Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Article Number 15
Number of page(s) 23
DOI https://doi.org/10.1051/bsgf/2020038
Published online 02 April 2021
  • Adkinson W. 1966. Stratigraphic cross section of Paleozoic rocks, Colorado to New York. Cross-section Publication 4. American Association of Petroleum Geologists, 58 p. [Google Scholar]
  • Akkouche MM. 2007. Application de la datation par traces de fission à l’analyse de la thermicité de bassins à potentialités pétrolières. Exemple de la cuvette de Sbaâ et du bassin de l’Ahnet-Nord (plate-forme saharienne occidentale, Algérie). Université Bordeaux 1. [Google Scholar]
  • Allen PA, Allen JR. 2013. Basin analysis: principles and application to petroleum play assessment, 3rd ed. Chichester, West Susex, UK: Wiley-Blackwell. [Google Scholar]
  • Allen PA, Armitage JJ. 2011. Cratonic Basins. In: Busby C, Azor A, eds. Tectonics of Sedimentary Basins. John Wiley & Sons Ltd., pp. 602–620. [Google Scholar]
  • Armitage JJ, Allen PA. 2010. Cratonic basins and the long-term subsidence history of continental interiors. J. Geol. Soc. 167(1): 61–70. https://doi.org/10.1144/0016-76492009-108. [Google Scholar]
  • Artemieva IM. 2009. The continental lithosphere: Reconciling thermal, seismic, and petrologic data. Lithos 109(1-2): 23–46. https://doi.org/10.1016/j.lithos.2008.09.015. [Google Scholar]
  • Artemieva IM, Mooney WD. 2002. On the relations between cratonic lithosphere thickness, plate motions, and basal drag. Tectonophysics 358(1-4): 21. https://doi.org/10.1016/S0040-1951(02)00425-0. [Google Scholar]
  • Audet P, Bürgmann R. 2011. Dominant role of tectonic inheritance in supercontinent cycles. Nat. Geosci. 4(3): 184–187. https://doi.org/10.1038/ngeo1080. [Google Scholar]
  • Avigad D, Gvirtzman Z. 2009. Late Neoproterozoic rise and fall of the northern Arabian–Nubian shield: The role of lithospheric mantle delamination and subsequent thermal subsidence. Tectonophysics 477(3): 217–228. https://doi.org/10.1016/j.tecto.2009.04.018. [Google Scholar]
  • Avouac JP, Burov EB. 1996. Erosion as a driving mechanism of intracontinental mountain growth. J. Geophys. Res. Solid Earth 101(B8): 17747–17769. https://doi.org/10.1029/96JB01344. [Google Scholar]
  • Baird DJ, Knapp JH, Steer DN, Brown LD, Nelson KD. 1995. Upper-mantle reflectivity beneath the Williston basin, phase-change Moho, and the origin of intracratonic basins. Geology 23(5): 431–434. [Google Scholar]
  • Balay S, Abhyankar S, Adams M, Brown J, Brune P, Buschelman K, et al. 2017. PETSc Users Manual Revision 3.8. Argonne, IL (United States): Argonne National Lab (ANL). [Google Scholar]
  • Beaumont C, Fullsack P, Hamilton J. 1992. Erosional control of active compressional orogens. In: Thrust tectonics. Springer, pp. 1–18. [Google Scholar]
  • Bertrand JML, Caby R. 1978. Geodynamic evolution of the Pan-African orogenic belt: A new interpretation of the Hoggar shield (Algerian Sahara). Geol. Rundsch. 67(2): 357–388. https://doi.org/10.1007/BF01802795. [Google Scholar]
  • Beuf S, Biju-Duval B, De Charpal O, Gariel O, Bennacef A, Black R, et al. 1968. Une conséquence directe de la structure du bouclier Africain : l’ébauche des bassins de l’Ahnet et du Mouydir au Paléozoique inférieur. Publ. Serv. Géologique L’Algérie Nouv. Sér. Bull. 38: 105–34. [Google Scholar]
  • Beuf S, Biju-Duval B, de Charpal O, Rognon P, Gabriel O, Bennacef A. 1971. Les grès du Paléozoïque inférieur au Sahara : sédimentation et discontinuités évolution structurale d’un craton. Paris : Technip. [Google Scholar]
  • Black R, Latouche L, Liégeois JP, Caby R, Bertrand JM. 1994. Pan-African displaced terranes in the Tuareg shield (central Sahara). Geology 22(7): 641–644. [Google Scholar]
