Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Minéralisations périgranitiques
Article Number 16
Number of page(s) 33
DOI https://doi.org/10.1051/bsgf/2020042
Published online 01 April 2021
  • Anthony J, Bideault R, Bladh K, Nichols M. 1997. Handbook of Mineralogy vol. III Halides, Hydroxides, Oxides, 628 p. [Google Scholar]
  • Aubert G. 1969. Les coupoles granitiques de Montebras et d’Échassières (Massif Central Français) et la genèse de leurs minéralisations en étain, lithium, tungstène et béryllium. Mémoires du BRGM 46: 359. [Google Scholar]
  • Augier R, Turrillot P, Hallégouët B, Van Vliet-Lanoë B, inon I, Menier D. 2011. Carte géologique de la France au 1/50 000-Feuille Vannes–Saint-Gildas-de-Rhuys, carte et notice. Éditions BRGM Orléans. [Google Scholar]
  • Ballouard C, Poujol M, Zeh A. 2018. Multiple crust reworking in the French Armorican Variscan belt: Implication for the genesis of uranium-fertile leucogranites. International Journal of Earth Sciences 107(7): 2317–2336. https://doi.org/10.1007/s00531-018-1600-3. [Google Scholar]
  • Beaufort D, Dudoignon P, Meunier A. 1988. Hydrothermal and supergene alterations in the granitic cupola of Montebras, Creuse, France. Clays and Clays Minerals 36(6): 505–520. [Google Scholar]
  • Belkasmi M, Cuney M. 1998. Les columbo-tantalites zonées du granite de Montebras (Massif central français). Implications pétrogénétiques. Comptes Rendus de l’Académie des Sciences – Series IIA – Earth and Planetary Science 326(7): 459–532. [Google Scholar]
  • Berthier F, Duthou JL, Roques M. 1979. Datation géochronologique Rb/Sr sur roches totales du granite de Guéret (Massif Central). Age fini-Dévonien de mise en place de l’un de ses facies types. Bulletin BRGM 1: 59–72. [Google Scholar]
  • Breiter K. 2002. From explosive breccia to unidirectional solidification textures: magmatic evolution of a phosphorus- and fluorine-rich granite system (Podlesí, Krušné hory Mts., Czech Republic). Bulletin of the Czech Geological Survey 77: 67–92. [Google Scholar]
  • Breiter K, Škoda R, Uher P. 2007. Nb–Ta–Ti–W–Sn–oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution: Podlesí, Czech Republic. Mineralogy and Petrology 91: 225–248. [CrossRef] [Google Scholar]
  • Černý P, Roberts WL, Ercit TS, Chapman R. 1985. Wodginite and associated oxide minerals from the Perless pegmatite, Pennington County, South Dakota. American Mineralogist 70: 1044–1049. [Google Scholar]
  • Charoy B, Noronha F. 1996. Multistage growth of a rare-element, volatile-rich microgranite at Argemela (Portugal). Journal of Petrology 37: 73–94. [Google Scholar]
  • Cheilletz A, Cuney M, Charoy B, Archibald DA. 1992. Ages 40Ar/39Ar du leucogranite à topaze-lépidolite de Beauvoir et des pegmatites sodolithiques de Chédeville (Nord du Massif Central, France). Signification pétrologique et géodynamique. Comptes Rendus de l’Académie des Sciences, Paris, Série 2, 315: 329–336. [Google Scholar]
  • Cheilletz A, Gasquet D, Filali F, Archibald DA. 2010. A late Triassic 40Ar/39Ar age for the El Hammam high-REE fluorite deposit (Morocco): mineralization related to the Central Atlantic Magmatic Province? Mineralium Deposita 45: 323–329. [Google Scholar]
  • Chew DM, Petrus JA, Kamber BS. 2014. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology 363: 185–199. https://doi.org/10.1016/j.chemgeo.2013.11.006. [CrossRef] [Google Scholar]
  • Cochrane R, Spikings RA, Chew D, et al. 2014. High temperature (> 350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochimica et Cosmochimica Acta 127: 39–56. https://doi.org/10.1016/j.gca.2013.11.028. [CrossRef] [Google Scholar]
  • Cuney M, Marignac C, Weisbrod A. 1992. The Beauvoir topaz-lepidolite albite granite (Massif Central, France): the disseminated magmatic Sn–Li–Ta–Nb–Be mineralization. Economic Geology 87: 1766–1794. [Google Scholar]
  • Cuney M, Alexandrov P, Le Carlier de Veslud C, et al. 2002. The timing of W-Sn-rare metals mineral deposit formation in the Western Variscan chain in their orogenic setting: The case of the Limousin area (Massif Central, France). In: Blundell DJ, Neubauer F, von Quadt A, eds. The Timing and Location of Major Ore Deposits in an Evolving Orogen. The Geological Society of London, Special Publications 204: 213–228. https://doi.org/10.1144/GSL.SP.2002.204.01.13. [Google Scholar]
  • Cuney M, Barbey P. 2014. Uranium, rare metals, and granulite facies metamorphism. Geosciences Frontiers 5: 729–745. [Google Scholar]
