018.05.039. [Google Scholar]
  • Deconinck JF, Amédro F, Fiolet-Piette A, Juignet P, Renard M, Robaszynski F. 1991a. Contrôle paléogéographique de la sédimentation argileuse dans le Cénomanien du Boulonnais et du Pays de Caux. Annales de la Société géologique du Nord 1(2): 57–66. [Google Scholar]
  • Deconinck JF, Amédro F, Desprairies A, Juignet P, Robaszynski F. 1991b. Niveaux repères de bentonites d’origine volcanique dans les craies du Turonien du Boulonnais et de haute-Normandie. Comptes rendus des séances de l’Académie des sciences Paris 312(Série II): 897–903. [Google Scholar]
  • Deconinck JF, Amédro F, Baudin F, Godet A, Pellenard P, Robaszynski F, et al. 2005. Late Cretaceous palaeoenvironments expressed by the clay mineralogy of Cenomanian–Campanian chalks from the east of the Paris Basin. Cretaceous Research 26(2): 171–179. [Google Scholar]
  • Desmares D, Testé M, Broche B, Tremblin M, Gardin S, Villier L, et al. 2019. High-resolution biostratigraphy and chemostratigraphy of the Cenomanian stratotype area (Le Mans, France). Cretaceous Research. https://doi.org/10.1016/j.cretres.2019.104198. [Google Scholar]
  • Du Vivier ADC, Selby D, Condon DJ, Takashima R, Nishi H. 2015. Pacific 187Os/188Os isotope chemistry and U–Pb geochronology: Synchroneity of global Os isotope change across OAE 2. Earth and Planetary Science Letters 428: 204–216. [Google Scholar]
  • Erba E, Bottini C, Faucher G. 2013. Cretaceous large igneous provinces: The effects of submarine volcanism on calcareous nannoplankton. Mineralogical Magazine 77: 1044. [Google Scholar]
  • Erba E, Duncan RA, Bottini C, Tiraboschi D, Weissert H, Jenkyns HC, et al. 2015. Environmental consequences of Ontong Java Plateau and Kerguelen Plateau Volcanism. Geological Society America Special Paper 511. https://doi.org/10.1130/2015.2511(15). [Google Scholar]
  • Erbacher J, Huber BT, Norris RD, Markey M. 2001. Increased thermo-haline stratification as a possible cause for an oceanic anoxic event in the Cretaceous period. Nature 409: 325–327. [Google Scholar]
  • Föllmi KB. 2012. Early Cretaceous life, climate and anoxia. Cretaceous Research 35: 230257. [Google Scholar]
  • Forster A, Schouten S, Moriya K, Wilson PA, Sinninghe Damsté JS. 2007. Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: Sea surface temperature records from the equatorial Atlantic. Paleoceanography 22: PA1219. https://doi.org/10.1029/2006PA001349. [Google Scholar]
  • Frakes LA, Francis JE. 1988. A guide to Phanerozoic cold polar climates from highlatitude ice-rafting in the Cretaceous. Nature 333: 547–549. [Google Scholar]
  • Friedrich O, Norris RD, Erbacher J. 2012. Evolution of middle to Late Cretaceous oceans – A 55 m.y. record of Earth’s temperature and carbon cycle. Geology 40: 107–110. [Google Scholar]
  • Gale AS, Jenkyns HC, Tsikos H, Van Breugel Y, Damsté JS, Bottini C, et al. 2018. High-resolution bio- and chemostratigraphy of an expanded record of Oceanic Anoxic Event 2 (Late Cenomanian-Early Turonian) at Clot Chevalier, near Barrême, SE France (Vocontian Basin, SE France). Newsletters on Stratigraphy, 29.05.2018. https://doi.org/10.1127/nos/2018/0445. [Google Scholar]
  • Goldberg T, Poulton SW, Wagner T, Kolonic SF, Rehkämper M. 2016. Molybdenum drawdown during Cretaceous Oceanic Anoxic Event 2. Earth and Planetary Science Letters 440: 81–91. [Google Scholar]