  • Bologna MS, Nunes HO, Padilha AL, Vitorello Í, Pádua MB. 2013. Anomalous electrical structure in the northwestern Paraná Basin, Brazil, observed with broadband magnetotellurics. J. South Am. Earth Sci. 42: 74–82. https://doi.org/10.1016/j.jsames.2012.07.006. [Google Scholar]
  • Bond GC, Kominz MA. 1991. Disentangling middle Paleozoic sea level and tectonic events in cratonic margins and cratonic basins of North America. J. Geophys. Res. Solid Earth 96(B4): 6619–6639. [Google Scholar]
  • Boote DRD, Clark-Lowes DD, Traut MW. 1998. Palaeozoic petroleum systems of North Africa. Geol. Soc. Lond. Spec. Publ. 132(1): 7–68. https://doi.org/10.1144/GSL.SP.1998.132.01.02. [Google Scholar]
  • Bouzid A, Akacem N, Hamoudi M, Ouzegane K, Abtout A, Kienast J-R. 2008. Modélisation magnétotellurique de la structure géologique profonde de l’unité granulitique de l’In Ouzzal (Hoggar occidental). Comptes Rendus Geosci. 340(11): 711–722. https://doi.org/10.1016/j.crte.2008.08.001. [Google Scholar]
  • Brace WF, Kohlstedt DL. 1980. Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res. Solid Earth 85(B11): 6248–6252. https://doi.org/10.1029/JB085iB11p06248. [Google Scholar]
  • Brahimi S, Liégeois J-P, Ghienne J-F, Munschy M, Bourmatte A. 2018. The Tuareg shield terranes revisited and extended towards the northern Gondwana margin: Magnetic and gravimetric constraints. Earth-Sci. Rev. [Google Scholar]
  • Brunet M-F, Pichon XL. 1982. Subsidence of the Paris Basin. J. Geophys. Res. Solid Earth 87(B10): 8547–8560. https://doi.org/10.1029/JB087iB10p08547. [Google Scholar]
  • Buiter SJH, Pfiffner OA. 2003. Numerical models of the inversion of half-graben basins. Tectonics 22(5). https://doi.org/10.1029/2002TC001417. [Google Scholar]
  • Burov EB, Diament M. 1995. The effective elastic thickness (Te) of continental lithosphere: what does it really mean? J. Geophys. Res. Solid Earth 100(B3): 3905–3927. [Google Scholar]
  • Burov E, Poliakov A. 2001. Erosion and rheology controls on synrift and postrift evolution: Verifying old and new ideas using a fully coupled numerical model. J. Geophys. Res. Solid Earth 106(B8): 16461–16481. [Google Scholar]
  • Cacace M, Scheck-Wenderoth M. 2016. Why intracontinental basins subside longer: 3-D feedback effects of lithospheric cooling and sedimentation on the flexural strength of the lithosphere: Subsidence at Intracontinental Basins. J. Geophys. Res. Solid Earth 121(5): 3742–3761. https://doi.org/10.1002/2015JB012682. [Google Scholar]
  • Cagnard F, Barbey P, Gapais D. 2011. Transition between “Archaean-type” and “modern-type” tectonics: Insights from the Finnish Lapland Granulite Belt. Precambrian Res. 187(1-2): 127–142. https://doi.org/10.1016/j.precamres.2011.02.007. [Google Scholar]
  • Caravaca G, Brayard A, Vennin E, Guiraud M, Le Pourhiet L, Grosjean A-S, et al. 2017. Controlling factors for differential subsidence in the Sonoma Foreland Basin (Early Triassic, western USA). Geol. Mag. 1–25. https://doi.org/10.1017/S0016756817000164. [Google Scholar]
  • Carter NL, Tsenn MC. 1987. Flow properties of continental lithosphere. Tectonophysics 136(1-2): 27–63. [Google Scholar]
  • Cawood PA, ed. 2009. Earth accretionary systems in space and time. Geological Soc London. [Google Scholar]
  • Cawood PA, Kröner A, Collins WJ, Kusky TM, Mooney WD, Windley BF. 2009. Accretionary orogens through Earth history. Geol. Soc. Lond. Spec. Publ. 318(1): 1–36. https://doi.org/10.1144/SP318.1. [Google Scholar]
  • Célérier J, Sandiford M, Hansen DL, Quigley M. 2005. Modes of active intraplate deformation, Flinders Ranges, Australia. Tectonics 24(6): 1–17. https://doi.org/10.1029/2004TC001679. [Google Scholar]
  • Chardon D, Gapais D, Cagnard F. 2009. Flow of ultra-hot orogens: A view from the Precambrian, clues for the Phanerozoic. Tectonophysics 477(3-4): 105–118. https://doi.org/10.1016/j.tecto.2009.03.008. [Google Scholar]
