Open Access
Numéro |
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Minéralisations périgranitiques
|
|
---|---|---|
Numéro d'article | 16 | |
Nombre de pages | 33 | |
DOI | https://doi.org/10.1051/bsgf/2020042 | |
Publié en ligne | 1 avril 2021 |
- Anthony J, Bideault R, Bladh K, Nichols M. 1997. Handbook of Mineralogy vol. III Halides, Hydroxides, Oxides, 628 p. [Google Scholar]
- Aubert G. 1969. Les coupoles granitiques de Montebras et d’Échassières (Massif Central Français) et la genèse de leurs minéralisations en étain, lithium, tungstène et béryllium. Mémoires du BRGM 46: 359. [Google Scholar]
- Augier R, Turrillot P, Hallégouët B, Van Vliet-Lanoë B, inon I, Menier D. 2011. Carte géologique de la France au 1/50 000-Feuille Vannes–Saint-Gildas-de-Rhuys, carte et notice. Éditions BRGM Orléans. [Google Scholar]
- Ballouard C, Poujol M, Zeh A. 2018. Multiple crust reworking in the French Armorican Variscan belt: Implication for the genesis of uranium-fertile leucogranites. International Journal of Earth Sciences 107(7): 2317–2336. https://doi.org/10.1007/s00531-018-1600-3. [Google Scholar]
- Beaufort D, Dudoignon P, Meunier A. 1988. Hydrothermal and supergene alterations in the granitic cupola of Montebras, Creuse, France. Clays and Clays Minerals 36(6): 505–520. [Google Scholar]
- Belkasmi M, Cuney M. 1998. Les columbo-tantalites zonées du granite de Montebras (Massif central français). Implications pétrogénétiques. Comptes Rendus de l’Académie des Sciences – Series IIA – Earth and Planetary Science 326(7): 459–532. [Google Scholar]
- Berthier F, Duthou JL, Roques M. 1979. Datation géochronologique Rb/Sr sur roches totales du granite de Guéret (Massif Central). Age fini-Dévonien de mise en place de l’un de ses facies types. Bulletin BRGM 1: 59–72. [Google Scholar]
- Breiter K. 2002. From explosive breccia to unidirectional solidification textures: magmatic evolution of a phosphorus- and fluorine-rich granite system (Podlesí, Krušné hory Mts., Czech Republic). Bulletin of the Czech Geological Survey 77: 67–92. [Google Scholar]
- Breiter K, Škoda R, Uher P. 2007. Nb–Ta–Ti–W–Sn–oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution: Podlesí, Czech Republic. Mineralogy and Petrology 91: 225–248. [CrossRef] [Google Scholar]
- Černý P, Roberts WL, Ercit TS, Chapman R. 1985. Wodginite and associated oxide minerals from the Perless pegmatite, Pennington County, South Dakota. American Mineralogist 70: 1044–1049. [Google Scholar]
- Charoy B, Noronha F. 1996. Multistage growth of a rare-element, volatile-rich microgranite at Argemela (Portugal). Journal of Petrology 37: 73–94. [Google Scholar]
- Cheilletz A, Cuney M, Charoy B, Archibald DA. 1992. Ages 40Ar/39Ar du leucogranite à topaze-lépidolite de Beauvoir et des pegmatites sodolithiques de Chédeville (Nord du Massif Central, France). Signification pétrologique et géodynamique. Comptes Rendus de l’Académie des Sciences, Paris, Série 2, 315: 329–336. [Google Scholar]
- Cheilletz A, Gasquet D, Filali F, Archibald DA. 2010. A late Triassic 40Ar/39Ar age for the El Hammam high-REE fluorite deposit (Morocco): mineralization related to the Central Atlantic Magmatic Province? Mineralium Deposita 45: 323–329. [Google Scholar]
- Chew DM, Petrus JA, Kamber BS. 2014. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology 363: 185–199. https://doi.org/10.1016/j.chemgeo.2013.11.006. [CrossRef] [Google Scholar]
- Cochrane R, Spikings RA, Chew D, et al. 2014. High temperature (> 350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochimica et Cosmochimica Acta 127: 39–56. https://doi.org/10.1016/j.gca.2013.11.028. [CrossRef] [Google Scholar]
- Cuney M, Marignac C, Weisbrod A. 1992. The Beauvoir topaz-lepidolite albite granite (Massif Central, France): the disseminated magmatic Sn–Li–Ta–Nb–Be mineralization. Economic Geology 87: 1766–1794. [Google Scholar]
- Cuney M, Alexandrov P, Le Carlier de Veslud C, et al. 2002. The timing of W-Sn-rare metals mineral deposit formation in the Western Variscan chain in their orogenic setting: The case of the Limousin area (Massif Central, France). In: Blundell DJ, Neubauer F, von Quadt A, eds. The Timing and Location of Major Ore Deposits in an Evolving Orogen. The Geological Society of London, Special Publications 204: 213–228. https://doi.org/10.1144/GSL.SP.2002.204.01.13. [Google Scholar]
- Cuney M, Barbey P. 2014. Uranium, rare metals, and granulite facies metamorphism. Geosciences Frontiers 5: 729–745. [Google Scholar]
