Open Access
BSGF - Earth Sci. Bull.
Volume 192, 2021
Article Number 31
Number of page(s) 27
Published online 09 June 2021
  • Abia EH, Nachit H, Marignac C, Ibhi A, Saadi SA. 2003. The polymetallic Au-Ag-bearing veins of Bou Madine (Jbel Ougnat, eastern Anti-Atlas, Morocco: tectonic control and evolution of a Neoproterozoic epithermal deposit. Journal of African Earth Sciences 36: 251–271. [Google Scholar]
  • Arribas A Jr, Tosdal RM. 1994. Isotopic composition of Pb in ore deposits of the Betic Cordillera, Spain: origin and relationship to other European deposits. Economic Geology 89: 1074–1093. [Google Scholar]
  • Ayuso RA, Kelley KD, Eppinger RG, Forni F. 2013. Pb-Sr-Nd isotopes in surficial materials at the Pebble porphyry Cu-Au-Mo deposit Southwestern Alaska: can the mineralizing fingerprint be detected through cover? Economic Geology 108: 543–562. [Google Scholar]
  • Azizi-Samir MR, Saquaque A, El Boukhari A. 2001. La transition néoprotérozoïque dans l’Anti-Atlas marocain, un continuum géodynamique particulièrement minéralogène. In: Abstracts Vol. Colloque Magmatisme, Métamorphisme et Minéralisation Associées, Marrakech, Maroc, 6 p. [Google Scholar]
  • Barbero L, Jabaloy A, Gomez-Ortiz D, et al. 2011. Evidence for surface uplift of the Atlas Mountains and the surrounding peripheral plateaux: Combining apatite fission-track results and geomorphic indicators in the Western Moroccan Meseta (coastal Variscan Paleozoic basement). Tectonophysics 502: 90–104. [Google Scholar]
  • Bau M, Romer RL, Lüders V, Dulski P. 2003. Tracing element sources of hydrothermal mineral deposits: REE and Y distribution and Sr-Nd-Pb isotopes in fluorite from MVT deposits in the Pennine Orefield, England. Mineralium Deposita 38: 992–1008. [Google Scholar]
  • Berrada S, Marcoux É, Hafid A. 2015. Le skarn à W-Mo-Cu à grenatite, pyroxénite, wollastonite et molybdénite d’Azegour, Haut-Atlas, Maroc. Bulletin de la Société Géologique de France 186: 21–34. [Google Scholar]
  • Billström K, Frietch R, Perdahl J-A. 1997. Regional variations in the Pb isotopic compositions of ore galena across the Archaean-Proterozoic border in northern Sweden. Precambrian Research 81: 83–99. [Google Scholar]
  • Bonhomme M, Hassendorfer B. 1985. Le métamorphisme hercynien dans les formations tardi et post-panafricaines de l’Anti-Atlas occidental (Maroc). Données isotopiques Rb/Sr et K/Ar des fractions fines. Sciences géologiques, bulletins et mémoires 38(2): 175–183. [Google Scholar]
  • Boni M, Koeppel V. 1985. Ore-lead pattern from the Iglesiente-Sulcis area, SW Sardinia. and the problem of remobilization of metals. Mineralium Deposita 20: 185–193. [Google Scholar]
  • Bouabdellah M, Beaudoin G, Leach D, Grandia F, Cardellach E. 2009. Genesis of the Assif El Mal Zn-Pb, Cu, Ag) vein deposit. An extension-related Mesozoic vein system in the High Atlas of Morocco. Structural, mineralogical and geochemical evidence. Mineralium Deposita 44: 689–704. [Google Scholar]
  • Bouabdellah M, Sangster DF, Leach D, Brown A, Johnson CA, Emsbo P. 2012. Genesis of the Touissit–Bou Beker Mississippi Valley-Type district, Morocco-Algeria and its relationship to the Africa-Europe collision. Economic Geology 107: 117–146. [Google Scholar]
  • Bouabdellah M, Niedermann S, Velasco F. 2015. The Touissit–Bou Beker Mississippi Valley-type district of Northeastern Morrocco: Relationships to the Messinian salinity crisis, Late Neogene Quaternary Alkaline Magmatism, and Buoyancy-Driven fluid convection. Economic Geology 110: 1455–1484. [Google Scholar]
