Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Article Number 54
Number of page(s) 16
DOI https://doi.org/10.1051/bsgf/2021047
Published online 03 November 2021
  • Achterberg EP, Van den Berg CMG, Colombo C. 2003. High resolution monitoring of dissolved Cu and Co in coastal surface waters of the western North Sea. Contin. Shelf Res. 23: 611–623. [CrossRef] [Google Scholar]
  • Algeo TJ, Maynard JB. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 206: 289–318. [CrossRef] [Google Scholar]
  • Algeo TW, Liu J. 2020. A re-assessment of elemental proxies for paleoredox analysis. Chemical Geology 540: 119549. [CrossRef] [Google Scholar]
  • Algeo TJ, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology 268: 211–225. [Google Scholar]
  • Aycard M, Derenne S, Largeau C, Tribovillard N, Baudin F. 2003. Formation pathways of proto-kerogens in Holocene sediments of the upwelling influenced Cariaco Trench, Venezuela. Org. Geochem. 34: 701–718. [CrossRef] [Google Scholar]
  • Berner RA. 1970. Sedimentary pyrite formation. Am. J. Sci. 268: 1–23. [CrossRef] [Google Scholar]
  • Berner RA. 1984. Sedimentary pyrite formation: An update. Geochim. Cosmochim. Acta 48: 605–615. [CrossRef] [Google Scholar]
  • Berner ZA, Puchelt H, Noltner T, Kramar UTZ. 2013. Pyrite geochemistry in the Toarcian Posidonia Shale of south-west Germany: Evidence for contrasting trace element patterns of diagenetic and syngenetic pyrites. Sedimentology 60: 548–573. [CrossRef] [Google Scholar]
  • Bertrand P, Lallier-Vergès E. 1993. Past sedimentary organic matter accumulation and degradation controlled by productivity. Nature 364: 786–788. [CrossRef] [Google Scholar]
  • Bönning P, Shaw T, Pahnke K, Brumsack H-J. 2015. Nickel as indicator of fresh organic matter in upwelling sediments. Geochimica et Cosmochimica Acta 162: 99–108. [CrossRef] [Google Scholar]
  • Bruland KW. 1980. Oceanographic distribution of cadmium, zinc, nickel and copper in the North Pacific. Earth Planet. Sci. Lett. 47: 176–198. [CrossRef] [Google Scholar]
  • Brumsack H-J. 2006. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeogr. Palaeoclimat. Palaeoecol. 232: 344–361. [CrossRef] [Google Scholar]
  • Burdige DJ. 2006. Geochemistry of marine sediments. Princeton University Press, 609 p. [Google Scholar]
  • Calvert SE, Pedersen TF. 1993. Geochemistry of recent oxic and anoxic sediments: implications for the geological record. Mar. Geol. 113: 67–88. [CrossRef] [Google Scholar]
  • Ciscato ER, Bontognali TRR, Poulton SXW, Vance D. 2019. Copper and its isotopes in organic-rich sediments: from the modern Peru Margin to Archean shales. Geosciences 2019(9): 325. [CrossRef] [Google Scholar]
  • Charriau A, Lesven L, Gao Y, Leermakers M, Baeyens W, Ouddane B, et al. 2011. Trace metal behaviour in riverine sediments: Role of organic matter and sulfides. Applied Geochemistry 26: 80–90. [CrossRef] [Google Scholar]
  • Chester R. 1990. Marine Geochemistry. Springer. [CrossRef] [Google Scholar]
  • Ciscato ER, Bontognali TRR, Vance D. 2018. Nickel and its isotopes in organic-rich sediments: Implications for oceanic budgets and a potential record of ancient seawater. Earth and Planetary Science Letters 494: 239–250. [CrossRef] [Google Scholar]
  • Crombez V, Rohais S, Euzen T, Riquier L, Baudin F, Hernandez-Bilbao E. 2020. Trace metal elements as paleoenvironmental proxies: Why should we account for sedimentation rate variations? Geology 48(8): 839–843. https://doi.org/10.1130/G47150.1. [Google Scholar]