  • Cherepanova Y, Artemieva IM. 2015. Density heterogeneity of the cratonic lithosphere: A case study of the Siberian Craton. Gondwana Res. 28(4): 1344–1360. https://doi.org/10.1016/j.gr.2014.10.002. [Google Scholar]
  • Cherepanova Y, Artemieva IM, Thybo H, Chemia Z. 2013. Crustal structure of the Siberian craton and the West Siberian basin: An appraisal of existing seismic data. Tectonophysics 609: 154–183. https://doi.org/10.1016/j.tecto.2013.05.004. [Google Scholar]
  • Chernicoff CJ, Zappettini EO. 2004. Geophysical Evidence for Terrane Boundaries in South-Central Argentina. Gondwana Res. 7(4): 1105–1116. https://doi.org/10.1016/S1342-937X(05)71087-X. [Google Scholar]
  • Cloetingh S. 1986. Intraplate stresses: A new tectonic mechanism for fluctuations of relative sea level. Geology 14(7): 617–620. https://doi.org/10.1130/0091-7613(1986)14<617:ISANTM>2.0.CO;2. [Google Scholar]
  • Cloetingh S. 1988. Intraplate stresses: A new element in basin analysis. In: K. L. Kleinspehn and C. Paola, eds. New Perspectives in Basin Analysis. New York, NY.: Springer New York, pp. 205–230. [Google Scholar]
  • Cloetingh S, Burov E. 2011. Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms. Basin Res. 23(3): 257–290. https://doi.org/10.1111/j.1365-2117.2010.00490.x. [Google Scholar]
  • Cloetingh S, McQueen H, Lambeck K. 1985. On a tectonic mechanism for regional sealevel variations. Earth Planet. Sci. Lett. 75(2): 157–166. https://doi.org/10.1016/0012-821X(85)90098-6. [Google Scholar]
  • Condie KC. 2007. Accretionary orogens in space and time. In: Geological Society of America Memoirs, vol. 200, pp. 145–158. Geological Society of America. [Google Scholar]
  • Conrad J. 1984. Les séries carbonifères du Sahara central algérien: stratigraphie, sédimentation, évolution structurale. Doctoral dissertation, Université Aix-Marseille III, France. [Google Scholar]
  • Coward MP, Ries AC. 2003. Tectonic development of North African basins. Geol. Soc. Lond. Spec. Publ. 207(1): 61–83. https://doi.org/10.1144/GSL.SP.2003.207.4. [Google Scholar]
  • Craig J, Rizzi C, Said F, Thusu B, Luning S, Asbali AI, et al. 2008. Structural styles and prospectivity in the Precambrian and Palaeozoic hydrocarbon systems of North Africa. Geol. East Libya 4: 51–122. [Google Scholar]
  • Culling WEH. 1965. Theory of erosion on soil-covered slopes. J. Geol. 73(2): 230–254. [Google Scholar]
  • Daly MC, Andrade V, Barousse CA, Costa R, McDowell K, Piggott N, et al. 2014. Brasiliano crustal structure and the tectonic setting of the Parnaíba basin of NE Brazil: Results of a deep seismic reflection profile. Tectonics 33(11): 2102–2120. https://doi.org/10.1002/2014TC003632. [Google Scholar]
  • Daly MC, Tozer B, Watts AB. 2018. Cratonic basins and the Wilson cycle: a perspective from the Parnaíba Basin, Brazil. Geol. Soc. Lond. Spec. Publ. 470: SP470.13. https://doi.org/10.1144/SP470.13. [Google Scholar]
  • de Brito Neves BB, Fuck RA, Cordani UG, Thomaz FA. 1984. Influence of basement structures on the evolution of the major sedimentary basins of Brazil: A case of tectonic heritage. J. Geodyn. 1(3): 495–510. https://doi.org/10.1016/0264-3707(84)90021-8. [Google Scholar]
  • de Wit MJ, Linol B. 2015. Precambrian basement of the Congo Basin and its flanking terrains. In: Geology and Resource Potential of the Congo Basin. Springer, pp. 19–37. [Google Scholar]
  • de Wit MJ, de Ronde CEJ, Tredoux M, Roering C, Hart RJ, Armstrong RA, et al. 1992. Formation of an Archaean continent. Nature 357(6379): 553–562. https://doi.org/10.1038/357553a0. [Google Scholar]
  • Derder MEM, Maouche S, Liégeois JP, Henry B, Amenna M, Ouabadi A, et al. 2016. Discovery of a Devonian mafic magmatism on the western border of the Murzuq basin (Saharan metacraton): Paleomagnetic dating and geodynamical implications. J. Afr. Earth Sci. 115: 159–176. https://doi.org/10.1016/j.jafrearsci.2015.11.019. [Google Scholar]