- Deveaud S, Millot R, Villaros A. 2015. Lithium isotopes in micas: an efficient tool for granitic pegmatites classification? Chemical Geology 411: 97–111. [Google Scholar]
- Faure M, Lardeaux JM, Ledru P. 2009. A review of the pre-Permian geology of the Variscan French Massif Central. C. R. Géoscience 341: 202–213. [Google Scholar]
- Faure M. 2014. Le substratum de la France métropolitaine : de la formation du Gondwana à la constitution de la Pangée, une histoire de 600 Ma. Géologues 180: 13–21. [Google Scholar]
- Fosso Tchunte PM, Tchameni R, André-Mayer AS, et al. 2018. Evidence for Nb-Ta occurrences in the syn-tectonic Pan-African Mayo Salah leucogranite (Northern Cameroon): Constraints from Nb-Ta oxide mineralogy, geochemistry and U-Pb LA-ICP-MS geochronology on columbite and monazite. Minerals 8(5): 188. https://doi.org/10.3390/min8050188. [CrossRef] [Google Scholar]
- Gloaguen É, Melleton J, Frei D. 2013. First U/Pb dating of rare-element magmatism from the north French Massif Central: A chronological milestone in rare element events of the Variscan belt. Crustal melting in the European variscan belt. BRGM 22. [Google Scholar]
- Gloaguen É, Melleton J, Lefebvre G, Tourlière B, Yart S. 2018. Ressources métropolitaines en lithium et analyse du potentiel par méthodes de prédictivité. Rapport final BRGM/RP-68321-FR décembre 2018, 129 p. [Google Scholar]
- Harlaux M, Mercadier J, Bonzi WME, Kremer V, Marignac C, Cuney M. 2017. Geochemical signature of magmatic-hydrothermal fluids exsolved from the Beauvoir rare-metal granite (Massif Central, France): Insights from LA-ICPMS analysis of primary fluid inclusions. Geofluids 2017. [CrossRef] [Google Scholar]
- Heaman LM, LeCheminant AN. 1993. Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chemical Geology 110: 95–126. [Google Scholar]
- Hönig S, Leichmann J, Novak M. 2010. Unidirectional solidification textures and garnet layering in Y-enriched garnet-bearing aplit-pegmatites in the Cadomian Brno Batholith, Czech Republic. Journal of Geosciences 55: 113–129. [Google Scholar]
- Horstwood MSA, Košler J, Gehrels G, et al. 2016. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research 40(3): 311–332. https://doi.org/10.1111/j.1751-908X.2016.0379. [CrossRef] [Google Scholar]
- Jackson SE, Pearson NJ, Griffin WL, Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211: 47–69. [CrossRef] [Google Scholar]
- Lecumberri-Sanchez P, Vieira R, Heinrich CA, Pinto F, Wӓlle M. 2017. Fluid-rock interaction is decisive for the formation of tungsten deposits. Geology 45(7): 579–582. [Google Scholar]
- Li X, Zhao K-D, Jiang S-Y, Palmer MR. 2019. In-situ U-Pb geochronology and sulfur isotopes constrain the metallogenesis of the giant Neves Corvo deposit, Iberian Pyrite Belt. Ore Geology Reviews 105: 223–235. [Google Scholar]
- Linnen RL, Cuney M. 2005. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In Linnen RL, Samson IM, eds.Rare-Element Geochemistry and Mineral Deposits. Geological Association Canada Short Course Notes 17: 45–68. [Google Scholar]
- London D. 2008. Pegmatites. The Canadian Mineralogist Special Publication n° 10. Québec: Mineralogical Association of Canada/Association minéralogique du Canada, 363 p. [Google Scholar]
- Marcoux É, Pélisson P, Baubron J-C, Lhégu J, Touray J-C. 1990. Ages des formations filoniennes à fluorine‑barytine‑quartz du district de Paulhaguet (Haute‑Loire, Massif central français). C. R. Acad. Sci. Paris 311(série I): 829–835. [Google Scholar]
- McDowell FW, McIntosh WC, Farley KA. 2005. A precise 40Ar–39Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard. Chemical Geology 214: 249–263. https://doi.org/10.1016/j.chemgeo.2004.10.002. [Google Scholar]
- Melleton J, Gloaguen E, Frei D, Novák M, Breiter K. 2012. How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic? The Canadian Mineralogist 50: 1751–1773. [Google Scholar]
- Melleton J, Gloaguen E, Frei D. 2015. Rare-Elements (Li-Be-Ta-Sn-Nb) Magmatism in the European Variscan Belt – A review. Mineral resources in a sustainable world. In: 13th SGA Biennial Meeting 2015 Proceedings, Vol. 2, pp. 807–810. [Google Scholar]
- Michaud J. 2019. Rare Metal Granites: origin, emplacement and mechanisms of the magmatic-hydrothermal transition. Thesis, Université d’Orléans, 364 p. [Google Scholar]
- Michaud J, Pichavant M. 2019. The H/F ratio as an indicator of contrasted wolframite deposition mechanisms. Ore Geology Reviews 104: 266–272. [CrossRef] [Google Scholar]