  • Disnar JR. 1981. Etude expérimentale de la fixation de métaux par un matériau sédimentaire actuel d’origine algaire. Geochimica et Cosmochimica Acta 45: 363–379. [CrossRef] [Google Scholar]
  • Dymond J, Suess E, Lyle. M. 1992. Barium in deep-sea sediments: A geochemical proxy for paleoproductivity. Paleoceanography 7: 163–181. [CrossRef] [Google Scholar]
  • Fernex F, Février G, Benaïm J, Arnoux A. 1992. Copper, lead and zinc trapping in Mediterranean deep-sea sediments: Probable coprecipitation with manganese and iron. Chem. Geol. 98: 293–308. [CrossRef] [Google Scholar]
  • Findlay AJ, Pellerin A, Laufer K, Jørgensen BB. 2020. Quantification of sulphide oxidation rates in marine sediment. Geochimica et Cosmochimica Acta 280: 441–452. [CrossRef] [Google Scholar]
  • François R. 1988. A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet sediments, British Columbia, Canada. Mar. Geol. 83: 285–308. [CrossRef] [Google Scholar]
  • Giacalone A, Gianguzza A, Orecchio S, Piazzese D, Dongarrà G, Sciarrino S, et al. 2005. Metals distribution in the organic and inorganic fractions of soil: A case study on soils from Sicily. Chemical Speciation & Bioavailability 17: 83–93. [CrossRef] [Google Scholar]
  • Gregory DD, Large RR, Halpin JA, Baturina EL, Lyons TW, Wu S, et al. 2015. Trace element content of sedimentary pyrite in black shales. Econ. Geol. 110(6): 1389–1410. [CrossRef] [Google Scholar]
  • Grosjean E, Adam P, Connan J, Albrecht P. 2004. Effects of weathering on nickel and vanadyl porphyrins of a Lower Toarcian shale of the Paris basin. Geochim. Cosmochim. Acta 68: 789–804 [CrossRef] [Google Scholar]
  • Haraldsson C, Westerlund S. 1988. Trace metals in the water columns of the Black Sea and the Framvaren Fjord. Mar. Chem. 23: 417–424. [CrossRef] [Google Scholar]
  • Huerta-Diaz MA, Morse. JW. 1990. A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Mar. Chem. 29: 119–144. [CrossRef] [Google Scholar]
  • Huerta-Diaz MA, Morse. JW. 1992. Pyritisation of trace metals in anoxic marine sediments. Geochim. Cosmochim. Acta 56: 2681–2702. [CrossRef] [Google Scholar]
  • Jokinen SA, Jilbert T, Tiihonen-Filppula R, Koho K. 2020. Terrestrial organic matter input drives sedimentary trace metal sequestration in a human-impacted boreal estuary. Science of The Total Environment 717: 137047. [CrossRef] [Google Scholar]
  • Jørgensen BB. 2006. Bacteria and marine biogeochemistry. In: Schulz HD, Zabel M, eds. Marine Geochemistry, 2nd ed. Springer, pp. 169–201. [Google Scholar]
  • Kördel W, Dassenakis M, Lintelmann J, Padberg S. 1997. The importance of natural organic material for environmental processes in waters and soils. Pure Appl. Chem. 69: 1571–1600. [CrossRef] [Google Scholar]
  • Large RR, Halpin JA, Danyushevsky LV, Maslennikov VV, Bull SW, Long JA, et al. 2014. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth Planet. Sci. Lett. 389: 209–220. [CrossRef] [Google Scholar]
  • Large RR, Mukherjee I, Gregory DD, Steadman JA, Maslennikov VV, Meffre S. 2017. Ocean and atmosphere geochemical proxies derived from trace elements in marine pyrite: implications for ore genesis in sedimentary basins. Econ. Geol. 112(2): 423–450. [CrossRef] [Google Scholar]
  • Lehmann MF, Carstens D, Deek A, McCarthy M, Schubert CJ, Zopfi J. 2020. Amino acid and amino sugar compositional changes during in vitro degradation of algal organic matter indicate rapid bacterial re-synthesis. Geochim. Cosmochim. Acta 183: 67–84. https://doi.org/10.1016/j.gca.2020.05.025. [CrossRef] [Google Scholar]