  • Bouabdellah M, Levresse G. 2016. The Bou Madine polymetallic ore deposit, eastern Anti-Atlas, Morocco: evolution from massive Fe-As-Sn to epithermal Au-Ag-Pb-Zn ± Cu mineralization in a Neoproterozoic resurgent caldera environment. In: Bouabdellah M, Slack JF, eds. Mineral deposits of North Africa. Berlin-Heidelberg: Springer-Verlag, pp. 133–142. ISBN: 978-3-319-31733-5. [Google Scholar]
  • Bouabdellah M, Maacha L, Jébrak M, Zouhair M. 2016a. Re/Os Age determination, lead and sulphur isotope constraints on the origin of the Bouskour Cu-Pb-Zn Vein-Type Deposit (Eastern Anti-Atlas, Morocco) and its relationship to neoproterozoic granitic magmatism. In: Bouabdellah M, Slack JF, eds. Mineral deposits of North Africa. Berlin-Heidelberg: Springer-Verlag, pp. 277–290. ISBN: 978-3-319-31733-5. [Google Scholar]
  • Bouabdellah M, Maacha L, Levresse G, Saddiqi O. 2016b. The Bou Azzer Co-Ni-Fe-As (± Au ± Ag) district of central Anti-Atlas (Morocco): a long-lived Late Hercynian to Triassic magmatic-hydrothermal to low-sulphidation epithermal system. In: Bouabdellah M, Slack JF, eds. Mineral deposits of North Africa. Berlin-Heidelberg: Springer-Verlag, pp. 229–247. ISBN: 978-3-319-31733-5. [Google Scholar]
  • Bouabdellah M, Zemri O, Jébrak M, et al. 2016c. Geology and mineralogy of the El Hammam REE-rich fluorite deposit, Morocco: a product of transtensional Pangean and Central Atlantic rifting. In: Bouabdellah M, Slack JF, eds. Mineral deposits of North Africa. Berlin-Heidelberg: Springer-Verlag, pp. 307–324. ISBN: 978-3-319-31733-5. [Google Scholar]
  • Brévart O, Dupré B, Allègre CJ. 1982. Metallogenic provinces and the remobilization process studied by lead isotopes, lead-zinc ore deposits from the southern Massif Central France. Economic Geology 77: 564–575. [Google Scholar]
  • Bryan SE. 2007. Silicic large igneous provinces. Episodes 30: 175–202. [Google Scholar]
  • Bryan SE, Ferrari L. 2013. Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years. Geological Society of America 125: 1053–1078. [Google Scholar]
  • Cheilletz A, Levresse G, Gasquet D, et al. 2002. The giant Imiter silver deposit: Neoproterozoic epithermal mineralization in the Anti-Atlas, Morocco. Mineralium Deposita 37: 772–781. [Google Scholar]
  • Cheilletz A, Gasquet D, Filali F, Archibald DA, Nespolo M. 2010. A late Triassic 40Ar/39Ar age for the El Hammam high-REE fluorite deposit, Morocco: mineralization related to the Central Atlantic Magmatic Province? Mineralium Deposita 45: 323–329. [Google Scholar]
  • Doe BR. 1970. Lead isotopes. Berlin-Heidelberg: Springer Verlag, 175 p. [Google Scholar]
  • Doe BR, Delevaux MH. 1972. Source of lead in Southeast Missouri galena ores. Economic Geology 67: 409–425. [Google Scholar]
  • Doe BR, Stacey JS. 1974. The application of lead isotopes to the problem of ore genesis and ore prospect evaluation: a review. Economic Geology 69: 757–776. [Google Scholar]
  • Doe BR, Zartman RE. 1979. Plumbotectonics, the Phanerozoic. In: Barnes HL, ed. Geochemistry oh hydrothermal deposits. New York: John Wiley and Sons, pp. 22–70. [Google Scholar]
  • Doe BR, Zartman RE. 1982. Plumbotectonics of Japan: some evidence for a rejuvenated craton. Mining Geology 32(4): 285–289. [Google Scholar]
  • Duggen S, Hoernle K, Van Den Bogaard P, Garbe-Schönberg D. 2005. Post-Collisional transition from subduction- to intraplate-type magmatism in the Westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. Journal of Petrology 46: 1155–1201. [Google Scholar]
  • Duthou JL, Emberger A, Lasserre M. 1976. Résultats graphiques et interprétation de mesures isotopiques du plomb de galène et de minéraux oxydés du Maroc. Mémoire Hors-Série de la Société géologique de France 7: 221–226. [Google Scholar]
  • Edwards A. 1989. Lead isotope results from the Marrakech-Amezmiz-Imi NTaout-Chichaoua area, Morocco. Rapport inédit, 9 p. [Google Scholar]
