Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Article Number 30
Number of page(s) 22
DOI https://doi.org/10.1051/bsgf/2021020
Published online 07 June 2021
  • Alberto F, Gutiérrez M, Ibáñez MJ, Machín J, Meléndez A, Peña J, et al. 1983. El piedemonte pliocuaternario en el sector central pirenaico (Huesca y Lérida). Geographicalia 109–126. [Google Scholar]
  • Anderson RS, Repka JL, Dick GS. 1996. Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al. Geology 24: 47–51. [Google Scholar]
  • Antoine P, Lautridou JP, Laurent M. 2000. Long-term fluvial archives in NW France: response of the Seine and Somme rivers to tectonic movements, climatic variations and sea-level changes. Geomorphology 33: 183–207. [Google Scholar]
  • Arasa-Tuliesa A, Cabrera L. 2018. Neogene-Quaternary onshore record in the lower Ebro river incised palaeovalley (Ebro margin, Catalan Coastal Range, NE Iberia). Geologica Acta 16: 265–292, I–XII. https://doi.org/10.1344/GeologicaActa2018.16.3.3. [Google Scholar]
  • Arboleya M-L, Babault J, Owen LA, Teixell A, Finkel RC. 2008. Timing and nature of Quaternary fluvial incision in the Ouarzazate foreland basin, Morocco. Journal of the Geological Society 165: 1059–1073. https://doi.org/10.1144/0016-76492007-151. [Google Scholar]
  • Arnold M, Merchel S, Bourlès DL, Braucher R, Benedetti L, Finkel RC, et al. 2010. The French accelerator mass spectrometry facility ASTER: Improved performance and developments. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268: 1954–1959. https://doi.org/10.1016/j.nimb.2010.02.107. [Google Scholar]
  • Babault J, Bonnet S, Crave A, Van den Driessche J. 2005a. Influence of piedmont sedimentation on erosion dynamics of an uplifting landscape: An experimental approach. Geology 33: 301–304. [Google Scholar]
  • Babault J, Van den Driessche J, Bonnet S, Castelltort S, Crave A. 2005b. Origin of the highly elevated Pyrenean peneplain. Tectonics 24. [Google Scholar]
  • Balco G, Rovey CW. 2008. An isochron method for cosmogenic-nuclide dating of buried soils and sediments. American Journal of Science 308: 1083–1114. https://doi.org/10.2475/10.2008.02. [Google Scholar]
  • Balco G, Shuster DL. 2009. 26Al–10Be–21Ne burial dating. Earth and Planetary Science Letters 286: 570–575. https://doi.org/10.1016/j.epsl.2009.07.025. [Google Scholar]
  • Barrón E, Rivas-Carballo R, Postigo-Mijarra JM, Alcalde-Olivares C, Vieira M, Castro L, et al. 2010. The Cenozoic vegetation of the Iberian Peninsula: A synthesis. Review of Palaeobotany and Palynology 162: 382–402. https://doi.org/10.1016/j.revpalbo.2009.11.007. [Google Scholar]
  • Baynes ERC, Lague D, Steer P, Bonnet S, Illien L. 2020. Sediment flux-driven channel geometry adjustment of bedrock and mixed gravel–bedrock rivers. Earth Surface Processes and Landforms 45: 3714–3731. https://doi.org/10.1002/esp.4996. [Google Scholar]
  • Beamud E, Garcés M, Cabrera L, Anton Muñoz J, Almar Y. 2003. A new middle to late Eocene continental chronostratigraphy from NE Spain. Earth and Planetary Science Letters 216: 501–514, https://doi.org/10.1016/S0012-821X(03)00539-9. [Google Scholar]
  • Beamud E, Muñoz JA, Fitzgerald PG, Baldwin SL, Garcés M, Cabrera L, et al. 2011. Magnetostratigraphy and detrital apatite fission track thermochronology in syntectonic conglomerates: constraints on the exhumation of the South-Central Pyrenees: South-Central Pyrenees magnetostratigraphy and thermochronology. Basin Research 23: 309–331. https://doi.org/10.1111/j.1365-2117.2010.00492.x. [Google Scholar]
  • Beaumont C, Muñoz JA, Hamilton J, Fullsack P. 2000, Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. Journal of Geophysical Research: Solid Earth 105: 8121–8145. https://doi.org/10.1029/1999JB900390. [Google Scholar]
  • Benito G, Pérez-González A, Gutiérrez F, Machado MJ. 1998. River response to Quaternary subsidence due to evaporite solution (Gállego River, Ebro Basin, Spain). Geomorphology 22: 243–263. https://doi.org/10.1016/S0169-555X(97)00088-3. [Google Scholar]
  • Benito G, Gutiérrez F, Pérez-González A, Machado MJ. 2000. Geomorphological and sedimentological features in Quaternary fluvial systems affected by solution-induced subsidence (Ebro Basin, NE-Spain). Geomorphology 33: 209–224. [Google Scholar]
  • Benito G, Sancho C, Peña JL, Machado MJ, Rhodes EJ. 2010. Large-scale karst subsidence and accelerated fluvial aggradation during MIS6 in NE Spain: climatic and paleohydrological implications. Quaternary Science Reviews 29: 2694–2704. https://doi.org/10.1016/j.quascirev.2010.06.020. [Google Scholar]