  • DeRito RF, Cozzarelli FA, Hodge DS. 1983. Mechanism of subsidence of ancient cratonic rift basins. Tectonophysics 94(1): 141–168. https://doi.org/10.1016/0040-1951(83)90014-8. [Google Scholar]
  • Djomani YHP, O’Reilly SY, Griffin WL, Morgan P. 2001. The density structure of subcontinental lithosphere through time. Earth Planet. Sci. Lett. 184(3-4): 605–621. https://doi.org/10.1016/S0012-821X(00)00362-9. [Google Scholar]
  • Eschard R, Braik F, Bekkouche D, Rahuma MB, Desaubliaux G, Deschamps R, Proust JN. 2010. Palaeohighs: their influence on the North African Palaeozoic petroleum systems. Pet. Geol. Mature Basins New Front. In: 7th Pet. Geol. Conf., pp. 707–724. [Google Scholar]
  • Eaton DW, Darbyshire F. 2010. Lithospheric architecture and tectonic evolution of the Hudson Bay Region. Tectonophysics 480(1-4): 1–22. https://doi.org/10.1016/j.tecto.2009.09.006. [Google Scholar]
  • Fishwick S, Bastow ID. 2011. Towards a better understanding of African topography: a review of passive-source seismic studies of the African crust and upper mantle. Geol. Soc. Lond. Spec. Publ. 357(1): 343–371. https://doi.org/10.1144/SP357.19. [Google Scholar]
  • Fowler CMR, Nisbet EG. 1985. The subsidence of the Williston Basin. Can. J. Earth Sci. 22(3): 408–415. https://doi.org/10.1139/e85-039. [Google Scholar]
  • Frederiksen AW, Deniset I, Ola O, Toni D. 2013. Lithospheric fabric variations in central North America: Influence of rifting and Archean tectonic styles. Geophys. Res. Lett. 40(17): 4583–4587. [Google Scholar]
  • Gac S, Huismans RS, Simon NSC, Podladchikov YY, Faleide JI. 2013. Formation of intracratonic basins by lithospheric shortening and phase changes: a case study from the ultra-deep East Barents Sea Basin. Terra Nova 25(6): 459–464. https://doi.org/10.1111/ter.12057. [Google Scholar]
  • Gleason GC, Tullis J. 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics 247(1-4): 1–23. [Google Scholar]
  • Goetze C, Evans B. 1979. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys. J. R. Astron. Soc. 59(3): 463–478. https://doi.org/10.1111/j.1365-246X.1979.tb02567.x. [Google Scholar]
  • Guiraud R, Bosworth W, Thierry J, Delplanque A. 2005. Phanerozoic geological evolution of Northern and Central Africa: An overview. J. Afr. Earth Sci. 43(1-3): 83–143. https://doi.org/10.1016/j.jafrearsci.2005.07.017. [Google Scholar]
  • Gwavava O, Swain CJ, Podmore F. 1996. Mechanisms of isostatic compensation of the Zimbabwe and Kaapvaal cratons, the Limpopo Belt and the Mozambique basin. Geophys. J. Int. 127(3), 635–650. [Google Scholar]
  • Haddoum H, Guiraud R, Moussine-Pouchkine A. 2001. Hercynian compressional deformations of the Ahnet–Mouydir Basin, Algerian Saharan Platform: far-field stress effects of the Late Palaeozoic orogeny. Terra Nova 13(3): 220–226. [Google Scholar]
  • Hamdani Y, Mareschal J-C, Arkani-Hamed J. 1991. Phase changes and thermal subsidence in intracontinental sedimentary basins. Geophys. J. Int. 106(3): 657–665. https://doi.org/10.1111/j.1365-246X.1991.tb06337.x. [Google Scholar]
  • Hartley RW, Allen PA. 1994. Interior cratonic basins of Africa: relation to continental break-up and role of mantle convection. Basin Res. 6(2-3): 95–113. [Google Scholar]
  • Hartley R, Watts AB, Fairhead JD. 1996. Isostasy of Africa. Earth Planet. Sci. Lett. 137(1): 1–18. https://doi.org/10.1016/0012-821X(95)00185-F. [Google Scholar]
  • Haxby WF, Turcotte DL, Bird JM. 1976. Thermal and Mechanical Evolution of the Michigan Basin. Dev. Geotecton. 12: 57–75. https://doi.org/10.1016/B978-0-444-41549-3.50008-6. [Google Scholar]
  • Heilbron M, Valeriano CM, Tassinari CCG, Almeida J, Tupinambá M, Siga O, et al. 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. Geol. Soc. Lond. Spec. Publ. 294(1): 211–237. [Google Scholar]