  • Lewan MD, Maynard JB. 1982. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochim. Cosmochim. Acta 46(12): 2547–2560. [CrossRef] [Google Scholar]
  • Littke R, Baker DR, Leythaeuser D, Rullkötter J. 1991. Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hils syncline, northern Germany. In: Tyson RV, Pearson TH, eds. Modern and ancient continental shelf anoxia. Geol. Soc. Spec. Publ., vol. 58. The Geological Society, London, pp. 311–334. [Google Scholar]
  • Littke R, Lückge A, Welte DH. 1997. Quantification of organic matter degradation by microbial sulphate reduction for Quaternary sediments from the northern Arabian Sea. Naturwissenschaften 84: 312–315. [CrossRef] [Google Scholar]
  • Little SH, Vance D, Lyons TW, McManus J. 2015. Controls on trace metal authigenic enrichment in reducing sediments: insights from modern oxygen-deficient settings. Am. J. Sci. 315: 77–119. [CrossRef] [Google Scholar]
  • Liu J, Algeo TJ. 2020. Beyond redox: Control of trace-metal enrichment in anoxic marine facies by watermass chemistry and sedimentation rate. Geochim. Cosmochim. Acta 287: 296–317. [CrossRef] [Google Scholar]
  • Lückge A, Boussafir M, Lallier-Vergès E, Littke R. 1996. Comparative study of organic matter preservation in immature sediments along the continental margins of Peru and Oman. Part I: Results of petrographical and bulk geochemical data. Org. Geochem. 24: 437–451. [CrossRef] [Google Scholar]
  • McLennan SM. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2, 2000GC000109. [Google Scholar]
  • Marchand C, Fernandez J-M, Moreton B. 2016. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia). Science of the Total Environment 562: 216–227. [CrossRef] [Google Scholar]
  • Morel FMM, Milligan AJ, Saito MA. 2003. Marine bioinorganic chemistry: The role of trace metals in the oceanic cycles of major nutrients. In: Treatise on Geochemistry (edited by), Vol. 6, pp. 113–143 [CrossRef] [Google Scholar]
  • Morin G, Noël V, Menguy N, Brest J, Baptiste B, Tharaud M, et al. 2017. Nickel accelerates pyrite nucleation at ambient temperature. Geochemical Perspectives Letters 5: 6–11. [CrossRef] [Google Scholar]
  • Morse JW, Luther GW. 1999. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta 63: 3373–3378. [CrossRef] [Google Scholar]
  • Naimo D, Adamo P, Imperato M, Stanzione D. 2005. Mineralogy and geochemistry of a marine sequence, Gulf of Salerno, Italy. Quat. Int. 140-141: 53–63. [CrossRef] [Google Scholar]
  • Nameroff TJ, Calvert SE, Murray JW. 2004. Glacial–interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals. Paleoceanography 19: PA1010. https://doi.org/10.1029/2003PA000912. [Google Scholar]
  • Pedersen TF, Vogel JS, Southon JR. 1986. Copper and manganese in hemipelagic sediments: diagenetic contrasts. Geochim. Cosmochim. Acta 50: 2019–2031. [CrossRef] [Google Scholar]
  • Perkins RB, Piper DZ, Mason CE. 2008. Trace-element budgets in the Ohio/Sunbury shales of Kentucky: Constraints on ocean circulation and primary productivity in the Devonian-Mississippian Appalachian Basin. Palaeograph. Palaeoclimat. Palaeoecol. 265: 14–29. [CrossRef] [Google Scholar]
  • Piper DZ, Perkins RB. 2004. A modern vs. Permian black shale – The hydrography, primary productivity, and water-column chemistry of deposition. Chemical Geology 206: 177–197. [CrossRef] [Google Scholar]
  • Piper DZ, Perkins RB, Rowe HD. 2007. Rare-earth elements in the Permian Phosphoria Formation: paleo proxies of ocean geochemistry. Deep-Sea Res. 54: 1396–1413. [Google Scholar]
  • Piper DZ, Calvert SE. 2009. A marine biogeochemical perspective on black shale deposition. Earth Sci. Rev. 95: 63–96. [CrossRef] [Google Scholar]
