BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Minéralisations périgranitiques
Article Number 7
Number of page(s) 25
Published online 15 March 2021
  • Audion AS, Labbé JF. 2012. Panorama mondial 2011 du marché du tungstène. Rapport Public BRGM, RP-61341-FR, 108 p. [Google Scholar]
  • Barton PB, Skinner BJ. 1979. Sulfide mineral stabilities. In: Barnes HL, ed. Geochemistry of hydrothermal ore deposits. New York: John Wiley, pp. 278–403. [Google Scholar]
  • Bernard-Griffiths J, Lasnier B, Marchand J, Vidal P. 1980. Approche par la méthode Rb/Sr de l’étude de granulites acides en Haut-Allier (Massif Central français). Réun Ann Sci Terre 8: 41 p. [Google Scholar]
  • Béziat P, Prouhet JP, Tollon F. 1980. Le district de Montredon-Labessonnié (Tarn): W, Sn, F. Publications du 26e Congrès Géologique International (Paris). Gisements français 7: 42 p. [Google Scholar]
  • Bogdanoff S, Cirodde JL, Ploquin A, Ramboz C, Le Chapelain JR, Mignon R. 1987. Exploration for tungsten in the Châtaigneraie district. Chron Rech Min 487: 11–30. [Google Scholar]
  • Blevin PL. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: implications for gold-rich ore systems. Resource Geology 54: 241–252. [Google Scholar]
  • Boiron MC, Cathelineau M, Dubessy J, Bastoul AM. 1990. Fluids in Hercynian Au veins of from the French Variscan belt. Mineralogical Magazine 54: 231–243. [Google Scholar]
  • Boiron MC, Barakat A, Cathelineau M, Banks DA, Durisova J, Moravek P. 2001. Geometry and P-V-T-X conditions of microfissural ore fluid migration: the Mokrsko gold deposit (Bohemia). Chem Geol 173: 207–225. [Google Scholar]
  • Boiron MC, Cathelineau M, Banks DA, Fourcade S, Vallance J. 2003. Mixing of metamorphic and surficial fluids during the uplift of the Hercynian upper crust: consequences for gold deposition. Chem Geol 194: 119–141. [Google Scholar]
  • Bouchot V, Ledru P, Lerouge C, Lescuyer J-L, Milesi J-P. 2005. Late Variscan mineralizing systems related to orogenic processes: the French Massif Central. Ore Geol Rev 27: 169–197. [Google Scholar]
  • Bril H. 1982. Fluid inclusions study of Sn-W-Au, Sb- and Pb-Zn mineralizations from the Brioude-Massiac district (French Massif Central). Tschermaks Min Petr Mitt 30: 1–16. [Google Scholar]
  • Bril H. 1983. Étude métallogénique des minéralisations à antimoine et associées du district de Brioude-Massiac (Massif Central français) ; conditions géochimiques de dépôt, implications génétiques, PhD thesis. Université Clermond-Ferrand, 341 p. [Google Scholar]
  • Bril H, Beaufort D. 1989. Hydrothermal alteration and fluid circulation related to W, Au, and Sb vein mineralizations, Haut-Allier, Massif Central, France. Econ Geol 84: 2237–2251. [Google Scholar]
  • Bril H, Bonhomme MG, Marcoux E, Baubron JC. 1991. Ages K/Ar des minéralisations de Brioude-Massiac (W-Au-As-Sb; Pb-Zn), Pontgibaud (Pb-Ag; Sn), et Labessette (As-Pb-Sb-Au) : place de ces districts dans l’évolution géotectonique du Massif Central français. Miner Depos 26: 189–198. [Google Scholar]
  • Burg J-P., Matte P. 1978. A cross section through the French Massif Central and the scope of its Variscan geodynamic evolution. Z dt Geol Ges 129: 429–460. [Google Scholar]
  • Chantraine J, Autran A, Cavelier C. 1996. Geological map of France, 1/1 000 000. Orléans: BRGM. [Google Scholar]
  • Charonnat X. 2000. Les minéralisations aurifères tardi-hercyniennes des Cévennes, PhD thesis. Université d’Orléans, 1 vol, 259 p. [Google Scholar]
  • Chauvet A, Volland-Tuduri N, Lerouge C, et al. 2012. Geochronological and geochemical characterization of magmatic-hydrothermal events within the Southern Variscan external domain (Cévennes area, France). Int J Earth Sci 101: 69–86. [Google Scholar]