  • Bessais E, Cravatte J. 1988. Les écosystèmes végétaux Pliocènes de catalogne méridionale. Variations latitudinales dans le domaine nord-ouest méditerranéen. Geobios 21: 49–63. https://doi.org/10.1016/S0016-6995(88)80031-7. [Google Scholar]
  • Bierman PR, Gillespie AR, Caffee MW. 1995. Cosmogenic Ages for Earthquake Recurrence Intervals and Debris Flow Fan Deposition, Owens Valley, California. Science 270: 447–450. [Google Scholar]
  • Bomer B. 1979. Les Piedmonts du Bassin de l’Ebre (Espagne). Méditerranée 36: 19–25. https://doi.org/10.3406/medit.1979.2178. [Google Scholar]
  • Bosch GV, Teixell A, Jolivet M, Labaume P, Stockli D, Domènech M, et al. 2016. Timing of Eocene-Miocene thrust activity in the Western Axial Zone and Chaînons Béarnais (west-central Pyrenees) revealed by multi-method thermochronology. Comptes Rendus Geoscience 348: 246–256. https://doi.org/10.1016/j.crte.2016.01.001. [Google Scholar]
  • Boschi L, Faccenna C, Becker TW. 2010. Mantle structure and dynamic topography in the Mediterranean Basin: mediterranean mantle and topography. Geophysical Research Letters 37: n/a–n/a. https://doi.org/10.1029/2010GL045001. [Google Scholar]
  • Braucher R, Guillou V, Bourlès DL, Arnold M, Aumaître G, Keddadouche K, et al. 2015. Preparation of ASTER in-house 10Be/9Be standard solutions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361: 335–340. https://doi.org/10.1016/j.nimb.2015.06.012. [Google Scholar]
  • Bridgland, D, Westaway, R, 2008. Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon. Geomorphology 98: 285–315. https://doi.org/10.1016/j.geomorph.2006.12.032. [Google Scholar]
  • Brown ET, Bourles DL, Raisbeck GM, Yiou F, Clark Burchfiel B, Molnar P, et al. 1998. Estimation of slip rates in the southern Tien Shan using cosmic ray exposure dates of abandoned alluvial fans. Geological Society of America Bulletin 110: 377–386. [Google Scholar]
  • Bufe A, Paola C, Burbank DW. 2016. Fluvial bevelling of topography controlled by lateral channel mobility and uplift rate. Nature Geoscience 9: 706–710. https://doi.org/10.1038/ngeo2773. [Google Scholar]
  • Bufe A, Burbank DW, Liu L, Bookhagen B, Qin J, Chen J, et al. 2017. Variations of Lateral Bedrock Erosion Rates Control Planation of Uplifting Folds in the Foreland of the Tian Shan, NW China. Journal of Geophysical Research: Earth Surface 122: 2431–2467. https://doi.org/10.1002/2016JF004099. [Google Scholar]
  • Calle M, Sancho C, Peña JL, Proença Cunha P, Oliva-Urcia B, Pueyo EL. 2013. La secuencia de terrazas cuaternarias del río Alcanadre (provincia de Huesca): caracterización y consideraciones medioambientales. Cuadernos de Investigación Geográfica 39: 159–178. https://doi.org/10.18172/cig.2004. [Google Scholar]
  • Calvet M, Gunnell Y, Braucher R, Hez G, Bourlès D, Guillou V, et al. 2015. Cave levels as proxies for measuring post-orogenic uplift: Evidence from cosmogenic dating of alluvium-filled caves in the French Pyrenees. Geomorphology 246: 617–633. https://doi.org/10.1016/j.geomorph.2015.07.013. [Google Scholar]
  • Calvet M, Gunnell Y, Laumonier B. 2020. Denudation history and palaeogeography of the Pyrenees and their peripheral basins: an 84-million-year geomorphological perspective. Earth-Science Reviews 103436. https://doi.org/10.1016/j.earscirev.2020.103436. [Google Scholar]
  • Carola E, Muñoz JA, Roca E. 2015. The transition from thick-skinned to thin-skinned tectonics in the Basque-Cantabrian Pyrenees: the Burgalesa Platform and surroundings. International Journal of Earth Sciences 104: 2215–2239. https://doi.org/10.1007/s00531-015-1177-z. [Google Scholar]
  • Casas AM, Gil I, Leránoz B, Millán H, Simón L. 1994. Quaternary reactivation of flexural-slip folds by diapiric activity: example from the western Ebro Basin (Spain). Geologische Rundschau 83: 853–867. https://doi.org/10.1007/BF00251081. [Google Scholar]
  • Choukroune P. 1989. Étude Continentale et Océanique par Reflexion et Refraction Sismique (ECORS) Team, The ECORS Pyrenean deep seismic profiles reflection data and the overall structure of an orogenic belt. Tectonics 8: 23–39. [Google Scholar]
  • Chumakov IS. 1967, Pliocene and Pleistocene deposits of the Nile valley in Nubian and Upper Egypt (in Russian). Geol Institute Trans, Acad Science USSR, Moscow 170: 5. [Google Scholar]