  • Plass A, Dale AW, Scholz F. 2021. Sedimentary cycling and benthic fluxes of manganese, cobalt, nickel, copper, zinc and cadmium in the Peruvian oxygen minimum zone. Marine Chemistry 233: 103982. [CrossRef] [Google Scholar]
  • Poulton SW, Canfield DE. 2011. Ferruginous conditions: A dominant feature of the ocean through Earth’s history. Elements 7: 107–112. [CrossRef] [Google Scholar]
  • Raiswell R, Canfield DE. 2012. The iron biogeochemical cycle past and present, Geochemical Perspectives 1: 1–220. [CrossRef] [Google Scholar]
  • Raiswell R, Hardisty DS, Lyons TW, Canfield DE, Owens JD, Planavsky DJ, et al. 2018. The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice. American Journal of Science 318: 491–526. [CrossRef] [Google Scholar]
  • Raven MR, Sessions AL, Adkins JF, Thunell RC. 2016. Rapid organic matter sulfurization in sinking particles from the Cariaco Basin water column. Geochimica et Cosmochimica Acta 190: 175–190. [CrossRef] [Google Scholar]
  • Raven MR, Fike DA, Bradley AS, Gomes MS, Owens JD, Webb SA. 2019. Paired organic matter and pyrite δ34S records reveal mechanisms of carbon, sulfur, and iron cycle disruption during Ocean Anoxic Event 2. Earth and Planetary Science Letters 512: 27–38. [CrossRef] [Google Scholar]
  • Rickard D. 2012. Sulfidic sediments and sedimentary rock. Developments in Sedimentology, vol. 65. Elsevier, 801 p. [Google Scholar]
  • Riquier L, Tribovillard N, Averbuch O, Devleeschouwer X, Riboulleau A. 2006. The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): two oxygen-deficient periods resulting from different mechanisms. Chem. Geol. 233: 137–155. [CrossRef] [Google Scholar]
  • Riquier L, Averbuch O, Devleeschouwer X, Tribovillard N. 2010. Diagenetic versus detrital origin of the magnetic susceptibility variations in some carbonate Frasnian-Famennian boundary sections from Northern Africa and Western Europe: Implications for paleoenvironmental reconstructions. International Journal of Earth Sciences. 99: S57–S73. [CrossRef] [Google Scholar]
  • Rullkötter J. 2006. Organic matter: The driving force for early diagenesis. In: Schulz HD, Zabel M, eds. Marine Geochemistry, 2nd ed. Springer, pp. 125–162. [CrossRef] [Google Scholar]
  • Rutten A, de Lange GJ. 2003. Sequential extraction of iron, manganese and related elements in S1 sapropel sediments, eastern Mediterranean. Palaeogeogr., Palaeoclimat., Palaeoecol. 190: 79–101. [CrossRef] [Google Scholar]
  • Quijada M, Riboulleau A, Monnet C, Tribovillard N. 2015. Neutral aldoses derived from sequential acid hydrolysis of sediments as indicators of diagenesis over 120 000 years. Org. Geochem. 81: 53–63. [CrossRef] [Google Scholar]
  • Quijada M, Riboulleau A, Faure P. Michels R, Tribovillard N. 2016. Organic matter sulfurization on protracted diagenetic timescales: the possible role of anaerobic oxidation of methane. Mar. Geol. 381: 54–66. [CrossRef] [Google Scholar]
  • Scholz F. 2018. Identifying oxygen minimum zone-type biogeochemical cycling in Earth history using inorganic geochemical proxies. Earth-Science Reviews 184: 29–45. [CrossRef] [Google Scholar]
  • Sclater FR, Boyle E, Edmond JM. 1976. Marine geochemistry of nickel. Earth Planet. Sci. Lett. 31: 119–128. [CrossRef] [Google Scholar]
  • Shaw TJ, Gieskes JM, Jahnke RA. 1990. Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochim. Cosmochim. Acta 54: 1233–1246. [CrossRef] [Google Scholar]