  • de Graciansky PC, Brosse E, Deroo G, Herbin JP, Muller C, Sigal J, et al. 1987. Organic-rich sediments and palaeoenvironmental reconstructions of the Cretaceous North America. In: Brooks J, Fleet AJ, eds. Marine petroleum source rocks. Geological Society London Special Publications 26: 317–344. [Google Scholar]
  • Grosheny D, Beaudoin B, Morel L, Desmares D. 2006. High-resolution biotratigraphy and chemostratigraphy of the Cenomanian/Turonian boundary event in the Vocontian basin, southeast France. Cretaceous Research 27(5): 629–640. [Google Scholar]
  • Grosheny D, Ferry S, Lécuyer C, Thomas A, Desmares D. 2017. The Cenomanian-Turonian boundary event (CTBE) on the southern slope of the Subalpine Basin (SE France) and its bearing on a probable tectonic pulse on a larger scale. Cretaceous Research 72: 39–65. [Google Scholar]
  • Guillocheau F, Robin C, Allemand P, Bourquin S, Brault N, Dromart G, et al. 2000. Mesocenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints. Geodinamica Acta 13: 189–246. [Google Scholar]
  • Godet A, Deconinck JF, Amédro F, Dron P, Pellenard P, Zimmerlin I. 2003. Enregistrement sédimentaire d’événements volcaniques dans le Turonien du Nord-Ouest du Bassin de Paris. Annales de la Société géologique du Nord 10(2): 147–162. [Google Scholar]
  • Gyawali BR, Nishi H, Takashima R, Herrle JO, Takayanagi H, Latil JL, et al. 2017. Upper Albian–upper Turonian calcareous nannofossil biostratigraphy and chemostratigraphy in the Vocontian Basin, southeastern France. Newsletters on Stratigraphy 50(2): 111–139. [Google Scholar]
  • Hallam A. 1984. Continental humid and arid zones during the Jurassic and Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology 47: 195–223. [Google Scholar]
  • Hallam A. 1992. Phanerozoic sea-level changes. New-york: Columbia University Press. [Google Scholar]
  • Handoh IC, Lenton TM. 2003. Periodic mid-Cretaceous oceanic anoxic events linked by oscillations of the phosphorus and oxygen biogeochemical cycles. Global Biogeochemical Cycles 17(4): 1092. https://doi.org/10.1029/2003GB002039. [Google Scholar]
  • Hanot F. 2000. Apport industriel des forages du Programme CRAIE 700 pour la correction des variations latérales de vitesses dans la craie du Bassin de Paris. Bulletin information géologues bassin de Paris 37(2): 8–17. [Google Scholar]
  • Haq BU. 2014. Cretaceous eustasy revisited. Global and Planetary Change 113: 44–58. [Google Scholar]
  • Haq BU, Hardenbol J, Vail P.R. 1987. Chronology of fluctuating sea levels since the triassic. Science 235(4793): 1156–1167. [CrossRef] [PubMed] [Google Scholar]
  • Hart MB. 1991. The late Cenomanian calcisphere global bioevent. In: Grainger P, ed. Proceedings of the Annual Conference of the Ussher Society. Proceedings of the Ussher Society 7; 4. Ussher Society, Bristol, pp. 413–417. [Google Scholar]
  • Huber BT, Leckie RM, Norris RD, Bralower TJ, Cobabe E. 1999. Foraminiferal assemblage and stable isotopic change across the Cenomanian-Turonian boundary in the subtropical North Atlantic. Journal of Foraminiferal Research 29(4): 392–417. [Google Scholar]
  • Janin MC. 2000. Corrélations des forages Craie 700 d’après les nannofossiles calcaires. Bulletin information géologues bassin de Paris 37(2): 52–58. [Google Scholar]
  • Jarvis I, Murphy AM, Gale AS. 2001. Geochemistry of pelagic and hemipelagic carbonates: Criteria for identifying systems tracts and sea-level change. Journal of Geological Society of London 158: 685–696. [Google Scholar]