  • Cloetingh S, Burov E, Beekman F, Andeweg B, Andriessen M, García-Castellanos D, et al. 2002. Lithospheric folding in Iberia. Tectonics 21(1): 5–26. https://doi.org/10.1029/2001TC901031. [Google Scholar]
  • Coney PJ, Muñoz JA, McClay KR, Evenchick CA. 1996. Syntectonic burial and post-tectonic exhumation of the southern Pyrenees foreland fold-thrust belt. Journal of the Geological Society 153: 9–16. https://doi.org/10.1144/gsjgs.153.1.0009. [Google Scholar]
  • Conway-Jones BW, Roberts GG, Fichtner A, Hoggard M. 2019. Neogene Epeirogeny of Iberia. Geochemistry, Geophysics, Geosystems 20: 1138–1163. https://doi.org/10.1029/2018GC007899. [Google Scholar]
  • Cook KL, Turowski JM, Hovius N. 2014. River gorge eradication by downstream sweep erosion. Nature Geoscience 7: 682–686. https://doi.org/10.1038/ngeo2224. [Google Scholar]
  • Cordier S, Adamson K, Delmas M, Calvet M, Harmand D. 2017. Of ice and water: Quaternary fluvial response to glacial forcing. Quaternary Science Reviews 166: 57–73. https://doi.org/10.1016/j.quascirev.2017.02.006. [Google Scholar]
  • Costa E, Garcés M, López-Blanco M, Beamud E, Gómez-Paccard M, Larrasoaña JC. 2010. Closing and continentalization of the South Pyrenean foreland basin (NE Spain): magnetochronological constraints. Basin Research 22: 904–917. https://doi.org/10.1111/j.1365-2117.2009.00452.x. [Google Scholar]
  • Craddock WH, Kirby E, Harkins NW, Zhang H, Shi X, Liu J. 2010. Rapid fluvial incision along the Yellow River during headward basin integration. Nature Geoscience 3: 209–213. https://doi.org/10.1038/ngeo777. [Google Scholar]
  • Crosby BT, Whipple KX. 2006. Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand. Geomorphology 82: 16–38. https://doi.org/10.1016/j.geomorph.2005.08.023. [Google Scholar]
  • Crosby BT, Whipple KX, Gasparini NM, Wobus CW. 2007. Formation of fluvial hanging valleys: Theory and simulation. Journal of Geophysical Research 112: F03S10. https://doi.org/10.1029/2006JF000566. [Google Scholar]
  • Del Rio P, Barbero L, Stuart F. 2009. Exhumation of the Sierra de Cameros (Iberian Range, Spain): constraints from low-temperature thermochronology. Geological Society, London, Special Publications 324: 153–166. [Google Scholar]
  • Delmas M. 2019. L’apport des nucléides cosmogéniques produits in situ à la quantification multi-scalaire des changements environnementaux quaternaires dans les montagnes des latitudes tempérées [HDR]. Université Lumière Lyon 2. [Google Scholar]
  • Delmas M, Calvet M, Gunnell Y, Voinchet P, Manel C, Braucher R, et al. 2018. Terrestrial 10Be and electron spin resonance dating of fluvial terraces quantifies quaternary tectonic uplift gradients in the eastern Pyrenees. Quaternary Science Reviews 193: 188–211. https://doi.org/10.1016/j.quascirev.2018.06.001. [Google Scholar]
  • Dunai TJ. 2010. Cosmogenic nuclides: principles, concepts and applications in the earth surface sciences. Cambridge, New York: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511804519 (accessed August 2017). [Google Scholar]
  • Duval M, Sancho C, Calle M, Guilarte V, Peña-Monné JL. 2015. On the interest of using the multiple center approach in ESR dating of optically bleached quartz grains: Some examples from the Early Pleistocene terraces of the Alcanadre River (Ebro basin, Spain). Quaternary Geochronology 29: 58–69. https://doi.org/10.1016/j.quageo.2015.06.006. [Google Scholar]
  • Duval M, Arnold LJ, Guilarte V, Demuro M, Santonja M, Pérez-González A. 2017. Electron spin resonance dating of optically bleached quartz grains from the Middle Palaeolithic site of Cuesta de la Bajada (Spain) using the multiple centres approach. Quaternary Geochronology 37: 82–96. https://doi.org/10.1016/j.quageo.2016.09.006. [Google Scholar]
  • Etheve N, Mohn G, Lamotte DF de, Roca E, Tugend J, Gómez-Romeu J. 2018. Extreme Mesozoic Crustal Thinning in the Eastern Iberia Margin: The Example of the Columbrets Basin (Valencia Trough). Tectonics 37: 636–662. https://doi.org/10.1002/2017TC004613. [Google Scholar]
  • Evans G, Arche A. 2002. The flux of siliciclastic sediment from the Iberian Peninsula, with particular reference to the Ebro. Geological Society, London, Special Publications 191: 199–208. [Google Scholar]
  • Faccenna C, et al. 2014. Mantle dynamics in the Mediterranean: mediterranean dynamic. Reviews of Geophysics 52: 283–332. https://doi.org/10.1002/2013RG000444. [Google Scholar]