  • Steiner Z, Lazar B, Torfstein A, Erez J. 2017. Testing the utility of geochemical proxies for paleoproductivity in oxic sedimentary settings of the Gulf of Aqaba, Red Sea. Chem. Geol. 473: 40–49. [CrossRef] [Google Scholar]
  • Sun Y-Z, Püttmann W. 2000. The role of organic matter during copper enrichment in Kupferschiefer from the Sangerhausen Basin, Germany. Org. Geochem. 31: 1143–1161. [CrossRef] [Google Scholar]
  • Sweere T, van den Boorn S, Dickson AG, Reichart GJ. 2016. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations. Chem. Geol. 441: 235–245. [CrossRef] [Google Scholar]
  • Taylor KG, Macquaker JHS. 2011. Iron minerals in marine sediments record chemical environments. Elements 7: 113–118. [CrossRef] [Google Scholar]
  • Tegelaar EW, de Leeuw JW, Derenne S, Largeau C. 1989. A reappraisal of kerogen formation. Geochim. Cosmochim. Acta 53: 3103–3106. [CrossRef] [Google Scholar]
  • Tissot BP, Welte DH. 1984. Petroleum formation and occurrence. 2nd ed. Berlin: Springer-Verlag, 699 pp. [Google Scholar]
  • Tribovillard N, Algeo TJ, Lyons TW, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 232: 12–32. [CrossRef] [Google Scholar]
  • Tribovillard N, Bout-Roumazeilles V, Algeo TJ, Lyons TW, Sionneau T, Montero-Serrano JC, et al. 2008. Paleodepositional conditions in the Orca Basin as inferred from organic matter and trace metal contents. Marine Geology 254: 62–72. [Google Scholar]
  • Tribovillard N, Hatem E, Averbuch O, Barbecot F, Bout-Roumazeilles V, Trentesaux A. 2015. Iron availability as a dominant control on the primary composition and diagenetic overprint of organic-matter-rich rocks. Chemical Geology 401: 67–82. [Google Scholar]
  • Tribovillard N. 2020. Arsenic in marine sediments: How robust a redox proxy? Palaeogeography, Palaeoclimatology, Palaeoecology 550: 109745. [CrossRef] [Google Scholar]
  • Twining BS, Baines SB, Vogt S, Nelson DM. 2012. Role of diatoms in nickel biogeo-chemistry in the ocean. Global Biogeochem. Cycles 26: GB4001. [CrossRef] [Google Scholar]
  • Vandenbroucke M, Largeau C. 2007. Kerogen origin, evolution and structure. Organic Geochemistry 38: 719–833. [CrossRef] [Google Scholar]
  • Van der Weijden CH. 2002. Pitfalls of normalization of marine geochemical data using a common divisor. Marine Geology 184: 167–187. [Google Scholar]
  • Vetö I, Hetényi M, Demény A, Hertelendi E. 1994. Hydrogen index as reflecting intensity of sulphide diagenesis in nonbioturbated, shaly sediments. Org. Geochem. 22: 299–310. [CrossRef] [Google Scholar]
  • Weng L, Temminghoff EJM, Lofts S, Tipping E, Van Riemsdijk WH. 2002. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environmental Science & Technology 36: 4804–4810. [CrossRef] [Google Scholar]
  • Widerlund A. 1996. Early diagenetic remobilization of copper in near-shore marine sediments: a quantitative pore-water model. Mar. Chem. 54: 41–53. [CrossRef] [Google Scholar]
  • Whitfield M. 2002. Interactions between phytoplankton and trace metals in the ocean. Adv. Mar. Biol. 41: 3–120. [Google Scholar]
  • Algeo TJ, Li C. 2020. Redox classification and calibration of redox thresholds in sedimentary systems . Geochimica et Cosmochimica Acta 287: 8–26. https://doi.org/10.1016/j.gca.2020.01.055. [CrossRef] [Google Scholar]
  • Algeo TJ, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation . Chemical Geology 268(3-4): 211–225. [Google Scholar]
  • Algeo TJ, Schwark L, Hower JC. 2004. High-resolution geochemistry and sequence stratigraphy of the Hushpuckney Shale (Swope Formation, eastern Kansas): Implications for climato-environmental dynamics of the Late Pennsylvanian Midcontinent Seaway . Chemical Geology 206(3-4): 259–288. [CrossRef] [Google Scholar]