  • Deveaud S, Millot R, Villaros A. 2015. Lithium isotopes in micas: an efficient tool for granitic pegmatites classification? Chemical Geology 411: 97–111. [Google Scholar]
  • Faure M, Lardeaux JM, Ledru P. 2009. A review of the pre-Permian geology of the Variscan French Massif Central. C. R. Géoscience 341: 202–213. [Google Scholar]
  • Faure M. 2014. Le substratum de la France métropolitaine : de la formation du Gondwana à la constitution de la Pangée, une histoire de 600 Ma. Géologues 180: 13–21. [Google Scholar]
  • Fosso Tchunte PM, Tchameni R, André-Mayer AS, et al. 2018. Evidence for Nb-Ta occurrences in the syn-tectonic Pan-African Mayo Salah leucogranite (Northern Cameroon): Constraints from Nb-Ta oxide mineralogy, geochemistry and U-Pb LA-ICP-MS geochronology on columbite and monazite. Minerals 8(5): 188. https://doi.org/10.3390/min8050188. [CrossRef] [Google Scholar]
  • Gloaguen É, Melleton J, Frei D. 2013. First U/Pb dating of rare-element magmatism from the north French Massif Central: A chronological milestone in rare element events of the Variscan belt. Crustal melting in the European variscan belt. BRGM 22. [Google Scholar]
  • Gloaguen É, Melleton J, Lefebvre G, Tourlière B, Yart S. 2018. Ressources métropolitaines en lithium et analyse du potentiel par méthodes de prédictivité. Rapport final BRGM/RP-68321-FR décembre 2018, 129 p. [Google Scholar]
  • Harlaux M, Mercadier J, Bonzi WME, Kremer V, Marignac C, Cuney M. 2017. Geochemical signature of magmatic-hydrothermal fluids exsolved from the Beauvoir rare-metal granite (Massif Central, France): Insights from LA-ICPMS analysis of primary fluid inclusions. Geofluids 2017. [CrossRef] [Google Scholar]
  • Heaman LM, LeCheminant AN. 1993. Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chemical Geology 110: 95–126. [Google Scholar]
  • Hönig S, Leichmann J, Novak M. 2010. Unidirectional solidification textures and garnet layering in Y-enriched garnet-bearing aplit-pegmatites in the Cadomian Brno Batholith, Czech Republic. Journal of Geosciences 55: 113–129. [Google Scholar]
  • Horstwood MSA, Košler J, Gehrels G, et al. 2016. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research 40(3): 311–332. https://doi.org/10.1111/j.1751-908X.2016.0379. [CrossRef] [Google Scholar]
  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211: 47–69. [CrossRef] [Google Scholar]
  • Lecumberri-Sanchez P, Vieira R, Heinrich CA, Pinto F, Wӓlle M. 2017. Fluid-rock interaction is decisive for the formation of tungsten deposits. Geology 45(7): 579–582. [Google Scholar]
  • Li X, Zhao K-D, Jiang S-Y, Palmer MR. 2019. In-situ U-Pb geochronology and sulfur isotopes constrain the metallogenesis of the giant Neves Corvo deposit, Iberian Pyrite Belt. Ore Geology Reviews 105: 223–235. [Google Scholar]
  • Linnen RL, Cuney M. 2005. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In Linnen RL, Samson IM, eds.Rare-Element Geochemistry and Mineral Deposits. Geological Association Canada Short Course Notes 17: 45–68. [Google Scholar]
  • London D. 2008. Pegmatites. The Canadian Mineralogist Special Publication n° 10. Québec: Mineralogical Association of Canada/Association minéralogique du Canada, 363 p. [Google Scholar]
  • Marcoux É, Pélisson P, Baubron J-C, Lhégu J, Touray J-C. 1990. Ages des formations filoniennes à fluorine‑barytine‑quartz du district de Paulhaguet (Haute‑Loire, Massif central français). C. R. Acad. Sci. Paris 311(série I): 829–835. [Google Scholar]
  • McDowell FW, McIntosh WC, Farley KA. 2005. A precise 40Ar–39Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard. Chemical Geology 214: 249–263. https://doi.org/10.1016/j.chemgeo.2004.10.002. [Google Scholar]
  • Melleton J, Gloaguen E, Frei D, Novák M, Breiter K. 2012. How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic? The Canadian Mineralogist 50: 1751–1773. [Google Scholar]
  • Melleton J, Gloaguen E, Frei D. 2015. Rare-Elements (Li-Be-Ta-Sn-Nb) Magmatism in the European Variscan Belt – A review. Mineral resources in a sustainable world. In: 13th SGA Biennial Meeting 2015 Proceedings, Vol. 2, pp. 807–810. [Google Scholar]
  • Michaud J. 2019. Rare Metal Granites: origin, emplacement and mechanisms of the magmatic-hydrothermal transition. Thesis, Université d’Orléans, 364 p. [Google Scholar]
  • Michaud J, Pichavant M. 2019. The H/F ratio as an indicator of contrasted wolframite deposition mechanisms. Ore Geology Reviews 104: 266–272. [CrossRef] [Google Scholar]