  • Fillon C, Gautheron C, van der Beek P. 2013. Oligocene–Miocene burial and exhumation of the Southern Pyrenean foreland quantified by low-temperature thermochronology. Journal of the Geological Society 170: 67–77. [Google Scholar]
  • Fillon C, Pedreira D, van der Beek PA, Huismans RS, Barbero L, Pulgar JA. 2016. Alpine exhumation of the central Cantabrian Mountains, Northwest Spain: alpine exhumation of the cantabrians. Tectonics 35: 339–356. https://doi.org/10.1002/2015TC004050. [Google Scholar]
  • Fillon C, et al. 2020. Post-orogenic exhumation in the western Pyrenees: evidence for extension driven by pre-orogenic inheritance. Journal of the Geological Society. https://doi.org/10.1144/jgs2020-079. [Google Scholar]
  • Fitzgerald PG, Muñoz JA, Coney PJ, Baldwin SL. 1999. Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of a collisional orogen. Earth and Planetary Science Letters 173: 157–170. https://doi.org/10.1016/S0012-821X(99)00225-3. [Google Scholar]
  • Fontboté J, Guimerà J, Roca E, Sàbat F, Santanach P, Fernández-Ortigosa F. 1990. The Cenozoic geodynamic evolution of the Valencia trough (western Mediterranean). Rev. Soc. Geol. Esp. 3: 249–259. [Google Scholar]
  • Fornari M, Risacher F, Féraud G. 2001. Dating of paleolakes in the central Altiplano of Bolivia. Palaeogeography, Palaeoclimatology, Palaeoecology 172: 269–282. https://doi.org/10.1016/S0031-0182(01)00301-7. [Google Scholar]
  • Fuller IC, Macklin MG, Passmore DG, Brewer PA, Lewin J, Wintle AG. 1996. Geochronologies and environmental records of Quaternary fluvial sequences in the Guadalope basin, northeast Spain, based on luminescence dating. Geological Society, London, Special Publications 115: 99–120. https://doi.org/10.1144/GSL.SP1996.115.01.09. [Google Scholar]
  • Fuller IC, Macklin MG, Lewin J, Passmore DG, Wintle AG. 1998. River response to high-frequency climate oscillations in southern Europe over the past 200 k.y. Geology 26: 275–278. https://doi.org/10.1130/0091-7613(1998)026<0275:RRTHFC>2.3.CO;2. [Google Scholar]
  • García-Castellanos D. 2006. Long-term evolution of tectonic lakes: climatic controls on the development of internally drained basins. Special Papers-Geological Society of America 398: 283. [Google Scholar]
  • García-Castellanos D, Larrasoaña JC. 2015. Quantifying the post-tectonic topographic evolution of closed basins: The Ebro basin (northeast Iberia). Geology 43: 663–666. https://doi.org/10.1130/G36673.1. [Google Scholar]
  • García-Castellanos D, Vergés J, Gaspar-Escribano J, Cloetingh S. 2003. Interplay between tectonics, climate, fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). Tectonics, Climate, Drainage: Journal of Geophysical Research: Solid Earth 108. https://doi.org/10.1029/2002JB002073. [Google Scholar]
  • García-Ruiz JM, Martí-Bono C, Peña-Monné JL, Sancho C, Rhodes EJ, Valero-garcés B, et al. 2013. Glacial and fluvial deposits in the aragón valley, central-western Pyrenees: chronology of the pyrenean late pleistocene glaciers. Geografiska Annaler: Series A, Physical Geography 95: 15–32. https://doi.org/10.1111/j.1468-0459.2012.00478.x. [Google Scholar]
  • Gaspar-Escribano JM, García-Castellanos D, Roca E, Cloetingh S. 2004. Cenozoic vertical motions of the Catalan Coastal Ranges (NE Spain): The role of tectonics, isostasy, surface transport. Tectonics 23. https://doi.org/10.1029/2003TC001511. [Google Scholar]
  • Genti M. 2015. Impact des processus de surface sur la déformation actuelle des Pyrénées et des Alpes. PhD Thesis, Université de Montpellier, 263 p. [Google Scholar]
  • Gibbard PL, Lewin J. 2009. River incision and terrace formation in the Late Cenozoic of Europe. Tectonophysics 474: 41–55. https://doi.org/10.1016/j.tecto.2008.11.017. [Google Scholar]
  • Gibson M, Sinclair HD, Lynn GJ, Stuart FM. 2007. Late- to post-orogenic exhumation of the Central Pyrenees revealed through combined thermochronological data and modelling. Basin Research 19: 323–334. https://doi.org/10.1111/j.1365-2117.2007.00333.x. [Google Scholar]
  • Gosse JC, Phillips FM. 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews 20: 1475–1560. [Google Scholar]
  • Guerrero J, Gutiérrez F, Lucha P. 2008. Impact of halite dissolution subsidence on Quaternary fluvial terrace development: Case study of the Huerva River, Ebro Basin, NE Spain. Geomorphology 100: 164–179. https://doi.org/10.1016/j.geomorph.2007.04.040. [Google Scholar]