  • Heine C, Dietmar Müller R, Steinberger B, Torsvik TH. 2008. Subsidence in intracontinental basins due to dynamic topography. Phys. Earth Planet. Inter. 171(1-4): 252–264. https://doi.org/10.1016/j.pepi.2008.05.008. [Google Scholar]
  • Heron PJ, Pysklywec RN, Stephenson R. 2016. Lasting mantle scars lead to perennial plate tectonics. Nat. Commun. 7(1): 11834. https://doi.org/10.1038/ncomms11834. [Google Scholar]
  • Holt P. 2012. Subsidence Mechanisms of Sedimentary Basins Developed over Accretionary Crust. Doctoral, Durham University. Available at http://etheses.dur.ac.uk/3584/ (Accessed 22 November 2016). [Google Scholar]
  • Holt PJ, Allen MB, van Hunen J, Bjørnseth HM. 2010. Lithospheric cooling and thickening as a basin forming mechanism. Tectonophysics 495(3-4): 184–194. https://doi.org/10.1016/j.tecto.2010.09.014. [Google Scholar]
  • Holt PJ, Allen MB, van Hunen J. 2015. Basin formation by thermal subsidence of accretionary orogens. Tectonophysics 639: 132–143. https://doi.org/10.1016/j.tecto.2014.11.021. [Google Scholar]
  • Howell PD, van der Pluijm BA. 1990. Early history of the Michigan basin: Subsidence and Appalachian tectonics. Geology 18(12): 1195–1198. https://doi.org/10.1130/0091-7613(1990)018<1195:EHOTMB>2.3.CO;2. [Google Scholar]
  • Howell PD, van der Pluijm BA. 1999. Structural sequences and styles of subsidence in the Michigan basin. Geol. Soc. Am. Bull. 111(7): 974–991. https://doi.org/10.1130/0016-7606(1999)111<0974:SSASOS>2.3.CO;2. [Google Scholar]
  • Huismans RS, Beaumont C. 2002. Asymmetric lithospheric extension: The role of frictional plastic strain softening inferred from numerical experiments. Geology 30(3): 211–214. [Google Scholar]
  • Janssen ME, Stephenson RA, Cloetingh S. 1995. Temporal and spatial correlations between changes in plate motions and the evolution of rifted basins in Africa. Geol. Soc. Am. Bull. 107(11), 1317–1332. [Google Scholar]
  • Jourdon A, Le Pourhiet L, Petit C, Rolland Y. 2017. The deep structure and reactivation of the Kyrgyz Tien Shan: Modelling the past to better constrain the present. Tectonophysics. https://doi.org/10.1016/j.tecto.2017.07.019. [Google Scholar]
  • Jourdon A, Le Pourhiet L, Petit C, Rolland Y. 2018. Impact of range-parallel sediment transport on 2D thermo-mechanical models of mountain belts: Application to the Kyrgyz Tien Shan. Terra Nova 30(4): 279–288. https://doi.org/10.1111/ter.12337. [Google Scholar]
  • Kaus B, Connolly J, Podladchikov Y, Schmalholz S. 2005. Effect of mineral phase transitions on sedimentary basin subsidence and uplift. Earth Planet. Sci. Lett. 233(1-2): 213–228. https://doi.org/10.1016/j.epsl.2005.01.032. [Google Scholar]
  • Klein G. deV, Hsui AT. 1987. Origin of cratonic basins. Geology 15(12): 1094–1098. https://doi.org/10.1130/0091-7613(1987)15<1094:OOCB>2.0.CO;2. [Google Scholar]
  • Kracha N. 2011. Relation entre sédimentologie, fracturation naturelle et diagénèse d’un réservoir à faible perméabilité application aux réservoirs de l’Ordovicien bassin de l’Ahnet, Sahara central, Algèrie. Doctoral dissertation, Université des sciences et technologies de Lille, France. [Google Scholar]
  • Kreemer C, Blewitt G, Klein EC. 2014. A geodetic plate motion and Global Strain Rate Model. Geochem. Geophys. Geosystems 15(10): 3849–3889. https://doi.org/10.1002/2014GC005407. [Google Scholar]
  • Lafosse M, Boutoux A, Bellahsen N, Le Pourhiet L. 2016. Role of tectonic burial and temperature on the inversion of inherited extensional basins during collision. Geol. Mag. 153(5-6): 811–826. https://doi.org/10.1017/S0016756816000510. [Google Scholar]
  • Lambeck K. 1983. The role of compressive forces in intracratonic basin formation and mid-plate orogenies. Geophys. Res. Lett. 10(9): 845–848. https://doi.org/10.1029/GL010i009p00845. [Google Scholar]
  • Le Pourhiet L, Burov E, Moretti I. 2004. Rifting through a stack of inhomogeneous thrusts (the dipping pie concept). Tectonics 23(4). https://doi.org/10.1029/2003TC001584. [Google Scholar]