  • Algeo TJ, Hinnov L, Moser J, Maynard JB, Elswick E, Kuwahara K, et al. 2010. Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian . Geology 38(2): 187–190. [CrossRef] [Google Scholar]
  • Algeo TJ, Kuwahara K, Sano H, Bates S, Lyons T, Elswick E, et al. 2011. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean . Palaeogeography, Palaeoclimatology, Palaeoecology 308(1-2): 65–83. [CrossRef] [Google Scholar]
  • Brett CE, Baird GC, Bartholomew AJ, DeSantis MK, Ver Straeten CA. 2011. Sequence stratigraphy and a revised sea-level curve for the Middle Devonian of eastern North America . Palaeogeography, Palaeoclimatology, Palaeoecology 304(1-2): 21–53. [CrossRef] [Google Scholar]
  • Brumsack HJ. 1989. Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea . Geologische Rundschau 78(3): 851–882. [CrossRef] [Google Scholar]
  • Cruse AM, Lyons TW. 2004. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales . Chemical Geology 206(3-4): 319–345. [CrossRef] [Google Scholar]
  • DeSantis MK, Brett CE. 2011. Late Eifelian (Middle Devonian) biocrises: timing and signature of the pre-Kačák Bakoven and Stony Hollow events in eastern North America . Palaeogeography, Palaeoclimatology, Palaeoecology 304(1-2): 113–135. [CrossRef] [Google Scholar]
  • Ellwood BB, Algeo TJ, El Hassani A, Tomkin JH, Rowe HD. 2011. Defining the timing and duration of the Kačák Interval within the Eifelian/Givetian boundary GSSP, Mech Irdane, Morocco, using geochemical and magnetic susceptibility patterns . Palaeogeography, Palaeoclimatology, Palaeoecology 304(1-2): 74–84. [CrossRef] [Google Scholar]
  • François R. 1987, Some aspects of the geochemistry of sulphur and iodine in marine humic substances and transition metal enrichment in anoxic sediments. Ph.D. Dissertation, Univ. of British Columbia, Vancouver, B.C., Canada, 462 pp. [Google Scholar]
  • Hatch JR, Leventhal JS. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA . Chemical Geology 99(1-3): 65–82. [CrossRef] [Google Scholar]
  • Henderson CM. 1997. Uppermost Permian conodonts and the Permian-Triassic boundary in the western Canada sedimentary basin . Bulletin of Canadian Petroleum Geology 45(4): 693–707. [Google Scholar]
  • Herrmann AD, Barrick J, Algeo TJ, Peng Y. 2019. Conodont biofacies and watermass structure of the Middle Pennsylvanian North American Midcontinent Sea . Palaeogeography, Palaeoclimatology, Palaeoecology, art. 109235. [Google Scholar]
  • Hoffman DL, Algeo TJ, Maynard JB, Joachimski MM, Hower JC, Jaminski J. 1998. Regional and stratigraphic variation in bottomwater anoxia in offshore core shales of Upper Pennsylvanian cyclothems from the Eastern Midcontinent Shelf (Kansas), USA . Shales and Mudstones 1: 243–269. [Google Scholar]
  • Irino T, Pedersen T. 2000. Geochemical character of glacial to interglacial sediments at Site 1017, southern Californian Margin: Minor and trace elements . Proc. Ocean Drill. Program Sci. Results 167: 263–271. [Google Scholar]
  • Jaminski J. 1998. Geochemical and petrographic patterns of cyclicity in the Devonian-Mississippian black shales of the central Appalachian Basin. Ph.D. Dissertation, University of Cincinnati, Cincinnati, Ohio, USA, 333 pp. [Google Scholar]
  • Jaminski J, Algeo TJ, Maynard JB, Hower JC. 1998. Climatic origin of dm-scale compositional cyclicity in the Cleveland Member of the Ohio Shale (Upper Devonian), Central Appalachian Basin, USA . Shales and Mudstones 1: 217–242. [Google Scholar]