  • Jarvis I, Gale AS, Jenkyns HC, Pearce MA. 2006. Secular variation in Late Cretaceous carbon isotopes: A new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geological Magazine 143: 561–608. [Google Scholar]
  • Jarvis I, Lignum JS, Groecke DR, Jenkyns HC, Pearce MA. 2011. Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event. Paleoceanography 26: 1–17, Pa3201. https://doi.org/10.1029/2010pa002081. [Google Scholar]
  • Jarvis I, Trabucho JA, Gröcke DR, Ulicny D, Laurin J. 2015. Intercontinental correlation of organic carbon and carbonate stable isotope records: Evidence of climate and sea-level change during the Turonian (Cretaceous). The Journal of the International Association of Sedimentologists 1(2): 53–90. [Google Scholar]
  • Jenkyns HC. 1995. Carbon-isotope stratigraphy and paleoceanographic significance of the Lower Cretaceous shallow-water carbonates of resolution Guyot, Mid-Pacific Mountains. Proceedings of the Ocean Drilling Program Scientific Results 143: 99–104. [Google Scholar]
  • Jenkyns HC. 1999. Mesozoic anoxic events and palaeoclimate. Zentralblatt für Geologie Paläeontologie Teil I: 943949. [Google Scholar]
  • Jenkyns HC. 2010. Geochemistry of oceanic anoxic events. Geochemistry Geophysics Geosystems 11: Q03004. https://doi.org/10.1029/2009GC002788. [Google Scholar]
  • Jenkyns HC, Gale AS, Corfield RM. 1994. Carbon-isotope and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and Its paleoclimatic significance. Geological Magazine 131(1): 1–34. [Google Scholar]
  • Jenkyns HC, Dickson AJ, Ruhl M, Van Den Boorn SH. 2017. Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: Deconstructing Oceanic Anoxic Event 2 (Cenomanian-Turonian, Late Cretaceous). Sedimentology 64: 16–43. [Google Scholar]
  • Joo YJ, Sageman BB. 2014. Cenomanian to Campanian carbon isotope chemostratigraphy from the Western Interior Basin, U.S.A. Journal of Sedimentary Research 54: 529–542. [Google Scholar]
  • Kaiho K, Katabuchi M, Oba M, Lamolda M. 2014. Repeated anoxia-extinction episodes progressing from slope to shelf during the latest Cenomanian. Gondwana Research 25: 1357–1368. [Google Scholar]
  • Larson RL. 1991. Latest pulse of Earth; evidence for a mid-Cretaceous super-plume. Geology 19: 547–550. [Google Scholar]
  • Lasseur E. 2007. La Craie du Bassin de paris (Cénomanien-Campanien, Crétacé supérieur). Sédimentologie de faciès, stratigraphie séquentielle et géométrie 3D (unpubl. PhD thesis). University of Rennes 1, 435 p. [Google Scholar]
  • Le Callonnec L, Renard M, Pomerol B, Janodet C, Caspard E. 2000. Données géochimiques préliminaires sur la série Cénomano-campanienne des forages 701 et 702 du programme Craie 700. Bulletin information géologues bassin de Paris 37(2): 112–119. [Google Scholar]
  • Lüning S, Kolonic S, Belhadj EM, Belhadj Z, Cota L, Baric G, et al. 2004. Integrated depositional model for the Cenomaniane-Turonian organic-rich strata in North Africa. Earth Science Reviews 64: 51–117. [Google Scholar]
  • Masure E. 2000. Les kystes de dinoflagellés en matière organique des forages du Programme Craie 700. Bulletin information géologues bassin de Paris 37(2): 44–51. [Google Scholar]
  • Mégnien C, Hanot F. 2000. Programme Craie 700. Deux forages scientifiques profonds pour étudier les phénomènes diagénétiques de grande ampleur dans la craie du Bassin de Paris. Bulletin information géologues bassin de Paris 37(2): 3–7. [Google Scholar]