  • Guerrero J, Gutiérrez F, Galve JP. 2013. Large depressions, thickened terraces, gravitational deformation in the Ebro River valley (Zaragoza area, NE Spain): Evidence of glauberite and halite interstratal karstification. Geomorphology 196: 162–176. https://doi.org/10.1016/j.geomorph.2012.06.024. [Google Scholar]
  • Han Z, et al. 2019. Internal Drainage Has Sustained Low-Relief Tibetan Landscapes Since the Early Miocene. Geophysical Research Letters 46: 8741–8752. https://doi.org/10.1029/2019GL083019. [Google Scholar]
  • Haug GH, Tiedemann R. 1998. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393: 673–676. [Google Scholar]
  • Hidy AJ, Gosse JC, Pederson JL, Mattern JP, Finkel RC. 2010. A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: An example from Lees Ferry, Arizona. Geochemistry Geophysics Geosystems 11. https://doi.org/10.1029/2010GC003084. [Google Scholar]
  • Huyghe D, Mouthereau F, Ségalen L, Furió M. 2020. Long-term dynamic topographic support during post-orogenic crustal thinning revealed by stable isotope (δ18O) paleo-altimetry in eastern Pyrenees. Scientific Reports 10. https://doi.org/10.1038/s41598-020-58903-w. [Google Scholar]
  • Jiménez-Moreno G, Burjachs F, Expósito I, Oms O, Carrancho Á, Villalaín JJ, et al. 2013. Late Pliocene vegetation and orbital-scale climate changes from the western Mediterranean area. Global and Planetary Change 108: 15–28. [Google Scholar]
  • Jolivet M, Labaume P, Monié P, Brunel M, Arnaud N, Campani M. 2007. Thermochronology constraints for the propagation sequence of the south Pyrenean basement thrust system (France-Spain). Tectonics 26. [Google Scholar]
  • Julián Andrés A. 1996. Cartografía y correlación general de las acumulaciones cuaternarias de la depresión del Ebro. PhD Thesis, Universidad de Zaragoza. [Google Scholar]
  • Julián Andrés A, Chueca Cía JJ. 1998. Acumulaciones fluviales en la Depresión del Ebro: valoración de la validez de una secuencia general. Geographicalia 67–82. [Google Scholar]
  • Jungers MC, Heimsath AM. 2016. Post-tectonic landscape evolution of a coupled basin and range: Pinaleño Mountains and Safford Basin, southeastern Arizona. Geological Society of America Bulletin 128: 469–86. https://doi.org/10.1130/B31276.1. [Google Scholar]
  • Knudsen MF, Nørgaard J, Grischott R, Kober F, Egholm DL, Hansen TM, et al. 2020. New cosmogenic nuclide burial-dating model indicates onset of major glaciations in the Alps during Middle Pleistocene Transition. Earth and Planetary Science Letters 549: 116491. https://doi.org/10.1016/j.epsl.2020.116491. [Google Scholar]
  • Labaume P, Meresse F, Jolivet M, Teixell A, Lahfid A. 2016. Tectonothermal history of an exhumed thrust-sheet-top basin: An example from the south Pyrenean thrust belt. Tectonics 35: 1280–1313. https://doi.org/10.1002/2016TC004192. [Google Scholar]
  • Lal D. 1991. Cosmic ray labeling of erosion surfaces: in-situ nuclide production rates and erosion models. Earth Planet. Sci. Lett. 104: 424–439. [Google Scholar]
  • Larrasoaña JC, Murelaga X, Garcés M. 2006. Magnetobiochronology of Lower Miocene (Ramblian) continental sediments from the Tudela Formation (western Ebro basin, Spain). Earth and Planetary Science Letters 243: 409–423. https://doi.org/10.1016/j.epsl.2006.01.034. [Google Scholar]
  • Lewis CJ, Vergés J, Marzo M. 2000. High mountains in a zone of extended crust: Insights into the Neogene-Quaternary topographic development of northeastern Iberia. Tectonics 19: 86–102. https://doi.org/10.1029/1999TC900056. [Google Scholar]
  • Lewis CJ, McDonald EV, Sancho C, Peña JL, Rhodes EJ. 2009. Climatic implications of correlated Upper Pleistocene glacial and fluvial deposits on the Cinca and Gállego Rivers (NE Spain) based on OSL dating and soil stratigraphy. Global and Planetary Change 67: 141–152. https://doi.org/10.1016/j.gloplacha.2009.01.001. [Google Scholar]
  • Lewis CJ, Sancho C, McDonald EV, Peña-Monné JL, Pueyo EL, Rhodes E, et al. 2017. Post-tectonic landscape evolution in NE Iberia using staircase terraces: Combined effects of uplift and climate. Geomorphology 292: 85–103. https://doi.org/10.1016/j.geomorph.2017.04.037. [Google Scholar]
  • Lisiecki LE, Raymo ME. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic delta O-18 records (vol 20, art no PA1003, 2005). Paleoceanography 20: PA2007. https://doi.org/10.1029/2005PA001164. [Google Scholar]
  • Loget N, Van Den Driessche J. 2009. Wave train model for knickpoint migration. Geomorphology 106: 376–382. [Google Scholar]