  • Michaud J, Gumiaux C, Pichavant M, Gloaguen É, Marcoux É. 2020. From magmatic to hydrothermal Sn-Li-(Nb-Ta-W) mineralization: the Argemela area (central Portugal). Ore Geology Reviews 116: 103215. [CrossRef] [Google Scholar]
  • Michel J. 2007. Évolution othomagmatique et hydrothermale comparée des coupoles granitiques d’Échassières et de Montebras (Massif Central français). Rapport inédit Université d’Orléans, 44 p. [Google Scholar]
  • Mourey Y. 1985. Le leucogranite à topaze de Chavence. Un nouvel exemple de massif à Sn, W, Li dans le Nord du Massif central français. C. R. Acad. Sci., Paris 300, II, 9: 951–954. [Google Scholar]
  • Neymark LA, Holm-Denoma CS, Moscati, RJ. 2018. In situ LA-ICPMS U-Pb dating of cassiterite without a known-age matrix-matched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary. Chemical Geology 483: 410–425. [Google Scholar]
  • Paton C, Woodhead J, Hellstrom J, Hergt J, Greig A, Maas R. 2010. Improved laser ablation U-Pb zircon geochronology through robust down-hole fractionation correction. G Cubed 11. https://doi.org/10.1029/2009GC002618. [Google Scholar]
  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry. https://doi.org/10.1039/c1ja10172b. [Google Scholar]
  • Pirard C, Hatert F, Fransolet AM. 2007. Alteration sequences of aluminium phosphates from Montebras Pegmatite, Massif Central, France. In: Granitic Pegmatites: The State of the Art − International Symposium, Porto, Portugal, 1 p. [Google Scholar]
  • Pochon A, Poujol M, Gloaguen E, et al. 2016. U-Pb LA-ICP-MS dating of apatite in mafic rocks: evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France). American Mineralogist 101: 2430–2442. [Google Scholar]
  • Raimbault L. 1998. Composition of complex lepidolite-type granitic pegmatites and of constituent columbite-tantalite, Chedeville, Massif Central, France. Canadian Mineralogist 36: 563–583. [Google Scholar]
  • Raimbault L, Burnol R. 1998. The Richemont rhyolite dyke, Massif Central, France: a subvolcanic equivalent of rare-metal granites. Canadian Mineralogist 36: 265–282. [Google Scholar]
  • Raimbault L, Cuney M, Azencott C. 1995. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Economic Geology 90: 548–576. [CrossRef] [Google Scholar]
  • Schoene B, Bowring SA. 2006. U-Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contribution to Mineralogy and Petrology 151(5): 615–630. [Google Scholar]
  • Shannon JR, Walker BM, Carten RB, Geraghty EP. 1982. Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson Mine, Colorado. Geology 10: 293–297. [Google Scholar]
  • Sizaret S, Marcoux É, Jébrak M, Touray JC. 2004. The Rossignol fluorite vein, Chaillac, France: Multiphase hydrothermal activity and intra-vein sedimentation. Economic Geology 99: 1107–1122. [Google Scholar]
  • Sláma J, Kosler J, Condon DJ, et al. 2008. Plesovice zircon – A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249(1-2): 1–35. [CrossRef] [Google Scholar]
  • Sylvester PJ. 2008. LA-(MC)-ICP-MS trends in 2006 and 2007 with particular emphasis on measurement uncertainties. The Journal of Geostandards and Geoanalysis 32: 469–488. [Google Scholar]
  • Tartèse R, Ruffet G, Poujol M, Boulvais P, Ireland TR. 2011. Simultaneous resetting of the muscovite K-Ar and monazite U-Pb geochronometers: a story of fluids. Terra Nova 23: 390–398. [CrossRef] [Google Scholar]
  • Thomson SN, Gehrels GE, Ruiz J, Buchwaldt R. 2012. Routine low-damage apatite U/Pb dating using laser ablation–multicollector–ICPMS. Geochemistry, Geophysics, Geosystems 13: Q0AA21. [Google Scholar]
  • Tindle AG, Breaks FW. 1998. Oxide minerals of the separation rapids rare-element granitic pegmatite group, Northwestern Ontario. The Canadian Mineralogist 36: 609–635. [Google Scholar]
  • Turpin L, Cuney M, Friedrich M, Bouchez JL, Aubertin M. 1990. Meta-igneous origin of Hercynian peraluminous granites in N.W. French Massif Central: implications for crustal history reconstructions. Contributions to Mineralogy and Petrology 104: 163–172. [Google Scholar]
  • Vermeesch P. 2018. IsoplotR: A free and open tool box for geochronology. Geoscience Frontiers 9(5): 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001. [CrossRef] [Google Scholar]
  • Villaros A, Pichavant M. 2019. Mica-liquid trace element partitioning and the granite-pegmatite connection: the St-Sylvestre complex (French Massif Central). Chemical Geology 528: 119265. https://www.mindat.org/min-3334.html. Qitianlingite: Mineral informations, 5 Juin 2019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.