  • Jones B. 1991. Relationships between organic maturity and inorganic geochemistry in Upper Jurassic petroleum source rocks from the Norwegian North Sea and the United Kingdom. Ph.D. Thesis, University of Newcastle upon Tyne, UK, 410 pp. [Google Scholar]
  • Jones B, Manning DAC. 1994, Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones . Chemical Geology 111: 111–129. [CrossRef] [Google Scholar]
  • Krull ES, Lehrmann DJ, Druke D, Kessel B, Yu Y, Li R. 2004. Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China . Palaeogeography, Palaeoclimatology, Palaeoecology 204(3-4): 297–315. [CrossRef] [Google Scholar]
  • Lev SM. 1994. Controls on the preservation of organic carbon in the Middle Ordovician Llanvirn/Llandeilo black shales of southwest Wales, UK. Master’s Thesis, University of Cincinnati, Cincinnati, Ohio, USA. [Google Scholar]
  • Luo G, Wang Y, Yang H, Algeo TJ, Kump LR, Huang J, et al. 2011. Stepwise and large-magnitude negative shift in δ13Ccarb preceded the main marine mass extinction of the Permian-Triassic crisis interval . Palaeogeography, Palaeoclimatology, Palaeoecology 299(1-2): 70–82. [CrossRef] [Google Scholar]
  • Lüschen H. 2004. Vergleichende anorganisch-geochemische Untersuchungen an phanerozoischen Corg-reichen Sedimenten: ein Beitrag zur Charakterisierung ihrer Fazies. Ph.D. Dissertation, Universität Oldenburg, Oldenburg, Germany, 186 pp. [Google Scholar]
  • Lyons TW. 1992. Comparative study of Holocene Black Sea sediments from oxic and anoxic sites of deposition: Geochemical and sedimentological criteria. Ph.D. Dissertation, Yale University, New Haven, Connecticut, 377 pp. [Google Scholar]
  • Lyons TW, Werne JP, Hollander DJ, Murray RW. 2003. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela . Chemical Geology 195(1): 131–157. [CrossRef] [Google Scholar]
  • Murphy AE, Sageman BB, Hollander DJ. 2000. Eutrophication by decoupling of the marine biogeochemical cycles of C, N, and P: A mechanism for the Late Devonian mass extinction . Geology 28(5): 427–430. [CrossRef] [Google Scholar]
  • Over DJ, Hauf E, Wallace J, Chiarello J, Over JS, Gilleaudeau GJ, et al. 2019. Conodont biostratigraphy and magnetic susceptibility of Upper Devonian Chattanooga Shale, eastern United States: Evidence for episodic deposition and disconformities . Palaeogeography, Palaeoclimatology, Palaeoecology 524: 137–149. [CrossRef] [Google Scholar]
  • Piper DZ, Dean WE. 2002. Trace-element deposition in the Cariaco Basin, Venezuela Shelf, under sulfate-reducing conditions: A history of the local hydrography and global climate, 20 ka to the present . U.S. Geological Survey Prof. Paper 1670. [Google Scholar]
  • Robl TL, Barron LS. 1988. The geochemistry of Devonian black shales in central Kentucky and its relationship to inter-basinal correlation and depositional environment. In: Devonian of the World: Proceedings of the 2nd International Symposium on the Devonian System, Canadian Society of Petroleum Geologists Memoir 14, Volume II: Sedimentation, pp. 377–392. [Google Scholar]
  • Sageman BB, Murphy AE, Werne JP, Ver Straeten CA, Hollander DJ, Lyons TW. 2003. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin . Chemical Geology 195(1-4): 229–273. [CrossRef] [Google Scholar]
  • Schobben M, Stebbins A, Algeo TJ, Strauss H, Leda L, Haas J, et al. 2017. Volatile earliest Triassic sulfur cycle: A consequence of persistent low seawater sulfate concentrations and a high sulfur cycle turnover rate? Palaeogeography, Palaeoclimatology, Palaeoecology 486: 74–85. [CrossRef] [Google Scholar]