  • Loget N, Driessche JVD, Davy P. 2005. How did the Messinian salinity crisis end? Terra Nova 17: 414–419. [Google Scholar]
  • López Martínez N, Agustí J, Cabrera L, Calvo Sorando J, Civis J, Corrochano A, et al. 1987. Approach to the Spanish continental Neogene synthesis and palaeoclimatic interpretation. Ann. Inst. Geol. Publ. Hung LXX: 383–391. [Google Scholar]
  • López-Blanco M. 2002. Sedimentary response to thrusting and fold growing on the SE margin of the Ebro basin (Paleogene, NE Spain). Sedimentary Geology 146: 133–154. [Google Scholar]
  • Lucha P, Gutiérrez F, Galve JP, Guerrero J. 2012. Geomorphic and stratigraphic evidence of incision-induced halokinetic uplift and dissolution subsidence in transverse drainages crossing the evaporite-cored Barbastro-Balaguer Anticline (Ebro Basin, NE Spain). Geomorphology 171-172: 154–172. https://doi.org/10.1016/j.geomorph.2012.05.015. [Google Scholar]
  • Macklin MG, Fuller IC, Lewin J, Maas GS, Passmore DG, Rose J, et al. 2002. Correlation of fluvial sequences in the Mediterranean basin over the last 200 ka and their relationship to climate change. Quaternary Sci. Rev. 21: 1633–1641. [Google Scholar]
  • Maier-Reimer E, Mikolajewicz U, Crowley T. 1990. Ocean general circulation model sensitivity experiment with an open Central American Isthmus. Paleoceanography 5: 349–366. [Google Scholar]
  • Mensua S, Ibañez MJ. 1977. Terrazas y glacis del centro de la depresion del Ebro (5 mapas y Comentario). Departamento de Geografia. [Google Scholar]
  • Mocochain L, Audra P, Clauzon G, Bellier O, Bigot J-Y, Parize O, et al. 2009. The effect of river dynamics induced by the Messinian Salinity Crisis on karst landscape and caves: example of the Lower Ardèche river (mid Rhône valley). Geomorphology 106: 46–61. [Google Scholar]
  • Molnar P. 2008. Closing of the Central American Seaway and the Ice Age: A critical review. Paleoceanography 23. [Google Scholar]
  • Monod B, Regard V, Carcone J, Wyns R, Christophoul F. 2016. Postorogenic planar palaeosurfaces of the central Pyrenees: Weathering and neotectonic records. Comptes Rendus Geoscience 348: 184–193. https://doi.org/10.1016/j.crte.2015.09.005. [Google Scholar]
  • Moreno D, et al. 2012. ESR chronology of alluvial deposits in the Arlanzón valley (Atapuerca, Spain): Contemporaneity with Atapuerca Gran Dolina site. Quaternary Geochronology 10: 418–423. https://doi.org/10.1016/j.quageo.2012.04.018. [Google Scholar]
  • Morris, Sinclair, Yell. 1998. Exhumation of the Pyrenean orogen: implications for sediment discharge. Basin Research 10: 69–85. https://doi.org/10.1046/j.1365-2117.1998.00053.x. [Google Scholar]
  • Mouthereau F, Filleaudeau P-Y, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence: Plate convergence in the Pyrenees. Tectonics 33: 2283–2314. https://doi.org/10.1002/2014TC003663. [Google Scholar]
  • Muñoz JA. 1992. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In: Thrust tectonics. Springer, pp. 235–246. [Google Scholar]
  • Muñoz J, Martínez A, Vergés J. 1986. Thrust sequences in the eastern Spanish Pyrenees. Journal of Structural Geology 8: 399–405. [Google Scholar]
  • Peña-Monné J, Sancho C. 1988. Correlación y evolución cuaternaria del sistema fluvial Segre-Cinca en su curso bajo (provs. de Lérida y Huesca). Cuaternario y geomorfología 2: 77–83. [Google Scholar]
  • Pérez-Rivarés F, Garcés M, Arenas C, Pardo G. 2002. Magnetocronología de la sucesión miocena de la Sierra de Alcubierre (sector central de la Cuenca del Ebro). Revista de la Sociedad Geológica de España 15: 217–231. [Google Scholar]
  • Pérez-Rivarés J, Crespo MG, Abad MCA, Tirapu GP. 2004. Magnetostratigraphy of the Miocene continental deposits of the Montes de Castejón (central Ebro basin, Spain): geochronological and paleoenvironmental implications. Geologica Acta 2: 221–234. [Google Scholar]
  • Puigdefàbregas C, Muñoz JA, Vergés J. 1992. Thrusting and foreland basin evolution in the Southern Pyrenees. In: McClay KR, ed. Thrust Tectonics. Dordrecht: Springer Netherlands, pp. 247–254. https://doi.org/10.1007/978-94-011-3066-0_22. [Google Scholar]
  • Rat J, Mouthereau F, Brichau S, Crémades A, Bernet M, Balvay M, et al. 2019. Tectonothermal Evolution of the Cameros Basin: Implications for Tectonics of North Iberia. Tectonics 38: 440–469. https://doi.org/10.1029/2018TC005294. [Google Scholar]