  • Lessard L. 1961. Les series primaires des Tassilis Oua-n-Ahaggar au sud du Hoggar entre l’Ar et l’Adrar des Iforas (Sahara meridional). Bull. Société Géologique Fr. S7-III(5): 501–513. https://doi.org/10.2113/gssgfbull.S7-III.5.501. [Google Scholar]
  • Liégeois J-P. 2019. A new synthetic geological map of the tuareg shield: An overview of its global structure and geological evolution. In: A. Bendaoud, Z. Hamimi, M. Hamoudi, S. Djemai, B. Zoheir, eds. The Geology of the Arab World – An Overview. Cham: Springer International Publishing, pp. 83–107. [Google Scholar]
  • Liégeois JP, Sauvage JF, Black R. 1991. The Permo-Jurassic alkaline province of Tadhak, Mali: Geology, geochronology and tectonic significance. Lithos 27(2): 95–105. https://doi.org/10.1016/0024-4937(91)90022-D, [Google Scholar]
  • Liégeois J-P, Benhallou A, Azzouni-Sekkal A, Yahiaoui R, Bonin B. 2005. The Hoggar swell and volcanism: Reactivation of the Precambrian Tuareg shield during Alpine convergence and West African Cenozoic volcanism. Geol. Soc. Am. Spec. Pap. 388: 379–400. https://doi.org/10.1130/0-8137-2388-4.379. [Google Scholar]
  • Logan P, Duddy I. 1998. An investigation of the thermal history of the Ahnet and Reggane Basins, Central Algeria, and the consequences for hydrocarbon generation and accumulation. Geol. Soc. Lond. Spec. Publ. 132(1): 131–155. [Google Scholar]
  • Lüning S, Craig J, Loydell DK, Štorch P, Fitches B. 2000. Lower Silurian “hot shales” in North Africa and Arabia: regional distribution and depositional model. Earth-Sci. Rev. 49(1-4): 121–200. https://doi.org/10.1016/S0012-8252(99)00060-4. [Google Scholar]
  • Lüning S, Adamson K, Craig J. 2003. Frasnian organic-rich shales in North Africa: regional distribution and depositional model. Geol. Soc. Lond. Spec. Publ. 207(1): 165–184. https://doi.org/10.1144/GSL.SP.2003.207.9. [Google Scholar]
  • Lyatsky H, Friedman GM, Lyatsky VB. 2006. Principles of practical tectonic analysis of cratonic regions: With particular reference to Western North America. Springer. [Google Scholar]
  • Mackwell SJ, Zimmerman ME, Kohlstedt DL. 1998. High-temperature deformation of dry diabase with application to tectonics on Venus. J. Geophys. Res. Solid Earth 103(B1), 975–984. [Google Scholar]
  • Mantovani MSM, Quintas MCL, Shukowsky W, Brito Neves BB. 2005. Delimitation of the Paranapanema Proterozoic block: a geophysical contribution. Episodes-Newsmag. Int. Union Geol. Sci. 28(1): 18–22. [Google Scholar]
  • May DA, Brown J, Pourhiet LL. 2014. pTatin3D: High-performance methods for long-term lithospheric dynamics. In: SC ’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 274–284. [Google Scholar]
  • May DA, Brown J, Le Pourhiet L. 2015. A scalable, matrix-free multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow. Comput. Methods Appl. Mech. Eng. 290: 496–523. https://doi.org/10.1016/j.cma.2015.03.014. [Google Scholar]
  • McKenzie D. 1978. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett. 40(1): 25–32. https://doi.org/10.1016/0012-821X(78)90071-7. [Google Scholar]
  • McKenzie D, Priestley K. 2016. Speculations on the formation of cratons and cratonic basins. Earth Planet. Sci. Lett. 435: 94–104. https://doi.org/10.1016/j.epsl.2015.12.010. [Google Scholar]
  • Moreau C, Demaiffe D, Bellion Y, Boullier A-M. 1994. A tectonic model for the location of Palaeozoic ring complexes in Air (Niger, West Africa). Tectonophysics 234(1): 129–146. [Google Scholar]
  • Moretti I, Froidevaux C. 1986. Thermomechanical models of active rifting. Tectonics 5(4): 501–511. [Google Scholar]
  • Moretti I, Turcotte DL. 1985. A model for erosion, sedimentation, and flexure with application to New Caledonia. J. Geodyn. 3(1): 155–168. https://doi.org/10.1016/0264-3707(85)90026-2. [Google Scholar]