  • El Mahjoub M, Chauvet A, Badra L, et al. 2015. Structural, mineralogical, and paleoflow velocity constraints on Hercynian tin mineralization: the Achmach prospect of the Moroccan Central Massif. Mineralium Deposita 51: 431–451. [Google Scholar]
  • Eldursi K, Branquet Y, Guillou-Frottier L, Marcoux É. 2009. Numerical investigation of transient hydrothermal processes around intrusions: Heat-transfer and fluid-circulation controlled mineralization patterns. Earth and Planetary Science Letters 288: 70–83. [Google Scholar]
  • Emberger A. 1965. Éléments pour synthèse métallogénique du district plombifère de la Haute Moulouya. In: Colloque sur des gisements stratiformes de plomb, zinc et manganèse du Maroc, 1962. Notes et Mémoires du Service Géologique du Maroc, Rabat 181: 205–244. [Google Scholar]
  • Emberger A. 1968. Synthèse descriptive des minéralisations plombo-zincifères du Maroc depuis 1952. Service Géologique de Tunisie. Annales des Mines et de la Géologie 23 (Symposium sur les gisements de plomb-zinc en Afrique): 15–104. [Google Scholar]
  • Essaraj S, Boiron MC, Cathelineau M, et al. 2016. Basinal brines at the origin of the Imiter Ag-Hg deposit (Anti-Atlas, Morocco): Evidence from LA-ICP-MS data on Fluid Inclusion, Halogen Signatures and stable isotopes (H, C, O). Economic Geology 111: 1753–1781. [Google Scholar]
  • Fariss K. 1992. Composition isotopique en plomb et genèse des gisements de Pb-Zn à encaissant paléozoïque de l’Anti-Atlas et Haut-Atlas marocain. Rapport de stage DEA, Université de Montpellier, 42 p. [Google Scholar]
  • Fehn U, Doe BR, Delevaux MH. 1983. The distribution of lead isotopes and the origin of Kuroko ore deposits in the Hokuroku district, Japan. Economic Geology Monograph 5: 488–506. [Google Scholar]
  • Finger F. Schiller D. 2012. Lead content of S-type granites and their petrologic significance. Contributions to Mineralogy and Petrology 164: 747–755. [Google Scholar]
  • Gasquet D, Levresse G, Cheilletz A. 2004. Le Pan-african de l’Anti-Atlas (Maroc) : convergence oblique et inversion tectonique à la transition Précambrien-Cambrien. In: Colloquium of African Geology, June 2004, Orléans, France, 172 p. [Google Scholar]
  • Gasquet D, Cheilletz A. 2009. L’hydrothermalisme : un phénomène cyclique dans les temps géologiques. Conséquences pour la prospection minière au Maroc. Collection EDYTEM. Cahiers de géographie 9: 49–56. [Google Scholar]
  • Ghorbal B, Bertotti G, Foeken J, Andriessen P. 2008. Unexpected Jurassic to Neogene vertical movements. In: “Stable” parts of NW Africa revealed by low temperature geochronology. Terra Nova 20(5): 355–363. [Google Scholar]
  • Gigon J, Deloule E, Mercadier J, et al. 2020. Tracing metal source from the giant McArthur River Zn-Pb deposit (Australia) using lead isotopes. Geology 48: 478–482. [Google Scholar]
  • Gulson BL. 1986. Lead isotopes in mineral exploration. Developments in Economic Geology, Éd. Elsevier 23: 245 p. [Google Scholar]
  • Hawkesworth CJ, Cawood PA, Dhuime B. 2020. The evolution of the continental crust and the onset of plate tectonics. Frontiers in Earth Science 8: 326. [Google Scholar]
  • Heyl AV, Delevaux MH, Zartman RE, Brock MR. 1966. Isotopic study of galenas from the upper Mississippi Valley, the Illinois-Kentucky, and some Appalachian valley mineral districts. Economic Geology 61: 933–961. [Google Scholar]
  • Holwell DA, Fiorentini M, McDonald I, et al. 2019. A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. Nature Communications 10(1): 1–10. [Google Scholar]