  • Regard, et al. 2005. Cumulative right-lateral fault slip rate across the Zagros-Makran transfer zone: role of the Minab-Zendan fault system in accommodating Arabia-Eurasia convergence in southeast Iran. Geophysical Journal International 162: 177–203. [Google Scholar]
  • Repka JL, Anderson RS, Finkel RC. 1997. Cosmogenic dating of fluvial terraces, Fremont River, Utah. Earth and Planetary Science Letters 152: 59–73. [Google Scholar]
  • Ritz JF, et al. 2003. Late Pleistocene to Holocene slip rates for the Gurvan Bulag thrust fault (Gobi-Altay, Mongolia) estimated with Be-10 dates. Journal of Geophysical Research-Solid Earth 108. [Google Scholar]
  • Roca E, Guimerà J. 1992. The Neogene structure of the eastern Iberian margin: Structural constraints on the crustal evolution of the Valencia trough (western Mediterranean). Tectonophysics 203: 203–218. https://doi.org/10.1016/0040-1951(92)90224-T. [Google Scholar]
  • Roca E, Desegaulx P, Fernandez Ortigosa F, Roure F, Pinet B. 1990. In: Pinet B, Bois C, eds. The Potential of Deep Seismic Profiling for Hydrocarbon Exploration. Proceedings of the 5th IFP Exploration and Production Research Conference, held in Arles, June 19–23, 1989, Paris, pp. 439–443. [Google Scholar]
  • Roca E, Sans M, Cabrera L, Marzo M. 1999. Oligocene to Middle Miocene evolution of the central Catalan margin (northwestern Mediterranean). Tectonophysics 315: 209–229. https://doi.org/10.1016/S0040-1951(99)00289-9. [Google Scholar]
  • Rodríguez-Rodríguez L, et al. 2020. Dates and rates of endo-exorheic drainage development: Insights from fluvial terraces (Duero River, Iberian Peninsula). Global and Planetary Change 193: 103271. https://doi.org/10.1016/j.gloplacha.2020.103271. [Google Scholar]
  • Roure F, Choukroune P, Berastegui X, Munoz J, Villien A, Matheron P, et al. 1989. ECORS deep seismic data and balanced cross sections: Geometric constraints on the evolution of the Pyrenees. Tectonics 8: 41–50. [Google Scholar]
  • Rushlow CR, Barnes JB, Ehlers TA, Vergés J. 2013. Exhumation of the southern Pyrenean fold-thrust belt (Spain) from orogenic growth to decay. Tectonics 32: 843–860. https://doi.org/10.1002/tect.20030. [Google Scholar]
  • Sàbat F, Roca E, Muñoz J, Vergés J, Santanach P, Sans M. 1995. margin of Iberia: the ESCI-València Trough seismic profile. Rev. Soc. Geol. Esp. 8: 4. [Google Scholar]
  • Salas R, Casas A. 1993. Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics 228: 33–55. https://doi.org/10.1016/0040-1951(93)90213-4. [Google Scholar]
  • Salas R, Guimerà J, Mas R, Martín-Closas C, Meléndez A, Alonso A. 2001. Evolution of the Mesozoic central Iberian Rift System and its Cainozoic inversion (Iberian chain). Peri-Tethys Memoir 6: 145–185. [Google Scholar]
  • Sancho C, Calle M, Pena-Monne JL, Duval M, Oliva-Urcia B, Pueyo EL, et al. 2016. Dating the Earliest Pleistocene alluvial terrace of the Alcanadre River (Ebro Basin, NE Spain): Insights into the landscape evolution and involved processes. Quaternary International 407: 86–95. https://doi.org/10.1016/j.quaint.2015.10.050. [Google Scholar]
  • Sancho C, Arenas C, Pardo G, Peña-Monné JL, Rhodes EJ, Bartolomé M, et al. 2018. Glaciolacustrine deposits formed in an ice-dammed tributary valley in the south-central Pyrenees: New evidence for late Pleistocene climate. Sedimentary Geology 366: 47–66. https://doi.org/10.1016/j.sedgeo.2018.01.008. [Google Scholar]
  • Santisteban JI, Schulte L. 2007. Fluvial networks of the Iberian Peninsula: a chronological framework. Quaternary Science Reviews 26: 2738–2757. https://doi.org/10.1016/j.quascirev.2006.12.019. [Google Scholar]
  • Saura E, Ardèvol i Oró Ll, Teixell A, Vergés J. 2016. Rising and falling diapirs, shifting depocenters, flap overturning in the Cretaceous Sopeira and Sant Gervàs subbasins (Ribagorça Basin, southern Pyrenees). Tectonics 35: 638–662. https://doi.org/10.1002/2015TC004001. [Google Scholar]
  • Siddall M, Honisch B, Waelbroeck C, Huybers P. 2010. Changes in deep Pacific temperature during the mid-Pleistocene transition and quaternary. Quaternary Science Reviews 29: 170–181. [Google Scholar]
  • Sinclair HD, Gibson M, Naylor M, Morris RG. 2005. Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes. American Journal of Science 305: 369–406, https://doi.org/10.2475/ajs.305.5.369. [Google Scholar]
  • Sobel ER, Hilley GE, Strecker MR. 2003. Formation of internally drained contractional basins by aridity-limited bedrock incision. Journal of Geophysical Research: Solid Earth 108. https://doi.org/10.1029/2002JB001883. [Google Scholar]