  • Cheval-Garabédian F. 2019. Les minéralisations à Sb et Au tardi-varisques: vers un modèle génétique unifié ? Exemples du Massif armoricain et du Massif central, PhD thesis. Université d’Orléans, 1 vol, 498 p. [Google Scholar]
  • Cheval-Garabédian F, Faure M, Marcoux E, Gouin J, Picault M. 2020. The La Bellière gold and antimony district (French Armorican Massif): a two-stage evolution model controlled by Variscan strike-slip tectonic. Ore Geol Rev 125: 103–681. [Google Scholar]
  • Ciobanu CL, Cook NJ, Damian F, Damian G. 2006. Gold scavenged by bismuth melts: an example from Alpine shear-remobilizations in the Highis Massif Romania. Miner Petrol 87: 351–384. [Google Scholar]
  • Ciobanu CL, Birch WD, Cook NJ, Pring A, Grundler PV. 2010. Petrogenetic significance of Au–Bi–Te–S associations: the example of Maldon, Central Victorian gold province, Australia. Lithos 116: 1–17. [CrossRef] [Google Scholar]
  • Cook NJ, Ciobanu CL, Wagner T, Stanley CJ. 2007. Minerals of the system Bi–Te–Se–S related to the tetradymite archetype: review of classification and compositional variation. Can Miner 45: 665–708. [Google Scholar]
  • Cox SF. 1987. Antitaxial crack-seal vein microstructures and their relationships to displacement paths. J Struct Geol 9: 79–787. [Google Scholar]
  • Cox SF, Wall VJ, Etheridge MA, Potter TF. 1991. Deformation and metamorphic processes in the formation of mesothermal vein-hosted gold deposits, examples from the Lachlan Fold Belt in central Victoria Australia. Ore Geol Rev 6: 391–423. [Google Scholar]
  • Cuney M, Alexandrov P, Le Carlier de Veslud C, et al. 2002. The timing of W Sn rare metals mineral deposit formation in the Western Variscan chain in their orogenic setting: the case of the Limousin area (Massif Central, France). In: Blundell DJ, Neubauer F, von Quadt A, eds. The timing and location of major ore deposits in an evolving Orogen. Geological Society, London, Special Publications 204: 213–228. [Google Scholar]
  • De Gramont X, Feybesse JL, Lambert A. 1990. Synthèse du district de Brioude-Massiac et des confins nord de la Margeride (Massif Central). Rapport BRGM DAM/DL/C/R-30695, 191 p. [Google Scholar]
  • Delvaux D, Sperner B. 2003. Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program. New Insights into Structural Interpretation and Modelling 212: 75–100. [Google Scholar]
  • Demange M, Nicolas V-A, Soler P, Giouse H. 1988. Le gisement tungstifère de Leucamp (Cantal, France). Contrôles géologiques et minéralisations. Bull Soc Géol Fr 4: 559–570. [Google Scholar]
  • Derré C. 1983. La province à Sn-W ouest-européenne. Histoire de divers types de gisements du Massif Central, des Pyrénées et du Portugal. Distributions des gisements, PhD thesis. Université Paris VI, 2 vol., I, 345 p., II, 421 p. [Google Scholar]
  • Dimitrova D, Kerestedjian T. 2006. Bismuth minerals in the postskarn sulphide-arsenide mineralization in the Martinovo iron deposit, NW Bulgaria. Geochemistry, Mineralogy and Petrology, Sofia 44: 19–32. [Google Scholar]
  • Faure M. 1995. Late orogenic carboniferous extensions in the Variscan French Massif Central. Tectonics 14: 132–153. [CrossRef] [Google Scholar]
  • Faure M, Pons J. 1991. Crustal thinning recorded by the shape of the Namurian-Westphalian leucogranites in the Variscan belt of the Northwest Massif Central, France. Geology 19: 730–733. [CrossRef] [Google Scholar]
  • Faure M, Be Mézème E, Duguet M, Cartier C, Talbot J-Y. 2005. Paleozoic tectonic evolution of medio-Europa from the example of the French Massif Central and Massif Armorican. In: Carosi R, Dias R, Iacopini D, Rosenbaum G, eds. The southern Variscan belt. Journal of the Virtual Explorer 19 (Electronic Edition, ISSN 1441-8142). [CrossRef] [Google Scholar]
  • Faure M, Lardeaux J-M, Ledru P. 2009. A review of the pre-Permian geology of the Variscan French Massif central. Comptes Rendus Geoscience 341: 202–213. [Google Scholar]