  • Jacobschagen VH, Konrad G, Giese P. 1988. Geodynamic evolution of the Atlas system, Morocco. Post-Paleozoic times. In: Jacobschagen VH, ed. The Atlas system of Morocco. Lecture Notes Earth Science 15: 481–499. New York, Berlin-Heidelberg: Springer-Verlag. [Google Scholar]
  • Jébrak M, Marcoux É, Nasloubi A, Zaharaoui M. 1998. From sandstone- to carbonate-hosted stratabound deposits: an isotope study of galena in the Upper-Moulouya district, Morocco. Mineralium Deposita 33: 45–58. [Google Scholar]
  • Jébrak M, El Wartiti M, Marcoux É, Zaharaoui M. 2011. The Bouznika Cambrian barite deposit, Morocco, an early mineralization on the Iapetus margin. Journal of African Earth Sciences 60: 53–62. [Google Scholar]
  • Karaoui B, Breitkreuz C, Mahmoudi A, Youbi N. 2014. Physical volcanology, geochemistry and basin evolution of the Ediacaran volcano-sedimentary succession in the Bas Draâ inlier (Ouarzazate Supergroup, Western Anti-Atlas, Morocco). Journal of African Earth Sciences 99: 307–311. [Google Scholar]
  • Lebret N. 2014. Contexte structural et métallogénique des skarns à magnétite des Beni Bou Ifrour, Rif oriental, Maroc. Thèse, Université d’Orléans, 478 p. [Google Scholar]
  • Levresse G, Cheilletz A, Gasquet D, et al. 2004. Osmium, sulphur and helium isotopic results from the giant Neoproterozoic epithermal Imiter silver deposit, Morocco: evidence for a mantle source. Chemical Geology 207: 59–79. [Google Scholar]
  • Levresse G, Bouabdellah M, Cheilletz A, et al. 2016. Degassing as the main ore-forming process at the giant Imiter Ag-Hg vein deposit in the Anti-Atlas system, Morocco. In: Bouabdellah M, Slack JF, eds. Mineral deposits of North Africa. Berlin-Heidelberg: Springer-Verlag, pp. 85–196. ISBN: 978-3-319-31733-5. [Google Scholar]
  • Maacha L. 2013. Études métallogéniques et géophysiques des minéralisations cobaltifères et cuprifères de Bou-Azzer El Graara, Anti-Atlas Maroc. Les minéralisations de cuivre de la plateforme de Bleida. Thèse, Université Caddi Ayyad, Faculté des Sciences, Semlalia-Marrakech, 202 p. [Google Scholar]
  • Makris J, Demnati A, Kluamann J. 1985. Deep seismic sounding in Morocco and a crust and upper mantle model deduced from seismic and gravity data. Annals of Geophysics 3: 369–380. [Google Scholar]
  • Marcoux É. 1987. Isotopes du plomb et paragenèses métalliques, traceurs de l’histoire des gîtes minéraux. Thèse de Doctorat d’État, Université de Clermont-Ferrand II et Mémoire BRGM, n°117, 289 p. + annexes. [Google Scholar]
  • Marcoux É. 1993. Géochimie isotopique du plomb et gisements potentiels au Maroc central. Rapport inédit BRGM, 16 p. [Google Scholar]
  • Marcoux É. 1998. Lead isotope systematics of the giant massive sulphide deposits in the Iberian Pyrite Belt. Mineralium Deposita 33: 45–58. [Google Scholar]
  • Marcoux É, Jébrak M. 1987. Approche géochimique de l’origine et de la durée des dépôts hydrothermaux dans le district d’Ussel (Massif central français). Comptes Rendus Académie des Sciences Paris 305(II): 377–381. [Google Scholar]
  • Marcoux É, Moëlo Y. 1991. Lead isotope geochemistry and paragenetic study of inheritance phenomena in metallogenesis: examples from base metal sulfide deposits in France. Economic Geology 86: 106–120. [Google Scholar]
  • Marcoux É, Wadjinny A. 2005. Le gisement Ag-Hg de Zgounder, Jebel Siroua, Anti-Atlas, Maroc : un épithermal néoprotérozoïque de type Imiter. Comptes Rendus Géosciences 337: 1439–1446. [Google Scholar]
  • Marcoux É, Cottard F, Récoché G, El Samani Y, Calvez JY, Deschamps Y. 1989. Lead isotopic signatures of the polymetallic mineralization in the Ariab district, Red Sea Hills, North­eastern Sudan. Journal of Geochemical Exploration 32: 315–317. [Google Scholar]