  • Naimark BM, Ismail-Zadeh AT. 1995. Numerical models of a subsidence mechanism in intracratonic basins: application to North American basins. Geophys. J. Int. 123(1): 149–160. https://doi.org/10.1111/j.1365-246X.1995.tb06667.x. [Google Scholar]
  • Nikishin AM, Ziegler PA, Abbott D, Brunet M-F, Cloetingh S. 2002. Permo–Triassic intraplate magmatism and rifting in Eurasia: implications for mantle plumes and mantle dynamics. Tectonophysics 351(1-2): 3–39. [Google Scholar]
  • Nunn JA. 1994. Free thermal convection beneath intracratonic basins: thermal and subsidence effects. Basin Res. 6(2-3): 115–130. [Google Scholar]
  • Nunn JA, Sleep NH. 1984. Thermal contraction and flexure of intracratonal basins: a three-dimensional study of the Michigan basin. Geophys. J. Int. 76(3): 587–635. https://doi.org/10.1111/j.1365-246X.1984.tb01912.x. [Google Scholar]
  • Nunn JA, Sleep NH, Moore WE. 1984. Thermal Subsidence and Generation of Hydrocarbons in Michigan Basin. AAPG Bull. 68. https://doi.org/10.1306/AD460A17-16F7-11D7-8645000102C1865D. [Google Scholar]
  • Parsons B, Sclater JG. 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 82(5): 803–827. [Google Scholar]
  • Peace A, McCaffrey K, Imber J, van Hunen J, Hobbs R, Wilson R. 2018. The role of pre-existing structures during rifting, continental breakup and transform system development, offshore West Greenland. Basin Res. 30(3), 373–394. [Google Scholar]
  • Perron P. 2019. Architecture and tectonic of Paleozoic intracratonic Basins: Impact on the sedimentary record and associated geometries. Example of peri-Hoggar Basins (North Gondwana marge). Dijon: Université de Bourgogne Franche-Comté. [Google Scholar]
  • Perron P, Guiraud M, Vennin E, Moretti I, Portier É, Le Pourhiet L, et al. 2018. Influence of basement heterogeneity on the architecture of low subsidence rate Paleozoic intracratonic basins (Reggane, Ahnet, Mouydir and Illizi basins, Hoggar Massif). Solid Earth 9(6): 1239–1275. https://doi.org/10.5194/se-9-1239-2018. [Google Scholar]
  • Phillips TB, Jackson CA-L, Bell RE, Duffy OB. 2018. Oblique reactivation of lithosphere-scale lineaments controls rift physiography – The upper-crustal expression of the Sorgenfrei-Tornquist Zone, offshore southern Norway. Solid Earth 9(2): 403–429. https://doi.org/10.5194/se-9-403-2018. [Google Scholar]
  • Quinlan G. 1987. Models of subsidence mechanisms in intracratonic basins, and their applicability to North American examples. pp. 463–481. [Google Scholar]
  • Ranalli G. 2000. Rheology of the crust and its role in tectonic reactivation. J. Geodyn. 30(1-2): 3–15. https://doi.org/10.1016/S0264-3707(99)00024-1. [Google Scholar]
  • Ratheesh-Kumar RT, Windley BF, Sajeev K. 2014. Tectonic inheritance of the Indian Shield: New insights from its elastic thickness structure. Tectonophysics 615-616: 40–52. https://doi.org/10.1016/j.tecto.2013.12.010. [Google Scholar]
  • Rougier S, Missenard Y, Gautheron C, Barbarand J, Zeyen H, Pinna R, et al. 2013. Eocene exhumation of the Tuareg Shield (Sahara Desert, Africa). Geology 41(5): 615–618. https://doi.org/10.1130/G33731.1. [Google Scholar]
  • Rybacki E, Dresen G. 2000. Dislocation and diffusion creep of synthetic anorthite aggregates. J. Geophys. Res. Solid Earth 105(B11): 26017–26036. [Google Scholar]
  • Sandiford M, McLaren S. 2002. Tectonic feedback and the ordering of heat producing elements within the continental lithosphere. Earth Planet. Sci. Lett. 204(1-2): 133–150. [Google Scholar]
  • Scheck M, Bayer U. 1999. Evolution of the Northeast German Basin – Inferences from a 3D structural model and subsidence analysis. Tectonophysics 313(1): 145–169. https://doi.org/10.1016/S0040-1951(99)00194-8. [Google Scholar]
  • Seyfert CK. 1987. Cratonic basins, domes, and arches. In: Structural Geology and Tectonics. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 141–158. [Google Scholar]