- Michaud J, Gumiaux C, Pichavant M, Gloaguen É, Marcoux É. 2020. From magmatic to hydrothermal Sn-Li-(Nb-Ta-W) mineralization: the Argemela area (central Portugal). Ore Geology Reviews 116: 103215. [CrossRef] [Google Scholar]
- Michel J. 2007. Évolution othomagmatique et hydrothermale comparée des coupoles granitiques d’Échassières et de Montebras (Massif Central français). Rapport inédit Université d’Orléans, 44 p. [Google Scholar]
- Mourey Y. 1985. Le leucogranite à topaze de Chavence. Un nouvel exemple de massif à Sn, W, Li dans le Nord du Massif central français. C. R. Acad. Sci., Paris 300, II, 9: 951–954. [Google Scholar]
- Neymark LA, Holm-Denoma CS, Moscati, RJ. 2018. In situ LA-ICPMS U-Pb dating of cassiterite without a known-age matrix-matched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary. Chemical Geology 483: 410–425. [Google Scholar]
- Paton C, Woodhead J, Hellstrom J, Hergt J, Greig A, Maas R. 2010. Improved laser ablation U-Pb zircon geochronology through robust down-hole fractionation correction. G Cubed 11. https://doi.org/10.1029/2009GC002618. [Google Scholar]
- Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry. https://doi.org/10.1039/c1ja10172b. [Google Scholar]
- Pirard C, Hatert F, Fransolet AM. 2007. Alteration sequences of aluminium phosphates from Montebras Pegmatite, Massif Central, France. In: Granitic Pegmatites: The State of the Art − International Symposium, Porto, Portugal, 1 p. [Google Scholar]
- Pochon A, Poujol M, Gloaguen E, et al. 2016. U-Pb LA-ICP-MS dating of apatite in mafic rocks: evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France). American Mineralogist 101: 2430–2442. [Google Scholar]
- Raimbault L. 1998. Composition of complex lepidolite-type granitic pegmatites and of constituent columbite-tantalite, Chedeville, Massif Central, France. Canadian Mineralogist 36: 563–583. [Google Scholar]
- Raimbault L, Burnol R. 1998. The Richemont rhyolite dyke, Massif Central, France: a subvolcanic equivalent of rare-metal granites. Canadian Mineralogist 36: 265–282. [Google Scholar]
- Raimbault L, Cuney M, Azencott C. 1995. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Economic Geology 90: 548–576. [CrossRef] [Google Scholar]
- Schoene B, Bowring SA. 2006. U-Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contribution to Mineralogy and Petrology 151(5): 615–630. [Google Scholar]
- Shannon JR, Walker BM, Carten RB, Geraghty EP. 1982. Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson Mine, Colorado. Geology 10: 293–297. [Google Scholar]
- Sizaret S, Marcoux É, Jébrak M, Touray JC. 2004. The Rossignol fluorite vein, Chaillac, France: Multiphase hydrothermal activity and intra-vein sedimentation. Economic Geology 99: 1107–1122. [Google Scholar]
- Sláma J, Kosler J, Condon DJ, et al. 2008. Plesovice zircon – A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249(1-2): 1–35. [CrossRef] [Google Scholar]
- Sylvester PJ. 2008. LA-(MC)-ICP-MS trends in 2006 and 2007 with particular emphasis on measurement uncertainties. The Journal of Geostandards and Geoanalysis 32: 469–488. [Google Scholar]
- Tartèse R, Ruffet G, Poujol M, Boulvais P, Ireland TR. 2011. Simultaneous resetting of the muscovite K-Ar and monazite U-Pb geochronometers: a story of fluids. Terra Nova 23: 390–398. [CrossRef] [Google Scholar]
- Thomson SN, Gehrels GE, Ruiz J, Buchwaldt R. 2012. Routine low-damage apatite U/Pb dating using laser ablation–multicollector–ICPMS. Geochemistry, Geophysics, Geosystems 13: Q0AA21. [Google Scholar]
- Tindle AG, Breaks FW. 1998. Oxide minerals of the separation rapids rare-element granitic pegmatite group, Northwestern Ontario. The Canadian Mineralogist 36: 609–635. [Google Scholar]
- Turpin L, Cuney M, Friedrich M, Bouchez JL, Aubertin M. 1990. Meta-igneous origin of Hercynian peraluminous granites in N.W. French Massif Central: implications for crustal history reconstructions. Contributions to Mineralogy and Petrology 104: 163–172. [Google Scholar]
- Vermeesch P. 2018. IsoplotR: A free and open tool box for geochronology. Geoscience Frontiers 9(5): 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001. [CrossRef] [Google Scholar]
- Villaros A, Pichavant M. 2019. Mica-liquid trace element partitioning and the granite-pegmatite connection: the St-Sylvestre complex (French Massif Central). Chemical Geology 528: 119265. https://www.mindat.org/min-3334.html. Qitianlingite: Mineral informations, 5 Juin 2019. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.