  • Gaboury D, Daigneault R. 2000. Flat vein formation in a transitional crustal setting by self-induced fluid pressure equilibrium, an example from the Géant Dormant gold mine Canada. Ore Geol Rev 17: 155–178. [Google Scholar]
  • Gloaguen E. 2006. Apport d’une étude intégrée sur les relations entre granite et minéralisations filoniennes (Au et Sn-W) en contexte tardi-orogénique, PhD thesis. Université d’Orléans. [Google Scholar]
  • Groves DI, Goldfar RJ, Gebre-Mariam M, Hagemann SG, Robert F. 1998. Orogenic gold deposits, a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev 13: 7–27. [Google Scholar]
  • Harlaux M, Marignac C, Cuney M, Mercadier J, Magott R, Mouthier B. 2015. Nb-Ti-Y-HREE-WU oxide minerals with uncommon compositions associated with the tungsten mineralization in the Puy-les-Vignes deposit (Massif central, France): evidence for rare-metal mobilization by late hydrothermal fluids with a peralkaline signature. Can Miner 53: 653–672. [Google Scholar]
  • Harlaux M, Romer RL, Mercadier J, Morlot C, Marignac C, Cuney M. 2018. 40 Ma of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U-Pb dating of wolframite. Miner Depos 53: 21–51. [Google Scholar]
  • Hart CJR, McCoy D, Goldfarb RJ, et al. 2002. Geology, exploration and discovery of the Tintina gold province, Alaska and Yukon. Society of Economic Geologists Special Publication 9: 241–274. [Google Scholar]
  • Hart CJ. 2007. Reduced intrusion-related gold systems. Geological Association of Canada, Mineral Deposits Division 5: 95–112. [Google Scholar]
  • Joly A, Chen Y, Faure M, Martelet G. 2007. Multidisciplinary study of a syntectonic pluton close to a major lithospheric-scale fault: relationships between the Montmarault granitic massif and the Sillon Houiller Fault in the Variscan French Massif Central. Part I: geochronology, mineral fabrics and tectonic implications. J Geophys Res 112: B10104. [Google Scholar]
  • Joly A, Faure M, Chen Y, Martelet G. 2009. Gravity inversion, AMS and geochronological investigations of syntectonic granitic plutons in the southern part of the Variscan French Massif Central. J Struct Geol 31: 421–443. [Google Scholar]
  • Kretschmar U, Scott SD. 1976. Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can Miner 14: 364–386. [Google Scholar]
  • Lang J-R, Baker T. 2001. Intrusion related gold systems: the present level of understanding. Miner Depos 36: 477–489. [Google Scholar]
  • Lasnier B. 1977. Persistance d’une série granulitique au cœur du Massif central français (Haut Allier). Les termes basiques, ultrabasiques et carbonatés, PhD. Thesis. Université de Nantes, 341 p. [Google Scholar]
  • Lasnier B, Marchand J, Bouilkler R, Burg J-P, Cornen G, Forestier FH, et al. 1982. Notice de la carte géologique de France (1/50 000), feuille de Brioude (766). Orléans: BRGM. [Google Scholar]
  • Ledru P, Lardeaux JM, Santallier DA, et al. 1989. Où sont les nappes dans le Massif central français ? Bulletin de la Société géologique de France 3: 605–618. [Google Scholar]
  • Lerouge C, Bouchot V. 2009. Conditions of formation and origin of fluids of quartz-tourmaline veins in the La Châtaigneraie tungstiferous district (Massif Central, France) : fluid inclusions and stable isotopes. Bull Soc Geol Fr 180: 263–270. [Google Scholar]
  • Linnen RL, Cuney M. 2005. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen RL, Samson IM, eds. Rare-element geochemistry and mineral deposits. Geological Association of Canada, GAC Short Course Notes 17: 45–68. [Google Scholar]
  • Malavieille J, Guihot P, Costa S, Lardeaux JM, Gardien V. 1990. Collapse of the thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and St. −Étienne Late Carboniferous basin. Tectonophysics 177: 139–149. [CrossRef] [Google Scholar]