  • Soria Jáuregui Á, González Amuchastegui MJ, Serrano Cañadas E, Edeso Fito JM, Lopetegi Galarraga A, Duval M, et al. 2019. Las terrazas fluviales cuaternarias del río Ebro en el alto Ebro (Incinillas-Conchas de Haro). Asociación Española para el Estudio del Cuaternario (AEQUA), https://cir.cenieh.es/handle/20.500.12136/1418 (accessed February 2020). [Google Scholar]
  • Stange KM, van Balen R, Carcaillet J, Vandenberghe J. 2013a. Terrace staircase development in the Southern Pyrenees Foreland: Inferences from 10Be terrace exposure ages at the Segre River. Global and Planetary Change 101: 97–112. https://doi.org/10.1016/j.gloplacha.2012.12.007. [Google Scholar]
  • Stange KM, van Balen R, Vandenberghe J, Peña JL, Sancho C. 2013b. External controls on Quaternary fluvial incision and terrace formation at the Segre River, Southern Pyrenees. Tectonophysics 602: 316–331. https://doi.org/10.1016/j.tecto.2012.10.033. [Google Scholar]
  • Stange KM, Balen RTV, García-Castellanos D, Cloetingh S. 2016. Numerical modelling of Quaternary terrace staircase formation in the Ebro foreland basin, southern Pyrenees, NE Iberia. Basin Research 28: 124–146. https://doi.org/10.1111/bre.12103. [Google Scholar]
  • Struth L, García-Castellanos D, Viaplana-Muzas M, Vergés J. 2019. Drainage network dynamics and knickpoint evolution in the Ebro and Duero basins: From endorheism to exorheism. Geomorphology 327: 554–571. https://doi.org/10.1016/j.geomorph.2018.11.033. [Google Scholar]
  • Suc J-P, Popescu S-M. 2005. Pollen records and climatic cycles in the North Mediterranean region since 2.7 Ma. Geological Society, London, Special Publications 247: 147–158. [Google Scholar]
  • Teixell A. 1990. Alpine thrusts at the western termination of the Pyrenean axial zone. Bulletin de la Société Géologique de France VI: 241–249. https://doi.org/10.2113/gssgfbull.VI.2.241. [Google Scholar]
  • Teixell A. 1996. The Ansó transect of the southern Pyrenees: basement and cover thrust geometries. Journal of the Geological Society 153: 301–310. https://doi.org/10.1144/gsjgs.153.2.0301. [Google Scholar]
  • Teixell A. 1998. Crustal structure and orogenic material budget in the west central Pyrenees. Tectonics 17: 395–406. https://doi.org/10.1029/98TC00561. [Google Scholar]
  • Tziperman E, Gildor H. 2003. On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times. Paleoceanography 18: 1. [Google Scholar]
  • Urgeles R, Camerlenghi A, García-Castellanos D, De Mol B, Garcés M, Vergés J, et al. 2011. New constraints on the Messinian sealevel drawdown from 3D seismic data of the Ebro Margin, western Mediterranean. Basin Research 23: 123–145. [Google Scholar]
  • Vacherat A, Bonnet S, Mouthereau F. 2018. Drainage reorganization and divide migration induced by the excavation of the Ebro basin (NE Spain). Earth Surface Dynamics 6: 369–387. https://doi.org/10.5194/esurf-6-369-2018. [Google Scholar]
  • Vázquez-Urbez M, Arenas C, Pardo G, Pérez-Rivarés J. 2013. The Effect of Drainage Reorganization and Climate On the Sedimentologic Evolution of Intermontane Lake Systems: The Final Fill Stage of the Tertiary Ebro Basin (Spain). Journal of Sedimentary Research 83: 562–590. https://doi.org/10.2110/jsr2013.47. [Google Scholar]
  • Vergés J, Millán H, Roca E, Muñoz J, Marzo M, Cirés J, et al. 1995. Eastern Pyrenees and related foreland basins: pre-, syn-and post-collisional crustal-scale cross-sections. Marine and Petroleum Geology 12: 903–915. [Google Scholar]
  • Vergés J, Fernàndez M, Martìnez A. 2002. The Pyrenean orogen: pre-, syn-, post-collisional evolution. Journal of the Virtual Explorer 8: 55–74. [Google Scholar]
  • Vincent SJ. 2001. The Sis palaeovalley: a record of proximal fluvial sedimentation and drainage basin development in response to Pyrenean mountain building. Sedimentology 48: 1235–1276, https://doi.org/10.1046/j.1365-3091.2001.00421.x. [Google Scholar]
  • Whitchurch AL, Carter A, Sinclair HD, Duller RA, Whittaker AC, Allen PA. 2011, Sediment routing system evolution within a diachronously uplifting orogen: Insights from detrital zircon thermochronological analyses from the South-Central Pyrenees. American Journal of Science 311: 442–482. https://doi.org/10.2475/05.2011.03. [Google Scholar]
  • Yelland A. 1990. Fission track thermotectonics in the Pyrenean orogen. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 17: 293–299. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.