  • Marcoux É, Belkabir A, Gibson H, Lentz D, Ruffet G. 2008. Draa Sfar, Morocco: a Visean, 331 Ma, pyrrhotite-rich, polymetallic volcanogenic massive sulphide deposit in a Hercynian sediment-dominant terrane. Ore Geology Reviews 33: 307–328. [Google Scholar]
  • Marcoux É, Nerci K, Branquet Y, et al. 2015. Late-Hercynian Intrusion-related gold deposits: an integrated model on the Tighza polymetallic district, central Morocco. Journal of African Earth Sciences 107: 65–88. [Google Scholar]
  • Marcoux É, Breillat N, Guerrot C, Négrel P, Berrada S, Selby D. 2019. Multi-isotopic tracing (Mo, S, Pb, Re-Os) and genesis of the Mo-W Azegour skarn deposit (High-Atlas, Morocco). Journal of African Earth Sciences 155: 109–117. [Google Scholar]
  • Margoum D, Bouabdellah M, Klügel A, et al. 2015. Pangean rifting and onward pre-Central Atlantic as the main-ore forming processes for the genesis of the Aouli REE-rich fluorite-barite vein system, Upper Moulouya District, Morocco. Journal of African Earth Sciences 108: 22–39. [Google Scholar]
  • Michard A, Saddiqi O, Chalouan A, Rjimati EC, Mouttaqi A. 2011. Nouveaux guides géologiques et miniers du Maroc. Volume I : Présentation des circuits et introduction à la géologie du Maroc. Rabat : Éditions du Service Géologique du Maroc. [Google Scholar]
  • Oberthür T, Melcher F, Henjes-Kunst F, et al. 2009. Hercynian age of the cobalt-nickel-arsenide-(gold) ores, Bou Azzer, Anti-Atlas, Morocco: Re-Os, Sm-Nd, and U-Pb age determinations. Economic Geology 104: 1065–1079. [Google Scholar]
  • Pasava J. 1994. Geochemistry and the role of anoxic sediments in the origin of the Imiter silver deposit in Morocco. Vestnik Ceského geologického ustavu 69: 1–11. [Google Scholar]
  • Pelleter E, Cheilletz A, Gasquet D. 2008. U/Pb Ages of Magmatism in the Zgounder Epithermal Ag-Hg Deposit, Sirwa Window, Anti-Atlas, Morocco. In: Mineral Deposits of North Africa. Springer Ed, pp. 143–165. [Google Scholar]
  • Pereira MF, El Houicha M, Chichorro M, et al. 2015. Evidence of a Paleoproterozoic basement in the Moroccan Variscan Belt, Rehamna Massif, Western Meseta. Precambrian Research 268: 61–73. [Google Scholar]
  • Pettke T, Oberli F, Heinrich CA. 2010. The magma and metal source of giant porphyry-type ore deposits based on lead isotope microanalysis of individual fluid inclusions. Earth and Planetary Science Letters 296: 267–277. [Google Scholar]
  • Ravegi M, Giles D, Foden J, Raetz M. 2007. The high Fe-Ti mafic magmatism in the Paleoproterozoic Broken Hill Block of the Curnamona Province, southeastern Australia, as part of a Large Igneous Province? December 2007, LIP of the Month. [Google Scholar]
  • Rddad L, Bouhlel S. 2016. The Bou Dahar Jurassic carbonate-hosted Pb-Zn-Ba deposits, Oriental High Atlas, Morocco: Fluid-inclusion and C-O-S-Pb isotope studies. Ore Geology Reviews 72: 1072–1087. [Google Scholar]
  • Rossi M, Gasquet D, Cheilletz A, et al. 2017. Isotopic and geochemical constraints on lead and fluid sources of the Pb-Zn-Ag mineralization in the polymetallic Tighza-Jbel Aouam district (central Morocco), and relationship with the geodynamic context. Journal of African Earth Sciences 127: 194–210. [Google Scholar]
  • Sato K. 1975. Unilateral isotopic variation of Miocene ore leads from Japan. Economic Geology 70: 800–805. [Google Scholar]
  • Sawkins FJ. 1989. Anorogenic felsic magmatism, rift sedimentation, and giant Proterozoic Pb-Zn deposits. Geology 17: 657–660. [Google Scholar]
  • Schmitt JM. 1976. Sédimentation, paléoaltération, géochimie et minéralisation en plomb de la série triasique de Zeïda, Haute-Moulouya, Maroc. Thèse de docteur-ingénieur en prospection des gîtes minéraux, École des Mines de Paris, 245 p. [Google Scholar]