  • Marchand J. 1974. Persistance d’une série granulitique au cœur du Massif central français (Haut Allier). Les termes acides, PhD. Thesis. Université de Nantes, 267 p. [Google Scholar]
  • Marcoux E, Picot P. 1985. Les minéralisations de Pontgibaud (Puy-de-Dôme) : une approche complémentaire par géochimie isotopique du plomb et les paragenèses. Chronique de la Recherche Minière 481: 27–38. [Google Scholar]
  • Marcoux E, Bril H. 1986. Héritage et sources de métaux d’après la géochimie isotopique du plomb; étude des minéralisations filoniennes du Haut-Allier (Massif Central, France). Miner Depos 21: 35–43. [Google Scholar]
  • Marcoux E, Bonnemaison M. 1988. La géochimie isotopique du plomb et la prospection de l’or en France. In: Johan Z, Newstetter D, eds. Gisements métallifères dans leur contexte géologique. Doc BRGM 158: 489–508. [Google Scholar]
  • Marcoux E, Nerci K, Branquet Y, et al. 2015. Late-Hercynian Intrusion-related gold deposits: an integrated model on the Tighza polymetallic district, central Morocco. Journal of African Earth Sciences 107: 65–88. [Google Scholar]
  • Marignac C, Cuney M. 1999. Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt. Miner Depos 34: 472–504. [Google Scholar]
  • Mathonnat M. 1983. La série métamorphique du Cézallier, Massif central français, PhD thesis. Université de Clermont-Ferrand. [Google Scholar]
  • Monié P, Bouchot V, Faure M, Charonnat X, Najoui K. 1999. 40Ar/39Ar Laser-Probe Dating of W, Au and/or Sb Deposits and associated granites in the Southern French Massif Central (Cévennes, Châtaigneraie), EUG 10, abstract volume. Strasbourg: Terra Abstracts, p. 477. [Google Scholar]
  • Monié P, Respaut J-P, Brichaud S, Bouchot V, Faure M, Roig J-Y. 2000. 40Ar/39Ar and U–Pb geochronology applied to Au–W–Sb metallogenesis in the Cévennes and Châtaigneraie districts (Southern Massif Central, France). In: Bouchot V, Moritz R, eds. A Geode–GéoFrance 3D Workshop on Orogenic Gold Deposits in Europe with Emphasis on the Variscides; Extended Abstracts. Documents du BRGM 297: 77–79. [Google Scholar]
  • Morisson GW, Rose WJ, Jaireth S. 1991. Geological and geochemical controls on the silver content (fineness) of gold in gold-silver deposits. Ore Geol Rev 6: 333364. [Google Scholar]
  • Nicaud J. 2001. Contrôle structural de la mise en place des minéralisations aurifères du district de Saint-Yrieix : analyse de la fracturation, étude des altérations hydrothermales, PhD thesis. Université de Limoges, 252 p. [Google Scholar]
  • Paquette JL, Piro JL, Devidal J-L, et al. 2014. Sensitivity enhancement in LA-ICP-MS by N2 addition to carrier gas: application to radiometric dating of U-Th-bearing minerals. Agilent ICP-MS J 58: 4–5. [Google Scholar]
  • Périchaud JJ. 1970. Les gisements métalliques du district d’antimoine de Brioude-Massiac (Massif central français), PhD thesis. Université de Clermont Ferrand, 771 p. [Google Scholar]
  • Pin C, Peucat J-J. 1986. Ages des épisodes de métamorphisme paléozoïques dans le Massif central et le Massif armoricain. Bull Soc Géol France 8, t. II(3): 461–469. [Google Scholar]
  • Pochon A, Gapais D, Gloaguen E, et al. 2016. Antimony deposits in the Variscan Armorican belt, a link with mafic intrusives? Terra Nova 28: 138–145. [CrossRef] [Google Scholar]
  • Poitrenaud T, Poujol M, Augier R, Marcoux E. 2019. The polyphase evolution of a late Variscan W/Au deposit (Salau, French Pyrenees): insights from REE and U/Pb LA-ICP-MS analyses. Miner Depos: 1–21. [Google Scholar]
  • Ramsay JG. 1980. The crack-seal mechanism of rock deformation. Nature 284: 135–139. [Google Scholar]
  • Robert F, Boullier AM, Firdaous K. 1995. Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting. J Geophys Res 100: 12841–12859. [Google Scholar]