  • Millan MI, Weissert HJ, Fernandez-Mendiola PA, Garcia-Mondéjar J. 2009. Impact of Early Aptian carbon cycle perturbations on evolution of a marine shelf system in the Basque-Cantabrian Basin (Aralar, N Spain). Earth and Planetary Science Letters 287: 392–401. [CrossRef] [Google Scholar]
  • Minoletti F, de Rafélis M, Renard M, Gardin S, Young J. 2005. Changes in the pelagic fine fraction carbonate sedimentation during the Cretaceous-Paleocene transition: Contribution of the separation technique to the study of Bidart section. Palaeogeography Palaeoclimatology Palaeoecology 216: 119–137. [Google Scholar]
  • Minoletti F, Hermoso M, Gressier V. 2007. Deciphering the geochemistry of calcareous pelagic producers: Beyond bulk carbonate analyses. Eos Trans AGU 88 Fall Meeting Supplementary, Abstract id. PP31C–0531. [Google Scholar]
  • Monnet C. 2009. The Cenomanian-Turonian boundary mass extinction (Late Cretaceous): New insights from ammonoid biodiversity patterns of Europe, Tunisia and the Western Interior (North America). Palaeogeography Palaeoclimatology Palaeoecology 282: 88104. [Google Scholar]
  • Monteiro FM, Pancost RD, Ridgwell A, Donnadieu Y. 2012. Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian‐Turonian oceanic anoxic event (OAE 2): Model‐data comparison. Paleoceanography 27(4): PA4209. https://doi.org/10.1029/2012PA002351. [Google Scholar]
  • Morel L. 1998. Stratigraphie à haute résolution du passage Cénomanien-Turonien. Thèse de l’Université Pierre et Marie Curie, Paris VI, 224. [Google Scholar]
  • Mort HP, Adatte T, Föllmi KB, Keller G, Steinmann P, Matera V, et al. 2007. Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology 35(6): 483–486. [Google Scholar]
  • Mortimore R.N. 1983. The stratigraphy and sedimentation of the Turonian-Campanian in the Southern Province of England. Zitteliana 10: 27–41. [Google Scholar]
  • Mortimore R.N. 2011. A chalk revolution: What have we done to the chalk of England? Proceedings of the Geologists’ Association 122: 232–297. [Google Scholar]
  • Mortimore RN. 2014. Logging the Chalk. Scotland (UK): Whitles Publishing, 357 p. [Google Scholar]
  • Mortimore R, Pomerol B. 1997. Upper Cretaceous tectonic phases and end Cretaceous inversion in the Chalk of the Anglo-Paris Basin. Proceedings of the Geologists Association 108: 231–255. [Google Scholar]
  • Mortimore RN, Wood CJ, Pomerol B, Ernst G. 1996. Dating the phases of the Subhercynian tectonic epoch: Late Cretaceous tectonics and eustatics in the Cretaceous basins of northern Germany compared with the Anglo-Paris Basin. Zentralblatt für Geologie und Paläontologie Teil I(11/12): 1349–1401. [Google Scholar]
  • Mortimore RN, Wood CJ, Gallois RW. 2001. British Upper Cretaceous Stratigraphy. Geological Conservation Review Series 23. Peterborough: Joint Nature Conservation Committee, 558 p. [Google Scholar]
  • Musavu-Moussavou B, Danelian T, Baudin F, Coccioni R, Frölich F. 2007. The radiolarian biotic response during OAE 2. A high-resolution study across the Bonarelli level at Bottaccione (Gubbio, Italy). Revue de micropaléontologie 50: 253–287. [Google Scholar]
  • Nuñez-Useche F, Canet C, Barragan R, Alfonso P. 2016. Bioevents and redox conditions around the Cenomanian–Turonian anoxic event in Central Mexico. Palaeogeography Palaeoclimatology Palaeoecology 449: 205–226. [Google Scholar]