  • Sleep NH, Sloss LL. 1978. A deep borehole in the Michigan Basin. J. Geophys. Res. Solid Earth 83(B12): 5815–5819. https://doi.org/10.1029/JB083iB12p05815. [Google Scholar]
  • Sleep NH, Nunn JA, Chou L. 1980. Platform basins. Annu. Rev. Earth Planet. Sci. 8: 17. [Google Scholar]
  • Smith R. 1967. Stratigraphic cross-section of Paleozoic rocks, Oklahoma to Saskatchewan. Cross-section Publication 5. American Association of Petroleum Geologists. [Google Scholar]
  • Tesauro M, Audet P, Kaban MK, Bürgmann R, Cloetingh S. 2012. The effective elastic thickness of the continental lithosphere: Comparison between rheological and inverse approaches: Te of the continental lithosphere. Geochem. Geophys. Geosystems 13(9). https://doi.org/10.1029/2012GC004162. [Google Scholar]
  • Tesauro M, Kaban MK, Mooney WD. 2015. Variations of the lithospheric strength and elastic thickness in North America: Lithosphere strenght and TE variations. Geochem. Geophys. Geosystems 16(7): 2197–2220. https://doi.org/10.1002/2015GC005937. [Google Scholar]
  • Tozer B, Watts AB, Daly MC. 2017. Crustal structure, gravity anomalies, and subsidence history of the Parnaíba cratonic basin, Northeast Brazil. J. Geophys. Res. Solid Earth 122(7): 5591–5621. https://doi.org/10.1002/2017JB014348. [Google Scholar]
  • Turcotte DL, Schubert G. 2014. Geodynamics, 3rd ed. Cambridge, United Kingdom: Cambridge University Press. [Google Scholar]
  • von Tscharner M, Schmalholz SM, Epard J-L. 2016. 3-D numerical models of viscous flow applied to fold nappes and the Rawil depression in the Helvetic nappe system (western Switzerland). J. Struct. Geol. 86: 32–46. https://doi.org/10.1016/j.jsg.2016.02.007. [Google Scholar]
  • Watremez L, Burov E, d’Acremont E, Leroy S, Huet B, Le Pourhiet L, Bellahsen N. 2013. Buoyancy and localizing properties of continental mantle lithosphere: Insights from thermomechanical models of the eastern Gulf of Aden. Geochemistry, Geophysics, Geosystems 14(8): 2800–2817. [Google Scholar]
  • Wells M, Hirst P, Bouch J, Whear E, Clark N. 2018. Deciphering multiple controls on reservoir quality and inhibition of quartz cement in a complex reservoir: Ordovician glacial sandstones, Illizi Basin, Algeria. Geol. Soc. Lond. Spec. Publ. 435(1): 343–372. https://doi.org/10.1144/SP435.6. [Google Scholar]
  • Wendt J, Kaufmann B, Belka Z, Klug C, Lubeseder S. 2006. Sedimentary evolution of a Palaeozoic basin and ridge system: the Middle and Upper Devonian of the Ahnet and Mouydir (Algerian Sahara). Geol. Mag. 143(3): 269–299. https://doi.org/10.1017/S0016756806001737. [Google Scholar]
  • Wendt J, Kaufmann B, Belka Z, Korn D. 2009. Carboniferous stratigraphy and depositional environments in the Ahnet Mouydir area (Algerian Sahara). Facies 55(3): 443–472. https://doi.org/10.1007/s10347-008-0176-y. [Google Scholar]
  • Xie X, Heller P. 2009. Plate tectonics and basin subsidence history. Geol. Soc. Am. Bull. 121(1-2): 55–64. https://doi.org/10.1130/B26398.1. [Google Scholar]
  • Yahi N. 1999. Petroleum generation and migration in the Berkine (Ghadames) Basin, Eastern Algeria: an organic geochemical and basin modelling study. Doctoral dissertation, Forschungszentrum, Zentralbibliothek, Jülich. [Google Scholar]
  • Zazoun RS. 2001. Hercynian deformation in the western Ahnet Basin and Bled El-Mass area, Algerian Sahara: a continuous strain. J. Afr. Earth Sci. 32(4): 869–887. [Google Scholar]
  • Ziegler PA, Cloetingh S, van Wees J-D. 1995. Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252(1): 7–59. https://doi.org/10.1016/0040-1951(95)00102-6. [Google Scholar]
  • Zieliński M. 2012. Conodont thermal alteration patterns in Devonian and Carboniferous rocks of the Ahnet and Mouydir basins (southern Algeria). Mar. Pet. Geol. 38(1): 166–176. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.