  • Romer RL, Kroner U. 2016. Phanerozoic tin and tungsten mineralization–tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res 31: 60–95. [Google Scholar]
  • Sandras A. 1988. Les structures auro-antimonifères du district de Brioude-Massiac. Gîtologie et métallogénie des concentrations aurifères, PhD thesis. Université de Nancy, 211 p. [Google Scholar]
  • Scaillet S, Cheilletz A, Cuney M, Farrar E, Archibald DA. 1996. Cooling pattern and mineralization history of the saint Sylvestre and western Marche leucogranite pluton, French massif central: I.40Ar/39Ar isotopic constraints. Geochim Cosmochim Acta 60: 4653–4671. [Google Scholar]
  • Scholz CH. 1988. The brittle-plastic transition and the depth of seismic faulting. Geologische Rundschau 77: 319–328. [Google Scholar]
  • Sibson RH, Robert F, Poulsen KH. 1988. High-angle reverse faults, fluid pressure cycling, and mesothermal gold–quartz deposits. Geology 16: 551–555. [CrossRef] [Google Scholar]
  • Sharp ZD, Essene EJ, Kelly WC. 1985. A re-examination of the arsenopyrite geothermometer; pressure considerations and applications to natural assemblages. Can Miner 23: 517–534. [Google Scholar]
  • Stipp M, Stünitz H, Heilbronner R, Schmid SM. 2002. The eastern Tonale fault zone: a natural laboratory for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. Journal of Structural Geology 24: 1861–1884. [Google Scholar]
  • Talbot JY, Faure M, Chen Y, Martelet G. 2005a. Pull-apart emplacement of the Margeride granitic complex (French Massif Central). Implications for the late evolution of the Variscan orogen. Journal of Structural Geology 27: 1610–1629. [Google Scholar]
  • Talbot JY, Chen Y, Faure M. 2005b. Pluton-dykes relationships from AMS and microstuctural studies in a Variscan granite from French Massif Central. J Geophys Res 110. [Google Scholar]
  • Thompson JFH, Sillitoe RH, Baker T, Lang JR, Mortensen JK. 1999. Intrusion related gold deposits associated with tungsten–tin provinces. Miner Depos 34: 323–334. [Google Scholar]
  • Thonat A, Mathonnat M, Pin C, Rocher P, Bertin C, Chèvremont P. 2014. Notice de la carte géologique de France au 1/50 000°, 765. Massiac 141 p. [Google Scholar]
  • Vermeesch P. 2018. IsoplotR: a free and open toolbox for geochronology. Geosci Front 9: 1479–1493. [Google Scholar]
  • Williams-Jones AE, Bowell RJ, Migdisov AA. 2009. Gold in solution. Elements 5: 281–287. [Google Scholar]
  • Wood SA, Samson IM. 2000. The Hydrothermal Geochemistry of Tungsten in Granitoid Environments: I. Relative Solubilities of Ferberite and Scheelite as a Function of T, P, pH, and mNaCl. Econ Geol 95: 143–182. [CrossRef] [Google Scholar]
  • Zachariáš J, Moravek P, Gadas P, Pertoldova J. 2014. The Mokrsko-West gold deposit, Bohemian Massif, Czech Republic: mineralogy, deposit setting and classification. Ore Geol Rev 58: 238–263. [Google Scholar]
  • Petrus DM, Kamber BS. 2014. U-Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chem Geol 363: 185–199. [Google Scholar]
  • Debon F, Le Fort P. 1988. A cationic classification of common plutonic rocks and their magmatic associations: principles, method, applications. Bulletin de Minéralogie 111: 493–510. [Google Scholar]
  • McDowell FW, McIntosh WC, Farley KA. 2005. A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chem Geol 214: 249–263. [Google Scholar]
  • Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R. 2010. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst 11: Q0AA06. [Google Scholar]
  • Schoene B, Bowring SA. 2006. U-Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contrib Miner Petrol 151: 615–630. [Google Scholar]
  • Thomson SN, Gehrels GE, Ruiz J, Buchwaldt R. 2012. Routine low-damage apatite U-Pb dating using laser ablation–multicollector–ICPMS. Geochem Geophys Geosyst 13: Q0AA21. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.