  • Schoepfer SD, Henderson CM, Garrison GH, Foriel J, Ward PD, Selby D, et al. 2013. Termination of a continent-margin upwelling system at the Permian-Triassic boundary (Opal Creek, Alberta, Canada) . Global and Planetary Change 105: 21–35. [CrossRef] [Google Scholar]
  • Schoepfer SD, Algeo TJ, Ward PD, Williford KH, Haggart JW. 2016. Testing the limits in a greenhouse ocean: Did low nitrogen availability limit marine productivity during the end-Triassic mass extinction? Earth and Planetary Science Letters 451: 138–148. [CrossRef] [Google Scholar]
  • Shen J, Algeo TJ, Hu Q, Zhang N, Zhou L, Xia W, et al. 2012. Negative C-isotope excursions at the Permian-Triassic boundary linked to volcanism . Geology 40(11): 963–966. [CrossRef] [Google Scholar]
  • Shen J, Algeo TJ, Feng Q, Zhou L, Feng L, Zhang N, et al. 2013. Volcanically induced environmental change at the Permian-Triassic boundary (Xiakou, Hubei Province, South China): Related to West Siberian coal-field methane releases? Journal of Asian Earth Sciences 75: 95–109. [CrossRef] [Google Scholar]
  • Shen J, Algeo TJ, Chen J, Planavsky NJ, Feng Q, Yu J, et al. 2019. Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin . Earth and Planetary Science Letters 511: 130–140. [CrossRef] [Google Scholar]
  • Son TH, Koeberl C, Ngoc NL, Huyen DT. 2007. The Permian-Triassic boundary sections in northern Vietnam (Nhi Tao and Lung Cam sections): Carbon-isotope excursion and elemental variations indicate major anoxic event . Palaeoworld 16(1-3): 51–66. [CrossRef] [Google Scholar]
  • Song Y, Gilleaudeau G, Algeo TJ, Over DJ, Anbar A, Xie SC. 2020. Biomarker evidence of algal-microbial community changes linked to redox conditions and enhanced weathering, Upper Devonian Chattanooga Shale . Geological Society of America Bulletin 133(1-2): 409–424. https://doi.org/10.1130/B35543.1. [Google Scholar]
  • Tada R, Sato S, Irino T, Matsui H, Kennett JP. 2000. 25. Millennial-scale compositional variations in late quaternary sediments at site 1017, Southern California. In: Proceedings of the Ocean Drilling Program: Scientific Results,Vol. 167, pp. 277–296. [Google Scholar]
  • Turner AC, Algeo TJ, Peng Y, Herrmann AD. 2019. Circulation patterns in the Late Pennsylvanian North American Midcontinent Sea inferred from spatial gradients in sediment chemistry and mineralogy . Palaeogeography, Palaeoclimatology, Palaeoecology 531, art. 109023. [CrossRef] [Google Scholar]
  • Ver Straeten CA, Brett CE, Sageman BB. 2011. Mudrock sequence stratigraphy: a multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin . Palaeogeography, Palaeoclimatology, Palaeoecology 304(1-2): 54–73. [CrossRef] [Google Scholar]
  • Wardlaw BR, Nestell MK, Nestell GP, Ellwood BB, Lan LTP. 2015. Conodont biostratigraphy of the Permian-Triassic boundary sequence at Lung Cam, Vietnam . Micropaleontology 61(4): 313–334. [Google Scholar]
  • Wignall PB, Newton R. 2003. Contrasting deep-water records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: Evidence for a diachronous mass extinction . Palaios 18(2): 153–167. [CrossRef] [Google Scholar]
  • Xiong Z, Li T, Algeo T, Nan Q, Zhai B, Lu B. 2012. Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific . Chemical Geology 334: 77–91. [CrossRef] [Google Scholar]
  • Zhang L, Orchard MJ, Algeo TJ, Chen ZQ, Lyu Z, Zhao L, et al. 2019. An intercalibrated Triassic conodont succession and carbonate carbon isotope profile, Kamura, Japan . Palaeogeography, Palaeoclimatology, Palaeoecology 519: 65–83. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.