  • Slobodník M, Jacher-Śliwczyńska K, Taylor MC, Schneider J, Dolníček Z. 2008. Plumbotectonic aspects of polymetallic vein mineralization in Paleozoic sediments and Proterozoic basement of Moravia (Czech Republic). International Journal of Earth Sciences (Geol Rundschau) 97: 1–18. [Google Scholar]
  • Soulaimani A, Michard A, Ouanaimi H, et al. 2014. Late Ediacaran-Cambrian structures and their reactivation during the Variscan and Alpine cycles in the Anti-Atlas (Morocco). Journal of African Earth Sciences 98: 94–112. [Google Scholar]
  • Spooner ETC, Gale NH. 1982. Pb isotopic composition of ophiolitic volcanogenic sulphide deposits, Troodos Complex, Cyprus. Nature 296: 239–242. [Google Scholar]
  • Stacey JS, Kramers JD. 1975. Approximation of terrestrial lead isotopic evolution by a two-stage model. Earth and Planetary Science Letters 26: 207–221. [Google Scholar]
  • Tatsumoto M, Knight RJ, Delevaux MH. 1972. Uranium, thorium, and lead concentrations in three silicate standards and a method of lead isotopic analysis. USGS Professional Paper 800-D: 111–115. [Google Scholar]
  • Thomas RJ, Fekkak A, Ennih N, et al. 2004. A new lithostratigraphic framework for the Anti-Atlas Orogene, Morocco. Journal of African Earth Sciences 39: 217–226. [Google Scholar]
  • Todt W, Cliff RA, Hanser A, Hofmann AW. 1984. 202Pb-205Pb, spike for Pb isotopic analysis. Terra Cognita 4: 209. [Google Scholar]
  • Tornos F, Ribera F, Shepherd TJ, Spiro B. 1996. The geological and metallogenic setting of stratabound carbonated-hosted Zn-Pb mineralizations in the West Asturian Leonese zone, NW Spain. Mineralium Deposita 31: 27–40. [Google Scholar]
  • Tornos F, Chiaradia M. 2004. Plumbotectonic evolution of the Ossa Morena Zone, Iberian Peninsula: Tracing the influence of mantle-crust interaction in the ore-forming processes. Economic Geology 90: 965–985. [Google Scholar]
  • Touahri B. 1997. Le gisement de zinc-plomb d’El Abed, pays des horsts algéro-marocains. Caractères isotopiques des phases dolomitiques et sulfurées, 13C, 18O, 34S et Pb. Modèle génétique. Notes et Mémoire du Service Géologique du Maroc, Rabat 388: 239–256. [Google Scholar]
  • Traintafyllou A, Berger J, Baele JB, et al. 2020. Episodic magmatism during the growth of a Neoproterozoic oceanic arc (Anti-Atlas, Morocco). Precambrian Research 339: 105610. [Google Scholar]
  • Tuduri J, Chauvet A, Ennaciri A, Barbanson L. 2006. Modèle de formation du gisement d’argent d’Imiter (Anti-Atlas oriental, Maroc). Nouveaux apports de l’analyse structurale et minéralogique. Comptes Rendus Géosciences 338(4): 253–261. [Google Scholar]
  • Tuduri J, Chauvet A, Barbanson L, et al. 2018. The Jbel Sahro Au-(Ag, Cu) and Ag-Hg metallogenic province: product of a long-lived Ediacaran tectono-magmatic evolution in the Moroccan Anti-Atlas. Minerals 8: 592. [Google Scholar]
  • Wadjinny A. 1998. Le plomb au Maroc : cas des districts de Touissit et de Jbel Aouam. Chronique de la Recherche Minière 531-532: 9–28. [Google Scholar]
  • Wang ZG, Wan D, Wang KY, Liang YH. 2020. Isotope systematics and fluid inclusion studies of the Hongtaiping Cu-Pb-Zn deposit in Yanbian, NE China: Implications for ore genesis. Geological Journal 55: 6912–6935. [Google Scholar]
  • Watanabe Y. 2002. 40Ar/39Ar geochronologic constraints on the timing of massive sulfide and vein-type Pb-Zn mineralization in the Western Meseta of Morocco. Economic Geology 97: 145–157. [Google Scholar]
  • Zartman RE, Doe BR. 1981. Plumbotectonics, the model. Tectonophysics 75: 135–162. [Google Scholar]
  • Zartman RE, Haines SM. 1988. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs – A case for bi-directional transport. Geochimica et Cosmochimica Acta 52: 1327–1339. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.