  • Patterson W, Walter L. 1994. Depletion of 13C in seawater ƩCO2 on modern carbonate platform: Significance for the carbon isotopic record of carbonates. Geology 22: 885–888. [Google Scholar]
  • Paul CRC, Mitchell SF, Marshall JD, Leafy PN, Gale AS, Duane AM, et al. 1994. Palaeoceanographic events in the Middle Cenomanian of Northwest Europe. Cretaceous Research 15(6): 707–738. [Google Scholar]
  • Philip J, Floquet M. 2000. Late Cenomanian. In: Dercourt J, Gaetani B, Vrielynck E, Barrier B, Biju Duval B, Brunet MF, et al., eds. Atlas Peri-Tethys, Palaeogeographical maps. Paris: CCGM/CGMW, map 14. [Google Scholar]
  • Pirrie D, Marshall JD. 1990. Diagenesis of Inoceramus and Late Cretaceous paleoenvironmental geochemistry: A case study from James Ross Island, Antarctica. Palaios 5: 336–345. [Google Scholar]
  • Pitman WC. 1978. Relation between eustasy and stratigraphic sequences of passive margins. Geological Society of America Bulletin 89: 1389–1403. [Google Scholar]
  • Pomerol B. 1983. Geochemistry of the Late Cenomanian-Early Turonian chalks of the Paris Basin: Manganese and carbon isotopes in carbonates as paleooceanographic indicators. Cretaceous Research 4: 85–93. [Google Scholar]
  • Pomerol B. 2000. Le forage de Sainte-Colombe (702) : description lithologique. Bulletin d’information des géologues du bassin de Paris 37: 27e32. [Google Scholar]
  • Renard M, Delacotte O, Létolle R. 1982. Le strontium et les isotopes stables dans les carbonates totaux de quelques sites de l’Atlantique et de la Téthys. Bulletin de la Société géologique de France 7, 24(3): 519–534. [Google Scholar]
  • Robaszynski F. 2000. Le forage de Poigny (701) : description lithologique. Bulletin d’information des géologues du bassin de Paris 37(2): 18–26. [Google Scholar]
  • Robaszynski F, Bellier J.P. 2000. Biostratigraphie du Crétacé avec les foraminifères dans les forages de Poigny et de Sainte-Colombe. Bulletin d’information des géologues du bassin de Paris 37(2): 59–65. [Google Scholar]
  • Robaszynski F, Amédro F, Colleté C, Fricot C. 1987. La limite Cénomanien-Turonien dans la région de Troyes (Aube, France). Bulletin d’information des géologues du bassin de Paris 24(4): 7–24. [Google Scholar]
  • Robaszynski F, Gale AS, Juignet P, Amédro F, Hardenbol J. 1998. Sequence stratigraphy in the upper Cretaceous of the Anglo-Paris basin exemplified by the Cenomanian Stage. In: Hardenbol J, Thierry J, Farley MB, Jaquin T, de Graciansky PC, Vail PR, eds. Mesozoic and Cenozoic sequence stratigraphy of European Mesozoic basins. SEPM special Publications 60: 363–386. [Google Scholar]
  • Robaszynski F, Pomerol B, Masure E, Janin MC, Bellier JP, Damotte R. 2000. Corrélations litho-biostratigraphiques et position des limites d’étages dans le Crétacé des sondages de Poigny et de Sainte-Colombe : une synthèse des premiers résultats. Bulletin d’information des géologues du bassin de Paris 37(2): 74–85. [Google Scholar]
  • Robaszynski F, Pomerol B, Masure E, Bellier JP, Deconinck JF. 2005. Stratigraphy and stage boundaries in reference sections of the Upper Cretaceous Chalk in the east of the Paris Basin: The “Craie 700” Provins boreholes. Cretaceous Research 26(2): 157–169. [Google Scholar]
  • Sarmiento JL, Herbert TD, Toggweiler JR. 1988. Causes of anoxia in the world ocean. Global Biogeochemical Cycles 2: 115–128. [Google Scholar]
  • Schiffbauer J, Huntley J, Fike D, Jeffrey M, Gregg J, Shelton K. 2017. Decoupling biogeochemical records, extinction, and environmental change during the Cambrian SPICE event. Science Advances 3: 1–7. [Google Scholar]
  • Schlanger SO, Jenkyns HC. 1976. Cretaceous oceanic anoxic events: Causes and consequences. Geologie Mijnbouw 55: 179–184. [Google Scholar]
  • Schlanger SO, Jenkyns HC, Premoli-Silva I. 1981. Volcanism and vertical tectonics in the Pacific Basin related to global Cretaceous transgression. Earth and Planetary Science Letters 52: 435–449. [Google Scholar]
  • Scholle PA, Arthur MA. 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones; potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geologists Bulletin 64: 67–87. [Google Scholar]
  • Selby D, Mutterlose J, Condon DJ. 2009. U–Pb and Re–Os geochronology of the Aptian/Albian and Cenomanian/Turonian stage boundaries: Implications for timescale calibration, osmium isotope seawater composition and Re–Os systematics in organicrich sediments. Chemical Geology 265: 394–409. https://doi.org/10.1016/j.chemgeo.2009.05.005. [Google Scholar]
  • Spicer RA, Parrish JT. 1990. Late Cretaceous-early Tertiary palaeoclimates of northern high latitudes: A quantitative view. Journal of the Geological Society London 147: 329341. [Google Scholar]
  • Stoll HM, Schrag DP. 2000. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet? Geological Society America Bulletin 112: 308–319. [Google Scholar]
  • Takashima R, Nishi H, Hayashi K, Okada H, Kawahata H, Yamanaka T, et al. 2009. Litho-, bio- and chemostratigraphy across the Cenomanian/Turonian boundary (OAE 2) in the Vocontian Basin of southeastern France. Palaeogeography Palaeoclimatology Palaeoecology 273(1): 61–74. [Google Scholar]
  • Tremblin M, Minoletti F. 2018. The meridional temperature gradient under greenhouse climatic state: A data-models discrepancy? Geophysical Research Abstracts 20: 9559. [Google Scholar]
  • Tsandev I, Slomp CP. 2009. Modeling phosphorus cycling and carbon burial during Cretaceous Oceanic Anoxic Events. Earth and Planetary Science Letters 286: 71–79. [Google Scholar]
  • Tsikos H, Jenkyns HC, Walsworth-Bell B, Petrizzo MR, Forster A, Kolonic S, et al. 2004. Carbonisotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: Correlation and implications based on three key localities. Journal of the Geological Society 161(4): 711–719. [Google Scholar]
  • Vahrenkamp VC. 1996. Carbon isotope stratigraphy of the Upper Kharaib and Shuaiba Formations: Implications for the Early Cretaceous Evolution of the Arabian Gulf Region. American Association of Petroleum Geologists 80(5): 647–662. [Google Scholar]
  • Vanderaveroet P, Amédro F, Colleté C, Deconinck JF, Récourt P, Robaszynski F. 2000. Caractérisation et extension de niveaux repères de bentonites dans le Turonien supérieur du Bassin de Paris (Boulonnais, Aube). Geodiversitas 22(3): 457–469. [Google Scholar]
  • Vandyckes S, Bergerat F. 1992. Tectonique de failles et paléo-contraintes dans les formations crétacées du Boulonnais (France). Implications géodynamiques. Bulletin de la Société géologique de France 163(5): 553–560. [Google Scholar]
  • Voigt S. 2000. Cenomanian–Turonian composite δ13C curve for Western and Central Europe: The role of organic and inorganic carbon fluxes. Palaeogeography, Palaeoclimatology, Palaeoecology 160: 91–104. [Google Scholar]
  • Voigt S, Hilbrecht H. 1997. Late Cretaceous carbon isotope stratigraphy in Europe: Correlation and relations with sea level and sediment stability. Palaeogeography, Palaeoclimatology, Palaeoecology 134: 39–59. [Google Scholar]
  • Voigt S, Wiese F. 2000. Evidence for Late Cretaceous (Late Turonian) climate cooling from oxygen-isotope variations and palaeobiogeographic changes in Western and Central Europe. Journal of the Geological Society 57(4): 737–743. [Google Scholar]
  • Voigt S, Gale AS, Flogel S. 2004. Midlatitude shelf seas in the Cenomanian-Turonian greenhouse world: Temperature evolution and North Atlantic circulation. Paleoceanography 19: PA4020. https://doi.org/10.1029/2004PA001015. [Google Scholar]
  • Voigt S, Aurag A, Leis F, Kaplan U. 2007. Late Cenomanian to Middle Turonian high-resolution carbon isotope stratigraphy: New data from the Münsterland Cretaceous Basin, Germany. Earth and Planetary Science Letters 253: 196–210. [Google Scholar]
  • Wagner T, Hofmann P, Flögel S. 2013. Marine black shale deposition and Hadley Cell dynamics: A conceptual framework for the Cretaceous Atlantic Ocean. Marine and Petroleum Geology 43: 222–238. [Google Scholar]
  • Watkins DK, Cooper MJ, Wilson PA. 2005. Calcareous nannoplankton response to late Albian oceanic anoxic event 1d in the western North Atlantic. Paleoceanography 20(2): PA2010. https://doi.org/10.1029/2004PA001097. [Google Scholar]
  • Weissert HJ. 2018. Jurassic‐Cretaceous Carbon Isotope Geochemistry–Proxy for Paleoceanography and Tool for Stratigraphy. In: Sial AN, Gaucher C, Ramkumar M, Ferreira VP, eds. Chemostratigraphy Across Major Chronological Boundaries. Geophysical Monograph Series 240: 211–221. [Google Scholar]
  • Weissert H, Joachimski M, Sarnthein M. 2008. Chemostratigraphy. Newsletters on Stratigraphy 42(3): 145–179. [Google Scholar]
  • Wendler J, Willems H. 2002. Distribution pattern of calcareous dinoflagellate cysts across the Cretaceous–Tertiary boundary (Fish Clay, Stevns Klint, Denmark); implications for our understanding of species-selective extinction. In: Koeberl C, MacLeod KG, eds. Catastrophic events and mass extinctions; impacts and beyond. Boulder(Colorado): Geological Society of America (GSA), 356, pp. 265–275. [Google Scholar]
  • Wendler J, Graefe KU, Willems H. 2002. Palaeoecology of calcareous dinoflagellate cysts in the mid-Cenomanian Boreal Realm; implications for the reconstruction of palaeoceanography of the NW European shelf sea. Cretaceous Research 23: 213–229. [Google Scholar]
  • Wendler JE, Lehmann J, Kuss J. 2010. Orbital time scale, intra-platform basin correlation, carbon isotope stratigraphy and sea-level history of the Cenomanian-Turonian Eastern Levant platform, Jordan. In: Homberg C, Bachmann M, eds. Evolution of the Levant Margin and Western Arabia platform since the Mesozoic. Geological Society, London, Special Publication 341: 171–186. [Google Scholar]
  • Wilmsen M. 2003. Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretaceous Research 24: 525–568. [Google Scholar]
  • Wissler L, Funk H, Weissert HJ. 2003. Response of Early Cretaceous carbonate platforms to changes in atmospheric carbon dioxide levels. Palaeogeography Palaeoclimatology Palaeoecology 200: 187–205. [Google Scholar]
  • Wray D. 1999. Identification and long-range correlation of bentonites in Turonian-Coniacian (Upper Cretaceous) chalks of northwest Europe. Geological Magazine 136(4): 361–371.and Floquet [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.